With Illumination And Viewing Paths Coaxial At The Image Field Patents (Class 359/389)
  • Patent number: 10416431
    Abstract: In a method of monitoring a relative position of a microscope objective with regard to a sample a test beam of light is directed onto at least one at least partially reflective surface connected to the sample, and light of the test beam reflected at the at least one at least partially reflective surface is registered and evaluated. Additionally, the test beam is directed onto a reflective surface of the microscope objective facing the sample, and light of the test beam reflected at the reflective surface of the microscope objective is also registered and evaluated.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: September 17, 2019
    Assignee: DEUTSCHES KREBSFORSCHUNGSZENTRUM
    Inventor: Johann Engelhardt
  • Patent number: 10239178
    Abstract: A laser projector assembly for projecting a template onto an object is provided. The laser projector assembly includes a frame, a laser source for generating a laser beam being affixed to said frame, a sensor assembly, a lens assembly and a galvanometer assembly. The sensor assembly is affixed to said frame for identifying surface locations of three dimensional objects. The lens assembly includes a tunable lens for changing a focus of the laser beam received from said laser source. The galvanometer assembly redirects the laser beam received from said lens assembly along a scanning path. The lens is disposed in a fixed location relative to said sensor assembly and is tunable in response to the surface locations of the three dimensional objects identified along the scanning path of the laser beam by said sensor assembly.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: March 26, 2019
    Assignee: Virtek Vision International, ULC
    Inventor: Kurt D. Rueb
  • Patent number: 10241312
    Abstract: The total internal reflection microscope has an illumination optical system that relays light from a light source with a relay optical system, forms an image of the light source on the incident pupil plane of the objective lens and irradiates a sample with the illumination light via an objective lens, has an angle adjustment mirror for changing the position of the image of the light source in a direction orthogonal to the optical axis, an optical detector for detecting the intensity of the returning illumination light reflected by the sample and collected by the objective lens, and a controller for determining the operation amount of the angle adjustment mirror, wherein the controller determines the operation amount of the angle adjustment mirror so that the illumination light is totally reflected at the sample based on the change in intensity of the returning light when the angle adjustment mirror is changed.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 26, 2019
    Assignee: NIKON CORPORATION
    Inventors: Takayuki Morita, Akitoshi Suzuki, Tomoko Kobayashi, Keita Masuda
  • Patent number: 10191269
    Abstract: The invention relates to a microscope slide holder for an optical microscope. The slide holder comprises a base portion, a slide holder portion arranged on the base portion and having a mounting zone capable of receiving microscope slides of one or more slide types, the slide holder portion being movably arranged on the base portion, and a manipulator for moving the slide holder portion with respect to the base portion in three orthogonal dimensions. According to the invention, the base portion is dimensioned to fit into a mounting zone designed for at least one of the one or more microscope slide types. The invention allows for convenient sample movement in microscopes whose sample stage is not inherently designed for scanning microscopy.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: January 29, 2019
    Inventor: Johan Lundin
  • Patent number: 9874737
    Abstract: A fluorescence microscope for obtaining super-resolution images of a sample labeled with at least one fluorescent label by combining localization microscopy and structured illumination microscopy is provided. The fluorescence microscope includes one or more light sources, an illumination system having a structured illumination path for illuminating the sample with structured illumination light and a localization illumination path for illuminating the sample with localization illumination light.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: January 23, 2018
    Assignee: FORSCHUNGSZENTRUM MIKROSKOPIE (FZM), LUCIAOPTICS GEMEINNÜTZIGE UG
    Inventors: Gerrit Best, Christoph Cremer, Sabrina Rossberger, Stefan Dithmar
  • Patent number: 9268125
    Abstract: Systems and methods are provided for illuminating a surface to be observed microscopically using a retractable beamsplitter. The retractable beamsplitter allows the use of coaxial illumination when the beamsplitter is positioned in the operator's line of sight. The retractable beamsplitter allows the use of non-coaxial illumination without reducing the amount of illumination that reaches the operator when the beamsplitter is retracted from the operator's line of sight. As a result a single system can be used effectively to provide various types of illumination.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: February 23, 2016
    Assignee: Alcon Research, Ltd.
