Details Of Plate Feature Patents (Class 361/298.2)
  • Patent number: 8982532
    Abstract: A system and method for sealing a capacitor bottom in a filtered feedthrough. The feedthrough comprises a ferrule, a capacitor, at least one terminal pin and a support structure. The support structure includes at least one projection that extends into an aperture of the capacitor. The projection includes an opening through which the at least one terminal pin extends such that, in an assembled state, the terminal pin extends through the opening of the projection and the aperture of the capacitor.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: March 17, 2015
    Assignee: Medtronic, Inc.
    Inventor: Rajesh V. Iyer
  • Patent number: 8373965
    Abstract: A system and method for sealing a capacitor bottom in a filtered feedthrough. The feedthrough comprises a ferrule, a capacitor, at least one terminal pin and a support structure. The support structure includes at least one projection that extends into an aperture of the capacitor. The projection includes an opening through which the at least one terminal pin extends such that, in an assembled state, the terminal pin extends through the opening of the projection and the aperture of the capacitor.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: February 12, 2013
    Assignee: Medtronic, Inc.
    Inventor: Rajesh V. Iyer
  • Patent number: 8072732
    Abstract: A capacitor is provided having a tough surface portion which prevents cracking that tends to occur when the capacitor is built-in or surface-mounted on a wiring board. A ceramic sintered body of the capacitor includes a capacitor forming layer portion, a cover layer portion and an interlayer portion. The capacitor forming layer portion has a laminated structure wherein ceramic dielectric layers and inner electrodes connected to a peripheral portion of capacitor via conductors, are alternately laminated. The cover layer portion is exposed at a surface portion of the ceramic body and has a laminated structure wherein ceramic dielectric layers and dummy electrodes not connected to the capacitor via conductors, are alternately laminated.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: December 6, 2011
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Motohiko Sato, Kenji Murakami, Jun Otsuka, Manabu Sato, Masahiko Okuyama, Kozo Yamazaki
  • Patent number: 7733662
    Abstract: A process for fabricating a circuit board with an embedded passive component is provided. First, an electrode-patterned layer having electrodes is formed on a surface of a conductive layer. Then, a passive component material is filled in the intervals between the electrodes. Then, the conductive layer and the electrode-patterned layer are laminated to a dielectric layer, wherein the electrode-patterned layer is embedded in the dielectric layer. Next, the conductive layer is patterned to form a circuit layer.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: June 8, 2010
    Assignee: Unimicron Technology Corp.
    Inventor: Tsung-Yuan Chen
  • Patent number: 7662694
    Abstract: The capacitance of a capacitor is adjusted by forming openings in one of a pair of electrodes of the capacitor, the openings having different sizes d1, d2, d3, . . . , wherein d1>d2>d3> . . . and being arranged in numbers n1, n2, n3, . . . , respectively; and sequentially filling a necessary number of the openings with an electroconductive material in descending order of the size so as to adjust the capacitance gradually with an increasing degree of precision. The resulting capacitor is mounted to a printed wiring board.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: February 16, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Hajime Sakamoto, Takashi Kariya, Yasuhiko Mano
  • Patent number: 6853534
    Abstract: A tunable capacitor. The tunable capacitor has a first fixed capacitor electrode and a second fixed capacitor electrode opposite to one another. The tunable capacitor also has a movable element formed of a conductive material. The movable element is moveable between the first fixed capacitor electrode and the second fixed capacitor electrode to adjust the capacitance between the first fixed capacitor electrode and the second fixed capacitor electrode.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: February 8, 2005
    Assignee: Agilent Technologies, Inc.
    Inventor: Kirt R. Williams
  • Patent number: 6683780
    Abstract: A displacement responsive device e.g. a measurement probe (110) is disclosed. Displacement of a stylus (130) causes resilient movement of a carriage (134) supported by planar springs (112) and (114). This movement is detected by a capacitance sensor (160), formed from two cylinders (164) and (166). The cylinders move in at least three degrees of freedom and changes in their capacitance during the said movement can be determined by a circuit (e.g. FIG. 5). Movement in x, y and z directions can be sensed.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: January 27, 2004
    Assignee: Renishaw PLC
    Inventors: David Kenneth Thomas, Andrew Loach, Graham Richard Ferguson
  • Patent number: 6625004
    Abstract: An electrostatic actuator with an intrinsic stress gradient is provided. The electrostatic actuator comprises an electrode and an electrostatically actuated beam fixed at one end relative to the electrode. The electrostatically actuated beam further includes a metal layer made substantially of a single metal with an induced stress gradient therein. The stress gradient in the metal layer determines the initial curvature of the beam. Upon electrostatic actuation of the beam, the beam is deflected from its initial curvature relative to the electrode. In one embodiment, the electrostatically actuated beam is used as a top movable electrode of an electrostatically actuated variable capacitor. The capacitance of the electrostatically actuated capacitor is changed upon electrostatic actuation of the beam.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: September 23, 2003
    Assignee: Superconductor Technologies, Inc.
    Inventors: Jurgen Musolf, Paul Kohl
  • Patent number: 6498712
    Abstract: A variable electronic component in the nature of a trimmed capacitor has a very low cost and simple design. A dielectric housing has an open end that a plug may be press fit into. The plug grips an upper region of the dielectric housing with at least one projection. A conductive body acts as a variable electrode, moving axially within the dielectric housing. A stator, acting as a fixed electrode, is securely affixed to an outer portion of the dielectric housing opposite the open end by crimping the top of the stator over a protrusion on an outer surface of the dielectric housing. The total press fit design reduces the number of steps normally required to make a trimmed capacitor, thereby reducing the cost of manufacture.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: December 24, 2002
    Assignee: Voltronics Corporation
    Inventor: David Ditlya
  • Patent number: 6496351
    Abstract: MEMS devices include a substrate, an anchor attached to the substrate, and a multilayer member attached to the anchor and spaced apart from the substrate. The multilayer member can have a first portion that is remote from the anchor and that curls away from the substrate and a second portion that is adjacent the anchor that contacts the substrate. Related methods are also disclosed.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: December 17, 2002
    Assignee: JDS Uniphase Inc.
