Liquid Electrolytic Capacitor Patents (Class 361/503)
  • Patent number: 7099143
    Abstract: A wet electrolytic capacitor that includes an anode, cathode, and a liquid electrolyte disposed therebetween is provided. The cathode contains a metal oxide coating, such as NbO2, in conjunction with other optional coatings to impart improved properties to the capacitor.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: August 29, 2006
    Assignee: AVX Corporation
    Inventors: James A. Fife, Gang Ning, Brady Jones
  • Patent number: 7099146
    Abstract: The present invention is to provide an electrolyte with which the withstand voltage and capacitor capacity can be prevented from lowering, and an electrochemical capacitor containing the same. The present invention uses an electrolyte for an electrochemical capacitor comprising a cyclic amidinium salt (B) represented by the general formula (1), wherein the total amount of a cyclic amidinium salt derivative (A) represented by the general formula (2) is not larger than 10 mole % relative to the sum of (A) and (B).
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: August 29, 2006
    Assignees: Sanyo Chemical Industries, Ltd., Matsushita Electric Industrial, Co., Ltd.
    Inventors: Yukiya Kobayashi, Hideo Seike, Yoshinori Takamuku
  • Patent number: 7099142
    Abstract: The present invention provides additives for a non-aqueous electrolytic solution secondary cell and a non-aqueous electrolytic solution electric double layer capacitor comprising a phosphazene derivative represented by formula (1): (PNF2)n??formula (1) wherein n represents 3 to 14, and provides the non-aqueous electrolytic solution secondary cell and the non-aqueous electrolytic solution electric double layer capacitor each containing a non-aqueous electrolytic solution which has the additive for the non-aqueous electrolytic solution secondary cell or the additive for the non-aqueous electrolytic solution electric double layer capacitor and a supporting salt, an anode, and a cathode.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: August 29, 2006
    Assignee: Bridgestone Corporation
    Inventors: Masashi Otsuki, Shigeki Endo, Takao Ogino
  • Patent number: 7095603
    Abstract: An electrode for an energy storage device, including a substrate of at least one metal that forms a native oxide layer; and a treated layer formed on the substrate from the native oxide layer, the treated layer having a resistance that is less than the resistance of a native oxide layer. In some embodiments, the treated layer possesses at least one of the following properties: includes one or more dopants, is thinner than the native oxide layer, has a carbon coating that is applied to the treated layer which improved adhesion characteristics, and others. Further, there is an energy storage device having two or more of such electrodes, wherein the device has a low initial ESR and/or a low ESR at various intervals. Moreover, disclosed is a low resistance metal including a substrate of at least one metal that forms a native oxide layer; and a treated layer formed on the substrate from the native oxide layer, the treated layer having a resistance that is less than the resistance of a native oxide layer.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: August 22, 2006
    Assignee: Energy Storage Systems PTY LTD
    Inventors: Peter John Mahon, Clodoveo Simone Sacchetta, Calum John Drummond, Phillip Brett Aitchison
  • Patent number: 7092239
    Abstract: An electric double layer capacitor comprises: a separator; a pair of electrodes separated by the separator, and the electrodes including activated carbon particles and a binder binding the activated carbon particles; and a pair of collectors separated by the pair of electrodes, wherein a density of the electrodes is in the range of 1.4 g/cm3 to 1.8 g/cm3.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: August 15, 2006
    Assignee: NEC Tokin Corporation
    Inventors: Yutaka Nakazawa, Koji Sakata, Ryuuichi Kasahara
  • Patent number: 7088571
    Abstract: An electric double-layer capacitor has an electrolyte solution and an element constructed of a positive electrode and a negative electrode which are each composed of a current collecting substrate and an active material composition, and a separator situated between the positive and negative electrodes. When the element is in place within the capacitor, the portion of the separator sandwiched between the active material compositions of the respective electrodes has a pore volume which is at least 0.4 times the total pore volume of the positive and negative electrodes. This construction enables the separator to hold the electrolyte solution required by the electrodes for charging and discharging, thus endowing the capacitor with a high capacitance and a long cycle life.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: August 8, 2006
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Mami Nakamura, Ryutaro Nozu
  • Patent number: 7082027
    Abstract: A proton-conducting electric double layer capacitor comprising a electrolytic solution containing an aqueous solution of an organic or inorganic acid whereto a water-soluble N-containing heterocyclic compound is added.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: July 25, 2006
    Assignee: NEC Tokin Corporation
    Inventors: Tomoki Nobuta, Toshihiko Nishiyama, Hiroyuki Kamisuki, Gaku Harada, Masato Kurosaki, Yuji Nakagawa, Shinako Kaneko, Masaya Mitani
  • Patent number: 7079377