    Inventors: Jonathan Michael Butler, Robert Troy Hewlett, Robert Jeffrey Hewlett, Robert McCoy Hewlett
  • Patent number: 9261691
    Abstract: An image pickup apparatus of the present invention includes a light source unit, an illumination optical system configured to introduce a light from the light source unit onto a plane to be illuminated, a sample stage configured to place an object on the plane to be illuminated, an image pickup optical system configured to form an image of the object placed on the plane to be illuminated, an image pickup element portion configured by disposing a plurality of image pickup elements on an image plane of the image pickup optical system, and a light shielding member configured to reduce entrance of a light to an area where the plurality of image pickup elements of the image pickup element portion are not disposed.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: February 16, 2016
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Tomoaki Kawakami
  • Patent number: 9229203
    Abstract: A zoom lens substantially consists of, in order from the object side, a positive first lens group, a negative second lens group, a positive third lens group, a positive fourth lens group, and a negative fifth lens group. When varying magnification, the distances between adjacent lens groups) are changed, while all of the lens groups are moved with respect to an image formation position. When focusing, only the fifth lens group is shifted, and the third lens group has a third-a lens group having positive refractive power and a third-b lens group having negative refractive power, which are arranged in this order from the object side, only the third-b lens group is moved in a direction perpendicular to the optical axis to achieve camera shake correction.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: January 5, 2016
    Assignee: FUJIFILM Corporation
    Inventors: Takashi Tanaka, Michio Cho
  • Patent number: 9179836
    Abstract: One embodiment disclosed is a compact wavefront sensor module to be attached to or integrated with an ophthalmic instrument for eye examination and/or vision correction procedures. The front lens for relaying the wavefront from the eye to a wavefront sampling plane is positioned at the optical input port of the wavefront sensor module. The front lens is shared by the wavefront sensor and the ophthalmic instrument, and the wavefront sensor module can be made very compact while still being able to cover a large eye wavefront measurement diopter range. Another embodiment disclosed is an ophthalmic device for measuring properties of a subject eye including an ophthalmic instrument integrated with the wavefront sensor module.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: November 10, 2015
    Assignee: CLARITY MEDICAL SYSTEMS, INC.
    Inventors: Yan Zhou, William Shea
  • Publication number: 20150131148
    Abstract: A spinning-disk confocal unit uses a pair of microlens arrays to create an infinity space directly after the pinhole array. This at least allows flexibility in the confocal unit design and also allows incorporation of superresolution.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 14, 2015
    Inventor: Glen Ivan Redford
  • Patent number: 9025245
    Abstract: A chromatic confocal microscope system and signal process method is provided to utilize a first optical fiber module for modulating a light into a detecting light passing through a chromatic dispersion objective and thereby forming a plurality of chromatic dispersion lights to project onto an object. A second optical fiber module conjugated with the first optical fiber module receives a reflected object light for forming a filtered light, which is split into two filtered lights detected by two color sensing units for generating two sets of RGB intensity signals, wherein one set of RGB intensity signals is adjusted relative to the other set of RGB intensity signals. Then two sets of RGB intensity signals are calculated for obtaining a maximum ratio factor. Finally, according to the maximum ratio factor and a depth relation curve, the surface profile of the object can be reconstructed.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: May 5, 2015
    Assignee: National Taipei University of Technology
    Inventors: Liang-Chia Chen, Yi-Wei Chang
  • Publication number: 20150009559
    Abstract: An autofocus apparatus includes a light source; an optical coupler having a first port, second port and a third port; wherein the optic coupler couples to the light source at the first port; an optical collimator for directing a light output from the second port of the optical coupler onto a sample through a Dichroic mirror and a microscope objective, wherein the sample is placed on a substrate supported by an adjustable microscopy stage; a scanning device for focusing the light at a plurality of focal points along an axis; a photodiode detector for converting a reflected light signal into an intensity signal; a memory device for storing a signal template; and a microprocessor for detecting a peak in the intensity signal by cross-correlating the intensity signal with the signal template; wherein the microprocessor generates a command for moving the position of the adjustable microscopy stage along the axis.