    Inventors: Edward A. Hill, Ramaswamy Mahadevan
  • Patent number: 6404614
    Abstract: A voltage tunable dielectric varactor includes a substrate having a first dielectric constant and having generally a planar surface, first and second electrodes positioned on the generally planar surface of the substrate, the first and second electrodes being separated to form a first gap therebetween; a tunable dielectric layer positioned on the first and second electrodes and in the first gap, the tunable dielectric layer having a second dielectric constant greater than the first dielectric constant; and third and fourth electrodes positioned on a surface of the tunable dielectric layer opposite the first and second electrodes, the third and fourth electrodes being separated to form a second gap therebetween.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: June 11, 2002
    Assignee: Paratek Microwave, Inc.
    Inventors: Yongfei Zhu, Louise C. Sengupta
  • Patent number: 6400550
    Abstract: A variable capacitor is provided having first and second capacitor plates, a tandem mover and an actuator. The first and second capacitor plates are positioned such that the first and second capacitor plates face one another in a spaced apart relationship. The tandem mover is configured to move the first and second capacitor plates in tandem in response to changes in ambient temperature to maintain a consistent spaced apart relationship between the capacitor plates. The actuator is then configured to vary the spaced apart relationship between the first and second capacitor plates in response to an external input. The capacitance of the variable capacitor can therefore be varied by increasing and decreasing the spaced apart relationship between the first and second capacitor plates.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: June 4, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Robert L. Wood, Vivek Agrawal, Ramaswamy Mahadevan, Edward A. Hill
  • Patent number: 6396677
    Abstract: A new type of high-Q variable capacitor includes a substrate, a first electrically conductive layer fixed to the substrate, a dielectric layer fixed to a portion of the electrically conductive layer, and a second electrically conductive layer having an anchor portion and a free portion. The anchor portion is fixed to the dielectric layer and the free portion is initially fixed to the dielectric layer, but is released from the dielectric layer to become separated from the dielectric layer, and wherein an inherent stress profile in the second electrically conductive layer biases the free portion away from the dielectric layer. When a bias voltage is applied between the first electrically conductive layer and the second electrically conductive layer, electrostatic forces in the free portion bend the free portion towards the first electrically conductive layer, thereby increasing the capacitance of the capacitor.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: May 28, 2002
    Assignee: Xerox Corporation
    Inventors: Christopher L. Chua, Eric Peeters, Koenraad F. Van Schuylenbergh, Donald L. Smith
  • Patent number: 6377438
    Abstract: A microelectromechanical system (MEMS) tunable capacitor having low loss and a corresponding high Q is provided. The tunable capacitor includes a first substrate having a first capacitor plate disposed thereon. A fixed pivot structure is disposed on the first surface of the first substrate, proximate the first capacitor plate. The fixed pivot structure as a point of attachment for a flexible membrane that extends outward from the fixed pivot and generally overlies the first capacitor plate. A second substrate is attached to the underside of the flexible membrane and a second capacitor plate is disposed thereon such that the first and second capacitor plates face one another in a spaced apart relationship. A MEMS actuator is operably in contact with the flexible membrane for the purpose of providing an actuation force to the flexible membrane, thereby varying the capacitance between the first and second capacitor plates.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: April 23, 2002
    Assignee: MCNC
    Inventors: Philip A. Deane, Joseph Mancusi, Mark W. Roberson
  • Patent number: 6229684
    Abstract: A variable capacitor having low loss and a correspondingly high Q is provided. In addition to a substrate, the variable capacitor includes at least one substrate electrode and a substrate capacitor plate that are disposed upon the substrate and formed of a low electrical resistance material, such as HTS material or a thick metal layer. The variable capacitor also includes a bimorph member extending outwardly from the substrate and over the at least one substrate electrode. The bimorph member includes first and second layers formed of materials having different coefficients of thermal expansion. The first and second layers of the bimorph member define at least one bimorph electrode and a bimorph capacitor plate such that the establishment of a voltage differential between the substrate electrode and the bimorph electrode moves the bimorph member relative to the substrate electrode, thereby altering the interelectrode spacing as well as the distance between the capacitor plates.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: May 8, 2001
    Assignee: JDS Uniphase Inc.
    Inventors: Allen Bruce Cowen, Vijayakumar Rudrappa Dhuler, Edward Arthur Hill, David Alan Koester, Ramaswamy Mahadevan
  • Patent number: 6226168
    Abstract: A variable capacitor includes a stator, a conductive rotor, and a spring-action portion. The rotor electrode projects from the rotor, and a protrusion extends from the rotor as far as the rotor electrode, wherein the protrusion is formed on the rotor in a region other than that where the rotor electrode is formed. The spring-action portion applies a spring force on the rotor so as to press the rotor against the stator. The spring-action portion is formed on a cover around an adjustment hole formed in the cover. The cover allows the rotor to rotate relative to the stator, and the adjustment hole permits the introduction of a tool for rotating the rotor by inserting the tool therethrough. The radial position of the protrusion is selected so as to substantially fall on a circular trajectory which, as the rotor rotates, is swept out on the rotor by a section of the spring-action portion, which section is in contact with the rotor.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: May 1, 2001
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yasunobu Shibata