    Abstract: An electrode for a capacitor, such as an electrolytic capacitor, includes a substrate comprising a metal. A carbide layer is provided adjacent the substrate, and a layer of material comprising an oxide of manganese is provided adjacent the carbide layer. According to one embodiment, the layer of material may also comprise activated carbon. The capacitor may be configured for use with a variety of devices, including implantable medical devices.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: July 18, 2006
    Inventors: Joachim Hossick Schott, Brian Melody, John Tony Kinard
  • Patent number: 7068494
    Abstract: An electric double layer capacitor has high static capacitance, and superior durability, and the amount of gas generated by dissociating solvent can be reduced. In an electric double layer capacitor including an anode and a cathode containing active carbon, a separator, and nonaqueous electrolyte solution, the crystallite thickness Lc(002) of the d002 plane of the active carbon used for the anode is set to be larger than the crystallite thickness Lc(002) of the d002 plane of the active carbon used for the cathode.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: June 27, 2006
    Assignee: Honda Motor Co., Ltd.
    Inventor: Takeshi Fujino
  • Patent number: 7061749
    Abstract: The present invention relates to a supercapacitor, also known as an electrical double-layer capacitor or ultracapacitor, having electrode material comprising single-wall carbon nanotubes. The carbon nanotubes can be derivatized with functional groups. The electrode material is made by preparing a polymer-nanotube suspension comprising polymer and nanotubes, forming the polymer-nanotube suspension into a polymer-nanotube composite of the desired form, carbonizing the polymer-nanotube composite to form a carbonaceous polymer-nanotube material, and activating the material. The supercapacitor includes electrode material comprising activated carbonaceous polymer-nanotube material in contact with current collectors and permeated with an electrolyte, which may be either fluid or solid. In the case of a fluid or compressible electrolyte, an electrolyte-permeable separator or spacer is interposed between the electrodes to keep the electrodes from shorting.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: June 13, 2006
    Assignee: Georgia Tech Research Corporation
    Inventors: Tao Liu, Satish Kumar
  • Patent number: 7054141
    Abstract: A capacitor includes a dielectric layer, a manganese dioxide layer, an organic solid electrolyte layer, and a carbon paste layer that are stacked in this order between a first electrode, which serves as an anode, and a second electrode, which serves as a cathode. Between the first electrode and the second electrode, an insulating resin layer is formed in the shape of a rectangular frame so as to surround the organic solid electrolyte layer. A lower end portion of the resin layer is fixed to the manganese dioxide layer while an upper end portion of the resin layer is fixed to the second electrode 16. Therefore, complete sealing is established between the first electrode and the second electrode in the outer peripheral end face of the capacitor.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: May 30, 2006
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Hideaki Sakaguchi, Takashi Kurihara, Mitsutoshi Higashi, Takashi Mochizuki
  • Patent number: 7042708
    Abstract: A high capacitance energy storage device where electrodes (20, 22) are formed of layers of a carbonised, activated woven fabric that has been impregnated with an electrolyte. The electrolyte is absorbed by active centers at the surface of the carbonised, activated material. The prepared fabric is sandwiched between alternating graphite-based separators (16, 18) and non-conductive membranes (24) to form a capacitor structure exhibiting very high capacitance, non-degradation over multiple charging/discharging cycles, and, in AC installations, reliable and reproducible characteristics. In addition, the materials in the device are environmentally friendly.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: May 9, 2006
    Assignee: Selected Molecular Technologies Corporation
    Inventors: Dmitry Borisenko, legal representative, Nikolay Borisenko, deceased
  • Patent number: 7043300
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. To reduce the size of these devices, capacitor manufacturers have developed special aluminum foils, for example core-etched and tunnel-etched aluminum foils. Unfortunately, core-etched foils don't work well in multiple-anode capacitors, and tunnel-etched foils are quite brittle and tend to break when making some common types of capacitors. Accordingly, the inventors devised a new foil structure having one or more perforations and one or more cavities with a depth less than the foil thickness.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: May 9, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Luke J. Christenson, James M. Poplett, Robert R. Tong
  • Patent number: 7009833
    Abstract: A charge storage device comprising: a first electrode, a second electrode being opposed to and spaced apart from the first electrode; a porous separator disposed between the electrodes; a sealed package for containing the electrodes, the separator and an electrolyte in which the electrodes are immersed; and a first terminal and a second terminal being electrically connected to the first electrode and the second electrode respectively and both extending from the package to allow external electrical connection to the respective electrodes, wherein the gravimetric FOM of the device is greater than about 2.1 Watts/gram.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: March 7, 2006
    Assignee: Energy Storage Systems Pty. Ltd.