    Type: Application
    Filed: August 22, 2014
    Publication date: January 8, 2015
    Inventor: Jeffrey S. Brooker
  • Patent number: 8913317
    Abstract: The invention relates to a method and a device for illuminating or irradiating an object, a sample (8), or the like, for the purpose of imaging or analysis, particularly for use in a laser microscope (1), preferably in a confocal microscope having a laser light source (2) emitting the illuminating light, the laser light being coupled directly or by means of a glass fiber into an illumination light path (4), characterized in that the laser light source (2) is switched on rapidly upon a trigger signal directly prior to the actual need, for example, directly prior to imaging.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: December 16, 2014
    Assignee: Leica Microsystems CMS GmbH
    Inventors: Volker Seyfried, Hilmar Gugel, Carsten L. Thomsen
  • Patent number: 8908270
    Abstract: Illuminating light is two-dimensionally scanned without changing the ability to focus the illuminating light on a specimen. Provided is a microscope apparatus including a spatial light modulator that modulates the wavefront of illuminating light; a scanner that two-dimensionally scans the illuminating light by pivoting two mirrors; a relay optical system that relays an image in the scanner to a pupil position of an objective optical system; and a beam-shift mechanism that moves rays of the illuminating light between the modulator and the objective optical system in response to pivoting of the mirrors. The beam-shift mechanism moves the rays such that the image at the pupil position, when assuming that the mirrors are stationary, is moved in the direction opposite to the direction in which the image relayed to the pupil position by the relay optical system, when assuming that the mirrors are pivoted with the rays fixed, is moved.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: December 9, 2014
    Assignee: Olympus Corporation
    Inventors: Yoshiaki Murayama, Ikutoshi Fukushima
  • Patent number: 8891164
    Abstract: An optical system, comprising a microscope housing having a coupling opening for a detachable coupling of an objective lens of the optical system such that the objective lens is arranged in a microscope beam path of the optical system for imaging an object region of the objective lens. The optical system further comprises an assembly. The assembly comprises an assembly housing having a coupling element for the detachable coupling of the coupling element and the coupling opening of the microscope housing; a wavefront analysis system, which provides a wavefront beam path; and a beam splitter, which is arranged in the wavefront beam path. The objective lens, the beam splitter and the wavefront analysis system are arranged such that during the coupling of the coupling opening and the coupling element, the objective lens is arranged in the microscope beam path and the object region is arranged in the wavefront beam path.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: November 18, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Christoph Kuebler, Daniel Kolster
  • Publication number: 20140268320
    Abstract: An image processing apparatus includes an image input unit configured to input a plurality of images acquired by imaging a specimen stained with non-fluorescent dye at a plurality of wavelength bands that are different from one another and a characteristic amount calculation unit configured to calculate a characteristic amount representing auto-fluorescence emitted by the specimen based on the plurality of images.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Applicant: OLYMPUS CORPORATION
    Inventor: Yoshioki KANEKO
  • Patent number: 8816302
    Abstract: The invention relates to an optical arrangement (20) and to a method of examining or processing an object (46). Here, a first laser pulse with a first central wavelength and a second laser pulse with a second central wavelength different from the first central wavelength are generated. Both pulses are superimposed in or on the object (46) such that multi-photon absorption takes place there with the involvement of at least one photon of the first laser pulse and at least one photon of the second laser pulse.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: August 26, 2014
    Assignee: Menlo Systems GmbH
    Inventors: Michael Mei, Ronald Holzwarth, Marc Fischer
  • Publication number: 20140158865
    Abstract: Microscopy instruments with detectors located on one side of the instruments are disclosed. The microscopy instruments include a splitting system and an array of detectors disposed on one side of the instrument. A beam composed of two or more separate emission channels is separated by the splitting system into two or more beams that travel along separate paths so that each beam reaches a different detector in the array of detectors. Each beam is a different emission channel and the beams are substantially parallel.
    Type: Application
    Filed: July 10, 2012
    Publication date: June 12, 2014
    Applicant: GE HEALTHCARE BIO-SCIENCES CORP.
