Particular Temperature Control Patents (Class 372/34)
  • Patent number: 8976820
    Abstract: To provide a passive Q-switch-type solid laser apparatus for outputting a high peak-power pulse laser whose pulse energy is large and pulse-time width is small. A passive Q-switch-type solid laser apparatus has: two reflection elements for forming an oscillator; a solid gain medium being disposed between the two reflection elements; a saturable absorber being disposed between the two reflection elements; an excitation device for exciting the solid gain medium; and a cross section control device for making at least one of a stimulated emission cross section of the solid gain medium and an absorption cross section of the saturable absorber closer to another one of them; and the cross section control device is equipped with at least one or both of a temperature control device for retaining the solid gain medium at a predetermined temperature and an oscillatory-wavelength control device for fixating an oscillatory wavelength at a predetermined wavelength.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: March 10, 2015
    Assignee: Inter-University Research Institute Corporation National Institutes of Natural Sciences
    Inventors: Takunori Taira, Simon Joly, Rakesh Bhandari
  • Patent number: 8976824
    Abstract: A TOSA can include: a light emitting element; and one or more heating elements thermally coupled to the light emitting element so as to provide a substantially constant heat generation profile and/or temperature profile across the TOSA during a light emitting element dormant period and a light emitting element firing period. The TOSA can include a controller operably coupled with the one or more heating elements so as to control the substantially constant heat generation profile and/or temperature profile. In one aspect, the one or more heating elements can include one or more dedicated heating elements. In one aspect, the one or more of the dedicated heating elements can include a resistor element or coil.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: March 10, 2015
    Assignee: Finisar Corporation
    Inventors: T. H. Ola Sjolund, Idan Mizrahi
  • Publication number: 20150063386
    Abstract: A semiconductor laser structure is provided. The semiconductor laser comprises a central thermal shunt, a ring shaped silicon waveguide, a contiguous thermal shunt, an adhesive layer and a laser element. The central thermal shunt is located on a SOI substrate which has a buried oxide layer surrounding the central thermal shunt. The ring shaped silicon waveguide is located on the buried oxide layer and surrounds the central thermal shunt. The ring shaped silicon waveguide includes a P-N junction of a p-type material portion, an n-type material portion and a depletion region there between. The contiguous thermal shunt covers a portion of the buried oxide layer and surrounds the ring shaped silicon waveguide. The adhesive layer covers the ring shaped silicon waveguide and the buried oxide layer. The laser element covers the central thermal shunt, the adhesive layer and the contiguous thermal shunt.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventors: Jui-Ying Lin, Yen-Hsiang Fang, Chia-Hsin Chao, Yao-Jun Tsai, Yi-Chen Lin
  • Patent number: 8971359
    Abstract: Techniques and architecture are disclosed for controlling the temperature of a fiber laser system. In some embodiments, a single thermoelectric cooler (TEC) may be utilized to control the temperature of multiple system components. In some embodiments, a TEC may be physically/thermally coupled to a laser diode, which in turn may be physically/thermally coupled with a mounting plate to which one or more fiber grating holders are physically/thermally coupled, and an optical fiber that is operatively coupled with the laser diode may be physically/thermally coupled with the one or more fiber grating holders. In some embodiments, this may provide a thermal pathway/coupling between the optical fiber (e.g., its fiber grating(s)), and the TEC. In some embodiments, this may reduce/minimize the quantity of temperature control components, reduce system size/complexity, increase system dependability, and/or increase system performance/efficiency.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: March 3, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Daniel J. Creeden, Adam J. Marcinuk, Chris L. Willis
  • Patent number: 8948220
    Abstract: A microcrystal laser assembly including a gain-crystal includes a frame having a high thermal conductivity. The frame has a base with two spaced apart portions extending from the base. The gain-crystal has a resonator output minor on one surface thereof. The gain-crystal is supported on the spaced-apart portions of the frame in the space therebetween. Another resonator minor is supported in that space, spaced apart from the output mirror, on a pedestal attached to the base of the frame. The pedestal and the frame have different CTE. Varying the frame temperature varies the spacing between the resonator minors depending on the CTE difference between the pedestal and the frame.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: February 3, 2015
    Assignee: Coherent GmbH
    Inventor: Stefan Spiekermann
  • Patent number: 8942270
    Abstract: A gas includes a housing having a symmetrical arrangement of upper and lower cooling members for removing heat generated in a gas-discharge excited by an electrode assembly. The electrode assembly is clamped between the cooling members and is itself essentially symmetrically arranged. The cooling members and the electrode assembly are mechanically isolated in the housing by a surrounding diaphragm-like arrangement that connects the cooling members to side-walls of the housing. An RF power-supply for supplying the electrode assembly is mounted on one of the sidewalls to avoid disturbing the symmetry of the cooling and electrode arrangements.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: January 27, 2015
    Assignee: Coherent, Inc.