    Inventors: George Lange Paul, Rory Albert James Pynenburg, Peter John Mahon, Anthony Michael Vassallo, Philip Andrew Jones, Sarkis Keshishian, Anthony Gaetano Pandolfo
  • Patent number: 7006347
    Abstract: The present invention relates to electrolytic capacitors and, more particularly, to the reduction of water content within an electrolytic capacitor. Aluminum electrolytic capacitors tend to degrade with time. This is due, in part, to water in the electrolyte attacking the thin film of aluminum oxide (Al2O3) formed on the anode surface. Deformation of the aluminum oxide increases the leakage current of the capacitor, such that when one or more capacitors are used for shock delivery in an ICD, the first shock (after a hiatus) will have a significantly longer charge time. Unfortunately, one cannot remove all of the water from the electrolyte, as it is needed for conduction, as well as for the formation of the cut edges of the aluminum foil after assembly. According to the present invention, a desiccant material is used within an electrolytic capacitor casing to reduce the water content of a finished capacitor to below 1% by weight of the electrolyte.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: February 28, 2006
    Assignee: Pacesetter, Inc.
    Inventors: Mark W. Kroll, Thomas F. Strange
  • Patent number: 7006346
    Abstract: Provided in the present invention is a positive electrode for use in an Electric Double Layer (EDL) Hybrid Electrochemical Capacitor (HEC). Embodiments of the invention can be further adapted produce an EDL HEC with a high specific energy value and a high maximum voltage value. Some aspects of an embodiment of the present invention, including the aforementioned positive electrode, also cooperate to provide an EDL HEC that has a relatively high cycleability.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: February 28, 2006
    Assignee: C and T Company, Inc.
    Inventors: Yuri Mironovich Volfkovich, Alexey Yurievich Rychagov, Nina Azrielevna Urisson, Tatiana M. Serdyuk
  • Patent number: 6985352
    Abstract: The present invention relates generally to capacitor cells and the utilization of enhanced separator materials in such cells. More specifically, the present invention is related to the utilization of track-etched materials as the separator materials in capacitor cells. Methods of making a capacitor cell having a track-etched separator material is also disclosed.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: January 10, 2006
    Assignee: Medtronic, Inc.
    Inventor: John D. Norton
  • Patent number: 6944010
    Abstract: A charge storage device (1) includes a sealed prismatic housing (2). Two opposed folded rectangular aluminium electrodes (3, 4) are disposed within housing (2) and connected to respective metal terminals (5, 6) for allowing external electrical connection to the electrodes. A porous, electronically insulating separator material, e.g. Soluporâ„¢, sheet separator (7) is disposed intermediate electrodes (3, 4) for maintaining those electrodes in a fixed spaced apart configuration. An electrolyte (not shown) is also disposed intermediate the electrodes. Collecting means in the form of a scavenging agent is grafted to separator (7) for sequestering one or more predetermined contaminants from the housing.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: September 13, 2005
    Assignee: Energy Storage Systems PTY Ltd.