    Inventors: Jeremy R. Cooper, Justin Kyle Curts
  • Patent number: 8702770
    Abstract: The invention concerns a scanning device for focusing a beam of rays in defined regions of a defined volume, comprising an input optics wherein the beam of rays penetrates first, having at least one first optical element; a focusing optics for focusing the beam of rays exiting from the input optics; and a deflecting device arranged between the first optical element and the focusing optics, for deflecting the beam of rays after it has passed through the first optical element, based on a position of the focus to be adjusted in lateral direction. In order to adjust the position of the focus of the beam of rays in the direction of the beam of rays, and optical element of the input optics can be displaced relative to the deflecting device.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: April 22, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Dirk Muehlhoff, Mark Bischoff, Mario Gerlach
  • Patent number: 8624967
    Abstract: A hand-held microscope includes a rigid tripod stand with adjustable legs, a visual display component, an imaging detector and an optical assembly comprising an imaging lens and an objective lens housed within an imaging tube. Multiple illumination sources can be used in the microscope, including LED or laser diode sources. The microscope can also include interchangeable imaging tubes that enable bright field, dark field, fluorescence and other imaging modalities.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: January 7, 2014
    Inventors: Dan O'Connell, Terry Born
  • Publication number: 20130335819
    Abstract: Illumination phase controls that provide precise and fast phase control of structured illumination patterns used in structure illumination microscopy are described. A coherent light source is used to generate a beam of coherent light that is split into at least three coherent beams of light. In one aspect, an illumination phase control is composed of at least one pair of rotatable windows to apply at least one phase shift to at least one of the beams. An objective lens is to receive the beams and focus the at least three beams to form an interference pattern. The phase control can be used to change the position of the interference pattern by changing the at least one phase shift applied to the at least one beam.
    Type: Application
    Filed: February 29, 2012
    Publication date: December 19, 2013
    Applicant: Applied Precision, Inc
    Inventor: Jeremy R. Cooper
  • Publication number: 20130293952
    Abstract: An autofocus apparatus includes, in one embodiment, a light source; a splitter; a fiber optic circulator; an optical collimator; a balance detector; and a microprocessor. The fiber optic circulator couples one of the split light signals at a first port, to the optical collimator at a second port, and to the balance detector at the third port. The optical collimator directs the light beam from the fiber optic circulator onto a sample through a Dichroic mirror and a microscope objective. The balance detector uses another one of the split light signals as an input, and converts a light signal, reflected off of a substrate the sample is placed on, into an analog voltage signal. The microprocessor processes the output of the balance detector and position feedbacks from an adjustable microscopy stage to generate a command for moving the position of the adjustable microscopy stage to achieve a desired focus.
    Type: Application
    Filed: July 3, 2013
    Publication date: November 7, 2013
    Applicant: Thorlabs, Inc.
    Inventor: Jeffrey S. Brooker
  • Patent number: 8573808
    Abstract: Systems and methods are provided for illuminating a surface to be observed microscopically using a retractable beamsplitter. The retractable beamsplitter allows the use of coaxial illumination when the beamsplitter is positioned in the operator's line of sight. The retractable beamsplitter allows the use of non-coaxial illumination without reducing the amount of illumination that reaches the operator when the beamsplitter is retracted from the operator's line of sight. As a result a single system can be used effectively to provide various types of illumination.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: November 5, 2013
    Assignee: Endure Medical, Inc.
    Inventors: Jonathan Michael Butler, Robert Troy Hewlett, Robert Jeffrey Hewlett, Robert McCoy Hewlett
  • Patent number: 8488238
    Abstract: A microscope cube includes a housing including a first opening on a first wall of the housing and a second opening on a second wall of the housing, the first wall adjacent to the second wall; an excitation filter disposed within the first opening; an emission filter disposed within the second opening; and a dichroic mirror positioned within the housing. In one aspect, the dichroic mirror has a thickness greater than or equal to 1.5 mm. In another aspect, the excitation filter is positioned at an angle relative to the first wall of the housing.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: July 16, 2013
    Assignee: Chroma Technology Corporation
    Inventor: Charles Michael Stanley
  • Patent number: 8446668
    Abstract: A microscope apparatus includes an illumination optical system that illuminates a sample with illumination light from a light source; an imaging optical system that converges light emitted from the sample to form a sample image by an objective lens; an aperture member disposed in the illumination optical system in the vicinity of a conjugate plane of a rear focal plane of the objective lens and having an aperture for limiting illumination light; and a filter member that includes a phase plate disposed in the imaging optical system in the vicinity of the objective lens rear focal plane or in the vicinity of the conjugate plane of the objective lens rear focal plane and having first and second phase areas introducing a 180-degree phase difference into the light from the sample; a phase boundary portion between the first and second phase areas being disposed in a conjugate aperture of the aperture.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: May 21, 2013
    Assignee: Nikon Corporation
    Inventor: Kumiko Matsui
  • Patent number: 8437077
    Abstract: A measurement apparatus includes a lamp mount including a first mount and a second mount. The first mount has a first cavity to mount an observation module. The second mount has a second cavity to mount an image capture module. The measurement apparatus further includes a plurality of light modules mounted on an undersurface of the lamp mount. The second mount is disposed with an included angle relative to a first axis of the first cavity so that a second axis of the second cavity and the first axis converge on a point. The undersurface of the lamp mount is concave so that light from the light modules tilts toward the first axis, and the light and the first axis also converge on the point.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: May 7, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Chih-Kuang Chang, Dong-Hai Li, Li Jiang, Yong-Hong Ding, Xiao-Guang Xue
  • Patent number: 8422128
    Abstract: A modular laser objective for use with a microscope is provided. A mounting modular body permits the modular objective to be releasably mounted to the turret of a microscope. The objective has an optical axis that permits an image beam to be emitted through the objective toward the eyepiece of a microscope. The modular body supports a mirror positioned at an angle to the optical axis of the objective. A modular laser assembly is mounted on the modular body on a first side of the mirror for directing a laser beam toward the mirror so that the energy is reflected off the mirror and through the objective in a direction that is substantially aligned with the optical axis of the objective.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: April 16, 2013
    Assignee: Hamilton-Thorne, Inc.