    Inventor: Anthony J. DeMaria
  • Patent number: 8942268
    Abstract: Embodiments of silicon-based thermal energy transfer apparatus for a gain medium of a laser system are provided. In one aspect, a silicon-based thermal energy transfer apparatus includes silicon-based first and second manifolds each having internal coolant flow channels therein. When the first and second manifolds are coupled together, a first groove on the first manifold and a second groove on the second manifold form a through hole configured to receive the gain medium therein. The through hole has a polygonal cross section when viewed along a longitudinal axis of the gain medium.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: January 27, 2015
    Inventor: Gerald Ho Kim
  • Patent number: 8942267
    Abstract: A tunable laser has a solid state laser medium having an optical gain region and generates coherent radiation through a facet. A lens collects the coherent radiation and generates a collimated light beam. Components of an external cavity include a reflective surface and an optical filter, the reflective surface reflecting the collimated beam back to the lens and the laser medium, the optical filter positioned between the reflective surface and the lens and having two surfaces with a thermally tunable optical transmission band within the optical gain region of the laser medium. The optical filter (1) transmits a predominant portion of the collimated beam at a desired wavelength of operation, and (2) specularly reflects a remaining portion of the collimated beam from each surface, the collimated beam being incident on the optical filter such that the reflected collimated beams propagate at a non-zero angle with respect to the incident collimated beam.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: January 27, 2015
    Assignee: Redshift Systems Corporation
    Inventors: Eugene Yi-Shan Ma, Charles M. Marshall
  • Publication number: 20150023377
    Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Inventors: Kalpendu SHASTRI, Soham PATHAK, Vipulkumar PATEL, Bipin DAMA, Kishor DESAI
  • Patent number: 8937978
    Abstract: A semiconductor laser has an optical cavity comprising and active layer disposed between an n-side barrier layer and a p-side barrier layer. The active layer comprises alternating layers of a first and second material, and the n-side barrier layer and p-side barrier layer each comprise alternating layers of the first material and a third material. The materials are selected such that the layers of the second and third materials form quantum wells between the layers of the first material. A band gap Eg of the second material is arranged such that a proportion of electrons and holes that recombine across the band gap Eg recombine to emit photons at the lasing wavelength, the proportion decreasing with increasing temperature of the optical cavity.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: January 20, 2015
    Assignee: University of Surrey
    Inventor: Alf Adams
  • Patent number: 8929413
    Abstract: According to one embodiment, the invention relates to a laser gain module (1) comprising: a laser rod (5) having a shaft and two optical interfaces (7, 9) facing each other, the rod (5) being used for longitudinal or quasi-longitudinal optical pumping; and a metal cooling body (3), at least one part of which is molded around the laser rod (5) in order to cover all of the surfaces other than the optical interfaces in such a way that the laser gain module (1) forms a solid body that cannot be disassembled at ambient temperature.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: January 6, 2015
    Assignees: Fibercryst, CNRS
    Inventors: Nicolas Aubry, Didier Perrodin, Julien Didierjean, Jean-Marie Fourmigue, François Balembois, Igor Martial
  • Publication number: 20150005599
    Abstract: An object information acquiring apparatus is used which includes: a laser medium; a temperature controlling unit for controlling a temperature of the laser medium; an excitation unit for exciting the laser medium; a control unit for controlling the temperature controlling unit and the excitation unit; a probe for receiving acoustic waves that are generated when an object is irradiated with a laser beam from the laser medium; and a processing unit for acquiring characteristic information relating to the object from the acoustic waves, wherein the control unit does not operate the excitation unit until the temperature of the laser medium falls within a predetermined range.