    Inventors: George Lange Paul, Rory Albert James Pynenburg, Peter John Mahon, Sarkis Keshishian
  • Patent number: 6942819
    Abstract: An electrolyte for use with an aluminum electrolyte capacitor includes a glycol/boric acid/borate compound, traces of water, and an inhibitor to suppress corrosion of an aluminum oxide coating of the capacitor. The inhibitor contains a weak organic acid and at least one acid group selected from among carboxylic acid, sulfonic acid, phosphonic acid, and an acidic derivative of carboxylic acid, sulfonic acid, and phosphonic acid.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: September 13, 2005
    Assignee: Epcos AG
    Inventors: Thomas Ebel, Frank Stippich, Jürgen Behm, Olaf Magnussen, Stefan Lauterborn
  • Patent number: 6937460
    Abstract: The invention relates to a double layer capacitor comprising: at least a pair of current collector plates that are placed in parallel to each other, flat electrodes containing aqueous electrolyte printed on opposing faces of said current collectors, such that a peripheral region is defined on each of said faces of said current collectors, which region is not covered by said electrode, and a separator interposed between said electrodes, the geometric form and size of said separator being identical to the form and size of said current collector plates, said separator having a central region permeable to said electrolyte, surrounded by a peripheral masked region which is non-permeable to said electrolyte, such that the permeable region of said separator coincide with the electrodes printed on the opposing faces of said current collectors, with respect to position, geometric form and size; wherein the pores in the peripheral region of the separator are impregnated with a suitable sealant, and wherein one or more
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: August 30, 2005
    Assignee: Cellergy Ltd.
    Inventor: Joel Lang
  • Patent number: 6937459
    Abstract: The present invention is mainly configured of a separator for an electric double-layer capacitor that comprises an aramid fiber, a polyester fiber, a glass fiber, and a silica (inorganic compound for forming hydrosol) containing a particulate silica (particulate inorganic compound) of not less than 1 nm and not more than 500 nm, wherein total of the silica and the glass fiber is not less than 10 mass percent and not more than 50 mass percent; the electric double-layer capacitor comprising the separator; and a manufacturing method of the separator for the electric double-layer capacitor which method comprises a mixing process for mixing the aramid fiber, the polyester fiber, the glass fiber, and the silica sol and a paper making process for making paper from the mixture.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: August 30, 2005
    Assignees: Mahle Tennex Corporation, Honda Motor Co., Ltd., AWA Paper Mfg. Co., Ltd.
    Inventors: Kouji Yamazaki, Mitsutoshi Suzuki, Kazuhiko Yanagi, Minoru Noguchi, Eisuke Komazawa, Hiroshi Nagao, Michio Matsuda
  • Patent number: 6920034
    Abstract: A charge storage device comprising: a first electrode; a second electrode being opposed to and spaced apart from the first electrode; a porous separator disposed between the electrodes; a sealed package for containing the electrodes, the separator and an electrolyte in which the electrodes are immersed; and a first terminal and a second terminal being electrically connected to the first electrode and the second electrode respectively and both extending from the package to allow external electrical connection to the respective electrodes, wherein the gravimetric FOM of the device is greater than about 2.1 Watts/gram.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: July 19, 2005
    Assignee: Energy Storage Systems PTY LTD
    Inventors: George Lange Paul, Rory Albert James Pynenburg, Peter John Mahon, Anthony Michael Vassallo, Philip Andrew Jones, Sarkis Keshishian, Anthony Gaetano Pandolfo
  • Patent number: 6906911
    Abstract: An electric double layer capacitor includes, contained in a casing, an electrolyte, a positive electrode and a negative electrode each being an electrode containing carbon black, to form an electric double layer at the interface with the electrolyte, and a separator interposed between the positive electrode and the negative electrode. At least one electrode of the positive electrode and the negative electrode has protruded portions or bent portions formed continuously in the height direction against the bottom face of the casing. Further, a space due to the height of the protruded portions or the bent portions is formed between the at least one electrode and the separator.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: June 14, 2005
    Assignee: Asahi Glass Company, Limited
    Inventors: Katsuji Ikeda, Yasuo Shinozaki
  • Patent number: 6902684
    Abstract: A non-aqueous electrolyte for electric storage devices consisting of a nitrile solvent and a complex salt formed by the reaction of a tetraalkyl ammonium salt and hydrogen fluoride. The electrolyte may include a component which a cation of an imidazolium or quaternary tetraalkylammonium salt.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: June 7, 2005
    Assignee: Lithdyne International
    Inventors: W. Novis Smith, Joel McCloskey
  • Patent number: 6898067
    Abstract: An electric double layer capacitor which has a low internal resistance and a large capacitance per unit volume and which is excellent in the voltage retention property, is provided. In a non-aqueous type electric double layer capacitor having a separator disposed between a positive electrode and a negative electrode made of carbonaceous electrodes, the separator comprises a sheet having a thickness of from 10 to 100 ?m and a porosity of from 50 to 90% and a netted spacer having a thickness of from 10 to 100 mm, a numerical aperture of from 30 to 85% and an opening of from 50 to 350 mesh, laminated one on the other.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: May 24, 2005
    Assignee: Asahi Glass Company Ltd.