    Inventors: Diarmaid H. Douglas-Hamilton, Thomas G. Kenny
  • Patent number: 8400710
    Abstract: The observing apparatus is being equipped with an image-forming optical system which forms an image of light emitted from a specimen, an imaging unit which picks up the image of the specimen formed by the image-forming optical system, and an illuminating unit which illuminates the specimen with a surface illuminant in which bright areas and dark areas are arranged alternately in order to provide an observing apparatus suitable to observe a transparent specimen with a wide field of view. If the position of the surface illuminant and the pitch of contrasting are set properly, each partial area of the specimen is illuminated obliquely at a small angle by each bright area of the surface illuminant. Therefore, the imaging unit can acquire a dark-field observation image of each partial area.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: March 19, 2013
    Assignee: Nikon Corporation
    Inventors: Susumu Terakawa, Takashi Sakurai, Hisao Osawa, Yasujiro Kiyota
  • Patent number: 8390924
    Abstract: An endoscope includes: a first illumination optical system which emits illuminating light in a first linear polarization direction to an object from a distal end face of an insertion portion; and a first objective optical system which allows return light from the object to enter through an objective window provided in the distal end face; wherein the first illumination optical system and the first objective optical system are placed in a positional relationship such that on the distal end face, a line segment connecting an optical axis of the first illumination optical system and an optical axis of the first objective optical system is parallel or perpendicular to a polarization direction which results when the illuminating light emitted from the first illumination optical system is projected to the distal end face, and no polarizing element is provided between the object and the objective window.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 5, 2013
    Assignee: Olympus Medical Systems Corp.
    Inventors: Daisuke Akiyama, Takeshi Suga, Satoshi Takekoshi, Kazuhiro Gono
  • Patent number: 8345093
    Abstract: The automatic adjustment method of a microscopic image for automatically adjusting an image on the basis of the lightness of the microscopic image includes distinguishing an observation pixel being an observation target in the image from a non-observation pixel not being an observation target on the basis of the lightness of each pixel of the image, determining a representative value for representing the lightness of the image on the basis of the lightness of a selection pixel identified as the observation pixel and adjusting the lightness of the image on the basis of the representative value.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: January 1, 2013
    Assignee: Olympus Corporation
    Inventor: Daisuke Nishiwaki
  • Patent number: 8337047
    Abstract: Systems and methods are provided for illuminating a surface to be observed microscopically using a retractable beamsplitter. The retractable beamsplitter allows the use of coaxial illumination when the beamsplitter is positioned in the operator's line of sight. The retractable beamsplitter allows the use of non-coaxial illumination without reducing the amount of illumination that reaches the operator when the beamsplitter is retracted from the operator's line of sight. As a result a single system can be used effectively to provide various types of illumination.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: December 25, 2012
    Assignee: Endure Medical, Inc.