    Type: Application
    Filed: June 17, 2014
    Publication date: January 1, 2015
    Inventor: Koichi Suzuki
  • Publication number: 20140376579
    Abstract: Two or more lasers or other temperature sensitive optical devices can be disposed in an operating environment, for example in a common enclosure exposed to the environment. The environment can have a temperature that fluctuates, for example in connection with random events, weather, seasons, etc. Each laser's temperature can track the temperature of the environment in steps, with each laser following a distinct temperature track. The lasers can alternate outputting light into a wavelength division multiplexing channel. For example, during one timeframe, one laser can provide an optical communication signal having a wavelength complying with a wavelength division multiplexing criterion. During another timeframe, the other laser can provide an optical signal having substantially the same wavelength. Operating a laser at an elevated temperature can shorten laser lifetime.
    Type: Application
    Filed: April 1, 2014
    Publication date: December 25, 2014
    Applicant: CIRREX SYSTEMS, LLC
    Inventor: Michael L. Wach
  • Publication number: 20140376580
    Abstract: Apparatuses and methods for high density laser optics are provided. An example, of a laser optics apparatus includes a plurality of vertical cavity surface emitting lasers (VCSELs) in a monolithically integrated array, a high contrast grating (HCG) integrated with an aperture of a vertical cavity of each of the plurality of the VCSELs to enable emission of a single lasing wavelength of a plurality of lasing wavelengths, and a plurality of single mode waveguides, each integrated with a grating coupler, that are connected to each of the plurality of the integrated VCSELs and the HCGs, where each of the grating couplers is aligned to an integrated VCSEL and HCG.
    Type: Application
    Filed: January 18, 2012
    Publication date: December 25, 2014
    Inventors: Michael Renne Ty Tan, David A. Fattal, Wayne V. Sorin, Sagi Varghese Mathai
  • Patent number: 8917462
    Abstract: An optical transmission module includes a light source element for emitting a predetermined light signal transmitted through an optical fiber, the light source element having lower characteristics in a low-temperature state than those in a high-temperature state, a driver circuit for driving the light source element, and a heat transfer member connected to each of the light source element and the driver circuit to transfer heat between the light source element and the driver circuit. The optical transmission module with such configuration can stably operate in a wide temperature range while achieving power saving and cost reduction.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 23, 2014
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventor: Takemasa Tamanuki
  • Patent number: 8917986
    Abstract: A optical transmission system includes light sources generating light of at least two wavelengths, where any two adjacent wavelengths are separated by less than 10 nm. The wavelengths fall within the zero dispersion zone of an optical fiber, and may be shifted by 1 nm or less to reduce crosstalk effects.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: December 23, 2014
    Assignee: ARRIS Solutions, Inc.
    Inventors: Venk Mutalik, Marcel F. Schemmann, Long Zou, Zhijian Sun
  • Patent number: 8917749
    Abstract: Provided is a laser diode mounting substrate for an automotive lamp module using a laser diode. The substrate includes: a substrate body with a power supply circuit pattern, which electrically connects a connector with a contact point of the laser diode, on the top; a first heat conduction layer disposed at the area except for the power supply circuit pattern, on the top of the substrate body; and a second heat conduction layer disposed on the bottom of the substrate body, in which at least one heat transfer hole is disposed through the first heat conduction layer, the substrate body, and the second heat conduction layer. Therefore, the present invention provides an effect that heat generated by the laser diode can be effectively dissipated.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: December 23, 2014
    Assignee: Hyundai Mobis Co., Ltd.