    Inventors: Kazuya Hiratsuka, Manabu Suhara, Takeshi Kawasato, Naruaki Tomita, Naoki Yoshida, Yoshiaki Higuchi
  • Patent number: 6896782
    Abstract: Non-aqueous electrolytic solutions suitable for anodizing valve metal derivative anodes, methods of anodizing using non-aqueous electrolytic solutions, and capacitors prepared with non-aqueous electrolytic solutions. The non-aqueous electrolytic solution comprises glycerine and at least one soluble salt formed by the neutralization of at least one non-halogen-containing organic or inorganic acid anion with at least one alkali metal, ammonium, or protonated amine cation; wherein the acid anion is derived from an acid having a pKa lower than phosphoric acid.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: May 24, 2005
    Assignee: Kemet Electronics Corporation
    Inventors: Brian John Melody, John Tony Kinard, David Alexander Wheeler, Philip Michael Lessner
  • Patent number: 6887617
    Abstract: A multi-layer electrode structure is provided comprised of a plurality of electrode layers composed of a binder and an electrode material and coated on a current-collecting member, each of the electrode layers including a macromolecular substance wherein a first electrode layer in contact with the current-collecting member and the second electrode layer in contact with the first electrode layer are formed of different constituents or have different proportions of the same constituent. A method of forming the multi-layer electrode structures as well as a battery and double-layer capacitor formed from the multi-layer electrode structures are also disclosed.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: May 3, 2005
    Assignees: Nisshinbo Industries, Inc., Itochu Corp.
    Inventors: Takaya Sato, Tatsuo Shimizu
  • Patent number: 6882517
    Abstract: A raw material composite 10 for a carbon material used in an electric double layer capacitor contains microcrystalline carbon having a layered crystal structure similar to graphite, and is formed a carbon material for an electric double layer capacitor by undergoing an activation treatment. Here, the raw material composite is characterized in that a Hardgrove grindability index HGI defined by ASTMD-409-71 is 50 or above, an interlayer distance d002 of the microcrystalline carbon determined by an X-ray diffraction method is 0.343 NM or below, and a crystallite size Lc002 of the microcrystalline carbon determined by the X-ray diffraction method is 3.0 nm or below.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: April 19, 2005
    Assignees: Nippon Oil Corporation, JEOL Ltd., Nippon Petroleum Refining Co., Ltd.
    Inventors: Tamotsu Tano, Takashi Oyama, Akinori Mogami, Makoto Takeuchi, Hiroshi Kobayashi, Yukinori Kude
  • Patent number: 6870727
    Abstract: Surface mount electrolytic capacitors are provided with anode and cathode terminations having respective first termination portions provided on the bottom surface of a molded package in a generally coplanar configuration. A second cathode termination portion is bent in a generally perpendicular fashion to the first cathode termination portion and may then be adhered to the external cathode layer of a capacitor body. A second anode termination portion is bent in a generally perpendicular fashion to the first anode termination portion and may then be welded to an anode wire connected to and extending from the capacitor body. An insulation pad may be provided between the first anode termination portion and the capacitor body to prevent device shorting. A planar termination frame may be provided to form the electrolytic capacitors of the present subject matter.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: March 22, 2005
    Assignee: AVX Corporation
    Inventors: Douglas M. Edson, Glenn M. Vaillancourt, Walter Koda, Scott A. McCarthy, James A. Fife
  • Patent number: 6841301
    Abstract: The present invention relates to fluoroalkyl phosphates, to a process for the preparation, and to their use as conductive salts in batteries, capacitors, supercapacitors and galvanic cells.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: January 11, 2005
    Assignee: Merck Patent GmbH
    Inventors: Udo Heider, Michael Schmidt, Andreas Kühner, Peter Sartori, Nikolai Ignatyev
  • Patent number: 6842330
    Abstract: A long life double layer capacitor and method of making the same including a case and a first terminal with an electrically insulating hermitic seal interposed between the first terminal and the case. A first current collector foil is electrically coupled to an interior portion of the first terminal and a first electrode comprising carbon which is juxtaposed against the first current collector foil. A porous separator is then juxtaposed against the first electrode comprising carbon and separating the first electrode from a second electrode comprising carbon. A second current collector foil is juxtaposed against a side of the second electrode and is electrically coupled to the second terminal.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: January 11, 2005
    Assignee: Maxwell Technologies, Inc.