    Inventors: Jonathan Michael Butler, Robert Troy Hewlett, Robert Jeffrey Hewlett, Hewlett Robert McCoy
  • Patent number: 8300310
    Abstract: A method for conducting FCS measurements includes providing a sample volume, emitting a target light having a first wavelength from a target light source, and marking an FCS volume in the sample volume with the target light by directing the target light onto the sample volume. An illuminating light having a second wavelength is emitted from an illuminating light source, the second wavelength being different than the first wavelength, and the illuminating light is directed onto the sample volume.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: October 30, 2012
    Assignee: Leica Microsytems CMS GmbH
    Inventor: Werner Knebel
  • Patent number: 8294985
    Abstract: Observation is performed using bright, clear multiphoton fluorescence images produced by efficiently generating a multiphoton excitation effect, without the need for a complex interference film structure. The invention employs a laser microscope apparatus including a first dichroic mirror that reflects visible laser light guided via a first light path and that transmits IR pulsed laser light guided via a second light path to combine the first light path and the second light path; an XY galvanometer mirror that scans the laser light from the first dichroic mirror on a specimen; an objective lens that irradiates the specimen with the scanned laser light and that collects fluorescence produced in the specimen; a second dichroic mirror that reflects the visible laser light and transmits the fluorescence from the specimen; and a detection unit that detects the fluorescence transmitted through the second dichroic mirror.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: October 23, 2012
    Assignee: Olympus Corporation
    Inventors: Hiroshi Sasaki, Hirokazu Kubo
  • Patent number: 8289383
    Abstract: A microscope, which moves an objective lens along an observation optical axis with respect to a specimen, includes an imaging unit and a supporting unit. The imaging unit has an imaging lens, which is arranged on the observation optical axis and forms an observation image of the specimen, and an imaging element, which is arranged on the observation optical axis and takes the observation image, and is optically connected to the objective lens by a parallel light flux. The supporting unit fixedly supports the imaging unit, and movably supports the objective lens.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: October 16, 2012
    Assignee: Olympus Corporation
    Inventors: Yusuke Matsumoto, Hirofumi Yamamoto
  • Patent number: 8284485
    Abstract: An illumination optical system which irradiates a sample surface with light through an illuminating lens includes: a light source; a condensing optical system receiving the light emitted from the light source; and a lens array optical system including a first lens array surface and a second lens array surface each formed by a plurality of lens elements. The first lens array surface has a conjugate relation with a back focal position of the illuminating lens. The second lens array surface is placed at a back focal position of the lens array optical system, has a conjugate relation with a pupil position of the illuminating lens, and the light source and the condensing optical system are arranged to form an image of the light source on the first lens array surface.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: October 9, 2012
    Assignee: Olympus Corporation
    Inventors: Masahito Dohi, Kenji Kawasaki
  • Patent number: 8279374
    Abstract: The present invention relates to a fluorescent microscope and a remote control system thereof. The present invention reduces the size of the fluorescent microscope to facilitate transportation and management and be disposed in a narrow place such as the inside of the incubator or the clean bench, etc. and observes the samples through a remote control, thereby making it possible to improve the user convenience.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: October 2, 2012
    Assignee: Nanoentek, Inc.
    Inventors: Hwa Joon Park, Jeoung Ku Hwang, Chan Il Chung, Cha Hee Kim, Min Sung Kim
  • Patent number: 8275226
    Abstract: A multi-mode optical fiber delivers light from a radiation source to a multi-focal confocal microscope with reasonable efficiency. A core diameter of the multi-mode fiber is selected such that an etendue of light emitted from the fiber is not substantially greater than a total etendue of light passing through a plurality of pinholes in a pinhole array of the multi-focal confocal microscope. The core diameter may be selected taking into account a specific optical geometry of the multi-focal confocal microscope, including pinhole diameter and focal lengths of relevant optical elements. For coherent radiation sources, phase randomization may be included. A multi-mode fiber enables the use of a variety of radiation sources and wavelengths in a multi-focal confocal microscope, since the coupling of the radiation source to the multi-mode fiber is less sensitive to mechanical and temperature influences than coupling the radiation source to a single mode fiber.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: September 25, 2012
    Assignee: Spectral Applied Research Ltd.