    Inventor: Tae Won Lee
  • Patent number: 8913637
    Abstract: A highly portable, high-powered infrared laser source is produced by intermittent operation of a quantum cascade laser power regulated to a predetermined operating range that permits passive cooling. The regulation process may boost battery voltage allowing the use of a more compact, low-voltage batteries.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: December 16, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Rob Marsland, Timothy Day
  • Patent number: 8913640
    Abstract: A semiconductor laser assembly has at least one semiconductor laser which is designed to emit laser radiation through an exit area and at least one further area, the further area being a part of a surface of the semiconductor laser and/or of the semiconductor laser assembly and the further area is developed to be reflecting to the radiation of at least one specifiable wavelength range. For this purpose, a reflecting metal layer is applied, for example. The semiconductor laser having a laser layer is able to be fastened to a carrier element with the aid of a solder layer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: December 16, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Mathias Moenster, Hans-Jochen Schwarz
  • Patent number: 8908727
    Abstract: A laser assembly and a method for manufacturing the same are provided according to embodiments of the present disclosure. The laser assembly (900) may comprise a first plate (903) having first projections (918, 928); a printed circuit board assembly (902) including a printed circuit board (912) having first openings (913, 915) and a laser module (100) thereon, and a second plate (901) having second projections (917, 927). The printed circuit board assembly (902) can be retained between the first plate (903) and the second plate (901) by the first projections (918, 928) and the second projections (917, 927). The laser assembly may further comprises a first pad (930) provided between the laser module (100) and the first plate (903) and/or a second pad (920) provided between the laser module (100) and the second plate (901).
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 9, 2014
    Assignee: Emcore Corporation
    Inventors: Yinan Wu, Frank Ding, Vincent Nguyen
  • Patent number: 8908726
    Abstract: An enclosure for a laser package the enclosure being configured to receive a laser component within the enclosure, and further configured to receive for a driver integrated circuit (IC) (34) on the exterior of the enclosure, wherein the enclosure comprises first external electrical contacts (52) electrically connected to respective first IC electrical contacts (60), and second IC electrical contacts (62) electrically connected to respective first internal electrical contacts (64), wherein the first and second IC electrical contacts (60, 62) are configured for electrical connection to the driver IC (34). Heat dissipation of the driver IC is improved for the IC being mounted outside of the enclosure.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: December 9, 2014
    Assignee: Oclaro Technology Limited
    Inventors: Paul Firth, Stephan Gardner
  • Patent number: 8908728
    Abstract: A transistor outline package with integrated thermoelectric cooler is disclosed. The thermoelectric cooler is arranged on a heatsink which extends vertically into the housing of the transistor outline package.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: December 9, 2014
    Assignee: Schott AG
    Inventors: George Lin Huikai, Amy Soon Li Ping, Tetsushi Morikawa, Rohit Bhosale, Shaifullah Bin Mohamed Kamari
  • Publication number: 20140355633
    Abstract: A gas laser includes a fan for producing a flow of a laser gas and a heat exchanger including multiple heat exchanger pipes. The heat exchanger further includes two end plates to which the multiple heat exchanger pipes are secured at the opposing ends thereof. The two end plates include openings for supplying a heat exchanger fluid to the multiple heat exchanger pipes. The multiple heat exchanger pipes extend substantially transversely relative to a flow direction of the flow of laser gas.