    Inventors: C. Joseph Farahmandi, John M. Dispennette, Edward Blank, Robert W. Crawford, Chenniah Nanjundiah
  • Patent number: 6842331
    Abstract: The invention relates to elecrical engineering and can be used for producing electrochemical double-layer capacitors having high specific energy and power characteristics and which can store and give off energy at high speed. The essence of said invention lies in the fact that the active mass of a negative polarised electrode (2) is an organic electroconducting polymer or composite which is based on a carbon or polymer material. A separator (3) is provide with pores which enables additional oxygen molecules to penetrate. The negative polarized electrode (2) is made of a polyaniline composite and an activated carbon material or of an activated carbon material composite and polypyrrole. Aqueous solutions of non-organic acids or mixture or salts thereof or thixotropic mixtures of acids and salts or solid proton conductive compositions are used as electrolytes.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: January 11, 2005
    Assignee: Universal Resources AG
    Inventors: Samvel Kazaryan, Sergey Razumov, Gamir Harisov, Sergey Litvinenko
  • Publication number: 20040252444
    Abstract: An electrolyte for a capacitor and capacitor containing the electrolyte. The electrolyte has up to about 85%, by weight, water, up to about 65%, by weight organic solvent and an acid defined by HOOC—(CH2)x—COOH wherein x is 3, 5, 7 or 9, and ammonium hydroxide.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 16, 2004
    Inventors: John Tony Kinard, Brian John Melody, David Alexander Wheeler
  • Publication number: 20040246657
    Abstract: The present invention relates generally to capacitor cells and the utilization of enhanced separator materials in such cells. More specifically, the present invention is related to the utilization of track-etched materials as the separator materials in capacitor cells. Methods of making a capacitor cell having a track-etched separator material is also disclosed.
    Type: Application
    Filed: July 11, 2003
    Publication date: December 9, 2004
    Inventor: John D. Norton
  • Publication number: 20040240149
    Abstract: A capacitor is provided which includes a plurality of electrodes and a fluid electrolyte provided to electrically associate the plurality of electrodes. One of the plurality of electrodes includes poly (ethylene 3,4-dioxythiophene) or a titanate.
    Type: Application
    Filed: May 30, 2003
    Publication date: December 2, 2004
    Inventors: Philip Michael Lessner, Brian Melody, John Tony Kinard, Joachim Hossick Schott
  • Publication number: 20040240148
    Abstract: An electrolytic capacitor comprising an anode, cathode and an electrolyte. The electrolyte comprises: about 35-60%, by weight water; about 10-55%, by weight organic solvent; about 0.05 to 10%, by weight, sulphuric acid; about 0.05 to 10%, by weight, boric acid; and about 0.05 to 10%, by weight, phosphorus oxy acid.
    Type: Application
    Filed: May 30, 2003
    Publication date: December 2, 2004
    Inventors: Mark Edward Viste, Joachim Hossick-Schott, Zhi Fang, Brian John Melody, John Tony Kinard
  • Publication number: 20040240150
    Abstract: An electrolytic capacitor comprising an anode, cathode and an electrolyte. The electrolyte comprises: about 35-60%, by weight water; about 10-55%, by weight organic solvent; about 0.05 to 10%, by weight, sulphuric acid; about 0.05 to 10%, by weight, boric acid; and about 0.05 to 10%, by weight, phosphorus oxy acid.
    Type: Application
    Filed: April 16, 2004
    Publication date: December 2, 2004
    Inventors: Mark Edward Viste, Joachim Hossick-Schott, Zhi Fang, Brian John Melody, John Tony Kinard
  • Publication number: 20040240151
    Abstract: An electrolytic capacitor comprising an anode, cathode and an electrolyte.