    Inventor: Richard Berman
  • Patent number: 8217998
    Abstract: A microscope image processing method includes applying a computing operation to at least one part of a microscope image, having the following steps: (a) providing the image in the mass storage device, (b) breaking down the microscope image into at least two image segments that can be loaded into the working memory and that have a dimension m, where m?n, (c) for one image segment, determining all pixels that are located in the image segment and in at least one of the partial images, so that a filled image segment results, (d) providing the filled image segment in the working memory, (e) applying the computing operation to the pixels located in the filled image segment so that an image segment result is created, (f) repeating steps (c), (d), and (e) for all image segments, and (g) combining all image segment results to create an overall result.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: July 10, 2012
    Assignee: Carl Zeiss MicroImaging GmbH
    Inventor: Helmut Zoephel
  • Patent number: 8217992
    Abstract: A method of performing 3D photoactivation microscope imaging includes providing a sample having a plurality of probes, each of the plurality of probes including a photo-activatable material. Probes from the plurality of probes are activated to form a sparse subset of probes, the sparse subset of probes having probes that are spatially separated by at least a microscope resolution. The sample is illuminated with a readout light source, and light emitted from activated probes is detected. Based on the light emission detected from the activated probes, localized three-dimensional positions of the activated probes are obtained.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: July 10, 2012
    Assignees: The Jackson Laboratory, University of Maine
    Inventors: Joerg Bewersdorf, Michael Darin Mason, Sam T. Hess
  • Publication number: 20120147460
    Abstract: An optical system, comprising a microscope housing having a coupling opening for a detachable coupling of an objective lens of the optical system such that the objective lens is arranged in a microscope beam path of the optical system for imaging an object region of the objective lens. The optical system further comprises an assembly. The assembly comprises an assembly housing having a coupling element for the detachable coupling of the coupling element and the coupling opening of the microscope housing; a wavefront analysis system, which provides a wavefront beam path; and a beam splitter, which is arranged in the wavefront beam path. The objective lens, the beam splitter and the wavefront analysis system are arranged such that during the coupling of the coupling opening and the coupling element, the objective lens is arranged in the microscope beam path and the object region is arranged in the wavefront beam path.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Christoph Kübler, Daniel Kolster
  • Patent number: 8193441
    Abstract: An interferometric mask covering a reflective conductive ribbon that electrically interconnects a plurality of photovoltaic cells is disclosed. Such an interferometric mask may reduce reflections of incident light from the conductors. In various embodiments, the mask reduces reflections, so that a front and back electrode pattern appears black or similar in color to surrounding features of the device. In other embodiments, the mask may modulate reflections of light such that the electrode pattern matches a color in the visible spectrum.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: June 5, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Manish Kothari, Kasra Khazeni
  • Patent number: 8184364
    Abstract: A compact and low cost microscope illuminator capable of generating 3-D optical images includes a first light source and a second light source. The two light sources lead two optical paths: one to illuminate a sample and another to project a pattern onto the focal plane of a microscope objective lens. The two light sources are controlled by a processor and can be turned on and off rapidly. A 3-D optical microscope equipped with said microscope illuminator and a method of creating a 3-D image on said 3-D optical microscope are also described.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: May 22, 2012
    Assignee: Zeta Instruments, Inc.
    Inventors: James Jianguo Xu, Ken Kinsun Lee
  • Patent number: 8177394
    Abstract: The invention is a novel stereoscopic illumination system for a microscope which delivers at least two collimated light beams to a subject surface. Each of the two collimated light beams is delivered for an eye of the user. Additionally, a third light beam is provided at an angle oblique to the other two collimated light beams.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: May 15, 2012
    Assignee: Endure Medical, Inc.
    Inventors: Jonathan Michael Butler, Robert Troy Hewlett, Robert Jeffrey Hewlett, Robert McCoy Hewlett
  • Patent number: 8179433
    Abstract: The microscopic imaging apparatus includes a system controlling unit for obtaining a VD time setting value, and for obtaining the number of electric charge subtracting pulses, a synchronization signal generating unit for generating a vertical synchronization signal on the basis of the VD time setting value output from the system controlling unit and the horizontal synchronization signal, and a timing generating unit for extracting the electric charge of the imaging device by supplying the horizontal synchronization signal by the number of electric charge subtracting pulses to the imaging device as the electric charge subtracting pulses, and for generating a read pulse synchronous with the vertical synchronization signal in order to stop the accumulation of the electric charge of the imaging device after exposure is started.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: May 15, 2012
    Assignee: Olympus Corporation
    Inventor: Hiroshi Fujiki
  • Patent number: 8169695
    Abstract: An imaging method and system are presented for use in sub-wavelength super resolution imaging of a subject. The imaging system comprises a spatial coding unit configured for collecting light coming from the scanned subject and being spaced from the subject a distance smaller than a wavelength range of said light; a light detection unit located upstream of the spatial coding unit with respect to light propagation from the object, and configured to define a pixel array and a spatial decoding unit, which is associated with said pixel array and is configured for applying spatial decoding to a magnified image of the scanned subject, thereby producing nanometric spatial resolution of the image.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: May 1, 2012
    Assignee: Xceed Imaging Ltd.