    Type: Application
    Filed: November 27, 2013
    Publication date: December 4, 2014
    Applicant: TRUMPF Laser-und Systemtechnik GmbH
    Inventors: Mark Geschwandner, Matthias Breisacher
  • Patent number: 8902943
    Abstract: A system for cooling electronic components is provided, the system comprising: a first electronic component having a first operating temperature; a second electronic component having a second operating temperature greater than the first operating temperature; a vapor compression loop configured to cool the first electronic component to the first operating temperature; a pumped cooling loop configured to cool the second electronic component to the second operating temperature; and a heat exchanger between the vapor compression loop and the pumped cooling loop, the heat exchanger configured to transfer heat from the pumped cooling loop to the vapor compression loop before the second electronic component is cooled and after the first electronic component is cooled.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 2, 2014
    Assignee: Christie Digital System USA, Inc.
    Inventors: Michael Bishop, Mirko Stevanovic
  • Patent number: 8902938
    Abstract: A method to tune an emission wavelength of a wavelength tunable LD is disclosed. The wavelength tunable LD includes two regions each providing micro heaters to modify the refractive index of micro regions provided with power. The method periodically detects a difference between the emission wavelength and the target wavelength. This wavelength difference is converted into power next supplied to respective micro heaters independently.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: December 2, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Tomoko Miura
  • Publication number: 20140348191
    Abstract: Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Yannick C. Morel, Igor I. Smolyaninov
  • Patent number: 8897327
    Abstract: A laser diode device including a housing having a mounting area in a cavity of the housing, at least one laser diode chip that emits electromagnetic radiation through a radiation exit area during operation, at least one covering element which is transmissive, at least in places, to the electromagnetic radiation generated by the laser diode chip during operation, and a deflection element, that directs at least part of the electromagnetic radiation generated by the laser diode chip during operation in a direction of the covering element, wherein the radiation exit area of the laser diode chip runs substantially transversely or substantially perpendicularly with respect to the mounting area and/or with respect to the covering element, the covering element connects to the housing, and the covering element tightly closes the housing.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: November 25, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karsten Auen, Uwe Strauss, Thomas Höfer
  • Publication number: 20140341241
    Abstract: A laser light source includes a thermoelectric cooling device, a composite green laser made up of an infrared wavelength pumped laser diode and a solid-state laser cavity designed for efficient nonlinear intra-cavity frequency conversion into desired wavelengths using periodically poled nonlinear crystals thermally coupled with the cooling device and a red wavelength laser diode thermally coupled with said cooling device. In this manner, the cooling device maintains a common temperature of the infrared pumped laser diode and the red laser diode over an ambient temperature range.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 20, 2014
    Applicant: Spectralus Corporation
    Inventors: Stepan Essaian, Dzhakhangir V. Khaydarov
  • Publication number: 20140341240
    Abstract: A method of controlling a temperature of a semiconductor laser includes: controlling a supply current so that a temperature of a temperature control element is changed to a target temperature, the temperature control element controlling a temperature of the semiconductor laser by a temperature changing according to the supply current supplied to the temperature control element; and performing a control for maintaining a calculated value calculated by a digital filter at a threshold when it is detected that the calculated value reaches the threshold, the calculated value being the supply current for achieving the target temperature, the threshold being equal to or less than an output limit of the digital filter.