    Type: Application
    Filed: April 27, 2004
    Publication date: December 2, 2004
    Inventors: Joachim Hossick-Schott, Brian John Melody, John Tony Kinard
  • Patent number: 6815306
    Abstract: The present invention is directed to an electrolytic capacitor having a novel floating anode between the cathode and the powered anode of the capacitor, resulting in a single capacitor having a working voltage double that of the formation voltage of the powered anode. The floating anode acts as cathode to the powered anode and as an anode to the cathode, such that the capacitor according to the present invention supports half the working voltage between the cathode and the floating anode and half the working voltage between the floating anode and the powered anode. The arrangement of the cathode, floating anode and powered anode according to the present invention results in a single capacitor with half the capacitance and twice the voltage of a single anode device.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: November 9, 2004
    Assignee: Pacesetter, Inc.
    Inventors: Thomas F. Strange, Timothy R. Marshall, Thomas V. Graham
  • Patent number: 6808845
    Abstract: The present invention relates to an electrode metal material for batteries, capacitors, etc, used in contact with non-aqueous electrolyte, and particularly to a capacitor formed of the electrode metal material, and provides a valve metal material capable of decreasing the internal resistance of the capacitor. The electrode metal material comprises a valve metal material and numerous carbon particles included in the surface of the valve metal material. The carbon particles are further fixed in the surface of the valve metal material so as to expose to the surface. The electrode metal material is coated with an activated carbon layer and used as a double-layer electrode for an electric double-layer capacitor. The carbon particles included in the surface ensure conduction between the activated carbon layer and the valve metal material.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: October 26, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiji Nonaka, Masakazu Tanahashi, Mikinari Shimada, Tamao Kojima, Munehiro Tabata
  • Patent number: 6798643
    Abstract: A metal collector foil for an electric double layer capacitor has etched upper and lower surface layers and an unetched central layer disposed between the etched upper and lower surface layers. The etched upper and lower surface layers have a total thickness sufficient to provide the metal collector foil with a capacitance per unit area that corresponds to a capacitance value obtained when the etched metal collector foil is subjected to an anodic formation process with application of a withstanding voltage of 65.6 volts, the capacitance value being not less than 1.7 &mgr;F/cm2. The unetched central layer has a thickness sufficient to provide the metal collector foil with a tensile strength not less than 9,000 N/cm2. A method of producing the metal collector foil and an electric double layer capacitor incorporating therein the metal collector foil are also disclosed.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: September 28, 2004
    Assignees: Honda Motor Co., Ltd., Nippon Chemi-Con Corporation, Daido Metal Company Ltd.
    Inventors: Shigeki Oyama, Manabu Iwaida, Kenichi Murakami, Hiroto Kobayashi, Koichi Yoshida, Hiroyuki Saito, Kouki Ozaki, Masanori Tsutsui
  • Patent number: 6795297
    Abstract: The present invention provides an electrode sheet for an electric double-layer capacitor. The electrode sheet is molded from granules which are produced from ingredients including an electrochemically active material, an electrically conductive filler and a binder. And the electrode sheet is bonded with a collector foil so as to form a polarizable electrode which is rolled or bent so as to be applied to the electric double-layer capacitor. In the present invention, a coefficient of elongation S for the polarizable electrode is adapted to be greater than (R+T)/R and less than or equal to 1.11, where R represents a curvature of an inscribed circle at a bent portion of the polarizable electrode and T represents a thickness of the polarizable electrode.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: September 21, 2004
    Assignees: Honda Motor Co., Ltd., Daido Metal Company Ltd.
    Inventors: Manabu Iwaida, Shigeki Oyama, Kenichi Murakami, Kouki Ozaki, Masanori Tsutsui
  • Publication number: 20040174657
    Abstract: Flow-through capacitors are provided with one or more charge barrier layers. Ions trapped in the pore volume of flow-through capacitors cause inefficiencies as these ions are expelled during the charge cycle into the purification path. A charge barrier layer holds these pore volume ions to one side of a desired flow stream, thereby increasing the efficiency with which the flow-through capacitor purifies or concentrates ions.