    Inventor: Zeev Zalevsky
  • Patent number: 8164623
    Abstract: An unit for switchable arranging an arbitrary optical element on an optical path of fluorescence from among a plurality of types of the optical elements that transmit an excitation beam for exciting a sample and fluorescence emitted from the sample; an unit for picking up the observation image via the optical element arranged; and an unit for determining a type of the optical element arranged on the basis of the observation image picked up are prepared in order to provide a microscope image processing device, a program product, a program transmission medium and a method are provided, by which an optical element such as a fluorescence cube set on a fluorescence microscope can be identified on the basis of a detection result of an image pick up device that picks up an image of a sample to be observed by using the fluorescence microscope.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: April 24, 2012
    Assignee: Olympus Corporation
    Inventors: Shinichiro Aizaki, Yujin Arai
  • Patent number: 8154796
    Abstract: A microscope apparatus that can observe into the interior of a specimen and that can apply an optical stimulus over a wide area within a short period of time is provided. The microscope apparatus comprises at least one observation scanning optical system including a laser light source for emitting observation laser light, an objective lens, and a scanning optical system for two-dimensionally scanning the observation laser light in a predetermined examination plane of the specimen via the objective lens; and at least one stimulus optical system which includes a lamp light source for emitting light having a wavelength used for optical stimulation and which irradiates the specimen with the light emitted from the lamp light source.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: April 10, 2012
    Assignee: Olympus Corporation
    Inventors: Makoto Araki, Hiroshi Sasaki, Tatsuo Nakata, Makio Ueno
  • Patent number: 8149504
    Abstract: An objective assembly for use with a microscope is provided. The objective has an optical axis that permits an image beam to be emitted through the objective toward the eyepiece of a microscope. A mirror is positioned at an angle to the optical axis of the objective. A laser assembly is positioned on a first side of the mirror for directing a laser beam toward said mirror so that the energy is reflected off the mirror and through the objective in a direction that is substantially aligned with the optical axis of the objective. An indicator assembly including a source of light is positioned with the light incident on the other side of the mirror to reflect a beam of light in a direction opposite to the direction of the laser beam to provide an optical representation at the eyepiece of a microscope of the position of the laser beam being emitted by the objective.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: April 3, 2012
    Assignee: Hamilton Thorne Biosciences, Inc.
    Inventors: Thomas G. Kenny, Diarmaid H. Douglas-Hamilton
  • Patent number: 8143562
    Abstract: An autofocus device, comprises: a stage for mounting a sample; an objective lens; a focusing unit driving stage or the objective lens in an optical axis direction in order to control the position relative to each other of the stage and the objective lens; a lighting unit onto the sample; a detection unit detecting an optical image; a projection state changing unit being provided in an optical path, changing a state of the optical image projected onto the detection unit; a first in-focus state determination unit determining an in-focus state of the sample on the basis of a detection result; and a first in-focus state adjustment unit controlling a position of the projection state changing unit such that a state in which the stage and the objective lens are held at prescribed positions under control of the driving unit is determined to be an in-focus state.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: March 27, 2012
    Assignee: Olympus Corporation
    Inventor: Hideyuki Kawanabe
  • Publication number: 20120038980
    Abstract: A confocal microscope apparatus comprises a first optical scanning system which obtains a scan image of a sample using a laser beam from a first laser light source, a second optical scanning system which scans specific regions of a sample with a laser beam from a second laser light source that is different from the first laser light source, thereby causing a particular phenomenon, and a beam diameter varying mechanism which can change the beam diameter of the laser beam of at least one of the first optical scanning system and the second optical scanning system. With this configuration, the apparatus further comprises an excitation light intensity distribution calculator which calculates and stores the excitation light intensity distribution along a depth direction on the sample surface from the beam diameter of the laser beam output from the beam diameter varying mechanism.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: OLUMPUS CORPORATION
    Inventor: Tatsuo NAKATA