    Type: Application
    Filed: February 4, 2004
    Publication date: September 9, 2004
    Inventors: Marc D. Andelman, Gregory S. Walker
  • Patent number: 6785122
    Abstract: A method for preparing the electrolytic solution of an electric double-layer capacitor is provided, which undergoes cyclical charging and discharging within a predetermined operating range of voltage. The capacitor includes the electrolytic solution, electrodes and a casing for housing the electrolytic solution and electrodes. The method includes the step of preparing an ion concentration of the electrolytic solution so that the electrolytic solution turns to a nonconductor at a first predetermined voltage, which is so set as to be equal to or greater than the upper limit of the predetermined operating range of voltage and less than or equal to the maximum allowable voltage of the capacitor.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: August 31, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Minoru Noguchi, Shigeki Oyama, Takeshi Fujino
  • Patent number: 6781817
    Abstract: The invention features an electrochemical device which includes at least two capacitor electrodes 16, each of which includes a conductive material characterized in that at least ten percent (10%) of the overall surface area of the conductive material is an edge plane. In contrast to a basal plane, the electric field along an edge plane is distorted so as to exhibit an ‘edge effect or ‘fringe effect. Capacitor electrodes 16 with many edges, points, corners, or fractal surfaces exhibit greater capacitance per unit volume or mass amount of capacitor electrode material, than do materials in which the surface area of the material is predominately basal plane. An electrochemical device of the invention can be, for example, an electrochemical cell, e.g., a battery, a capacitor, or a flow-through capacitor.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: August 24, 2004
    Assignee: Biosource, Inc.
    Inventor: Marc D. Andelman
  • Patent number: 6778378
    Abstract: A flow-through capacitor and method for the purification of fluids, like soft water. The capacitor includes anode-cathode electrodes (3) composed of a low surface area electrode material having a surface area between 10 to 1000 square meter per gram BET (Brunauer Emmett Teller method) to form one or more cells.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 17, 2004
    Assignee: Biosource, Inc.
    Inventor: Marc D. Andelman
  • Patent number: 6773632
    Abstract: The present invention is directed toward an enhanced very high volt electrolyte for use in electrolytic capacitors. In particular, by the inclusion of a polymer matrix of a hydrogel, preferably of the family of poly(hydroxy alkyl methacrylate) but also including polyvinylalcohol (PVA), polyacrylonitrile (PAN), into a standard fill electrolyte, the breakdown voltage of the enhanced very high volt electrolyte of the present invention is raised to as much as 800 V. An electrolytic capacitor impregnated with the enhanced very high volt electrolyte of the present invention, is capable of operating at a voltage of 700 to 800 volts. The production of a very high volt capacitor capable of operating at a voltage of 700 to 800 volts allows a single high volt electrolytic capacitor to replace the conventional two capacitors-in-series arrangement of an Implantable Cardioverter Defibrillator (ICD).
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: August 10, 2004
    Assignee: Pacesetter, Inc.
    Inventors: Timothy R. Marshall, Thomas F. Strange
  • Publication number: 20040141281
    Abstract: An electrolytic capacitor including a positive foil, a negative foil and an intervening separator which contains a polymeric electrolyte composite. The polymeric electrolyte composite contains electrolyte in the matrix of copolymeric acrylic ester. The separator contains at least either one of rayon fiber and cotton linter. Or, other separator takes the form of several overlaid sheets, each of the sheet being made of a cellulose fiber. The above-configured electrolytic capacitors have the advantages of high withstanding voltage, high heat resisting property and long life.
    Type: Application
    Filed: December 5, 2003
    Publication date: July 22, 2004
    Inventors: Ryoko Takaoka, Kazumitsu Honda, Yuichiro Tsubaki, Yoshihiro Watanabe
  • Publication number: 20040141282
    Abstract: A capacitor of the type having a cathode and an anode and an electrolyte disposed between the cathode and the anode, the capacitor comprising an electrochemical cathode comprising an aluminum current collector coated with a finely divided material, an electrolytic anode comprising aluminum coated with aluminum oxide, an electrolyte in contact with the finely divided material on the cathode and the aluminum oxide on the anode.
    Type: Application
    Filed: December 29, 2003
    Publication date: July 22, 2004
    Applicant: Aerovox Incorporated, a Delaware corporation
    Inventor: Martin Hudis
  • Publication number: 20040130851
    Abstract: A staged or serial deionization system is described. The system includes N deionization subsystems. The system has a charging state for deionizing fluid and a discharging state for deionizing the respective deionization subsystem. In the charging state, ionized fluid is discharged serially. In the discharging state, N deionization subsystems are discharged in parallel, thereby reducing the ecological impact of the discharge brine.
    Type: Application
    Filed: October 27, 2003
    Publication date: July 8, 2004
    Inventor: Sadeg M. Faris