    Type: Application
    Filed: April 11, 2014
    Publication date: November 20, 2014
    Applicant: Fujitsu Optical Components Limited
    Inventor: Kenta KANNARI
  • Patent number: 8891567
    Abstract: A semiconductor laser module having a substrate and having at least one semiconductor laser situated on the substrate, the substrate having a layer structure which includes at least one primary layer which establishes a thermal contact with the semiconductor laser. The semiconductor laser is designed in such a way that it emits heat pulses having a minimum specific heat of approximately 3 mJ per mm2, preferably approximately 5 mJ/mm2, and having a pulse duration of approximately 100 ?s to approximately 2,000 ?s, and the primary layer has a layer thickness which is between approximately 200 ?m and approximately 2,000 ?m, preferably between approximately 400 ?m and approximately 2,000 ?m.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: November 18, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Werner Herden, Hans-Jochen Schwarz, Wolfgang Pittroff
  • Patent number: 8891580
    Abstract: A resonator mounting assembly includes a resonator cage, a base underlying the resonator cage, a plurality of first sets of kinematic mounting elements with the kinematic mounting elements of each first set mated with one another in an engaged non-secured relationship so as to support the resonator cage above the base and provide a kinematic mounting interface between them that substantially prevents any rotational moments applied on the base to be transferred to the resonator cage, and at least one second set of preload mounting elements fastened with one another in a yieldable secured relationship so as to preload the resonator cage relative to the base to maintain a positive contact at the kinematic mounting interface that substantially prevents disengagement of the mated kinematic mounting elements from one another due to forces and moments generated from thermal expansion and mounting distortion of the base.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: November 18, 2014
    Assignee: nLIGHT Photonics Corporation
    Inventors: Marshall Anderson, Jonathan M. McGuire
  • Publication number: 20140334507
    Abstract: A mount for semiconductor laser devices comprises thermally conductive anode and cathode blocks on either side of a semiconductor laser device such as a laser diode. Interposed between at least the anode block and the anode of the semiconductor laser device is a sheet of conformable electrically conductive material with high thermal conductivity such as pyrolytic highly-oriented graphite. In some embodiments, a second sheet of such electrically and thermally conductive conformable material is interposed between the cathode of the semiconductor laser device and the cathode block. The semiconductor laser device can be either a single laser diode or a diode bar having a plurality of emitters. A thermally conductive, but electrically insulating, spacer of essentially the same thickness as the laser diode or bar surrounds the diode or bar to prevent mechanical damage while still permitting the conformable material to be maintained in a compressed state and directing current through the laser device.
    Type: Application
    Filed: July 27, 2014
    Publication date: November 13, 2014
    Applicant: INTELLECTUAL LIGHT, INC.
    Inventor: Robert E. GROVE
  • Patent number: 8885684
    Abstract: A CO2 gas laser device according to the present invention amplifies CO2 laser light that oscillates repeatedly in short pulses having a pulse width of 100 ns or less, and cools a CO2 laser gas which is excited by continuous discharge by circulating the CO2 laser gas by means of forced convection. Therein, an angle ? defined by the optical axis of the amplified CO2 laser beam and the flow direction of the CO2 laser gas caused by the forced convection is determined by both a discharge cross sectional area and a discharge length of a volume in which the CO2 laser gas is excited by discharge, whereby increasing the gain of pulsed laser to achieve pulsed laser light having an extremely high average output power.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoichi Tanino, Junichi Nishimae, Tatsuya Yamamoto, Shuichi Fujikawa
  • Publication number: 20140328360
    Abstract: A mount for an optical element such as in a laser, optical amplifier, or other optical system, is disclosed. The mount is a mounting vane (100) for cooling the optical element (125) by a fluid stream. The optical element may be a gain medium generating heat. The mounting vane comprises: an input section with a leading edge (110) for meeting the fluid stream; a diffuser section (130) which tapers to a trailing edge (135); and a Direction of plane section (120) with an aperture for receiving the optical element (125) for cooling by the fluid stream, the plane section arranged between the input section and diffuser section, wherein the diffuser section (130) includes one or more flow guiding fins (140) protruding from the diffuser section. The mounting vane may be stacked with a plurality of other mounting vanes in a manifold. The shape of the vane plate results in a turbulent fluid flow improving the heat exchange between a laser disc heated by optical pumping and a cryogenic He gas used for cooling.
    Type: Application
    Filed: December 21, 2012
    Publication date: November 6, 2014
    Inventors: Klaus Ertel, Michael Fitton, Tristan Davenne
  • Patent number: 8879591
    Abstract: An apparatus includes a laser that generates a predetermined wavelength when the laser operates at room temperature, the predetermined wavelength being offset from a specific wavelength. The laser has a controlled wavelength range due to a wavelength drift, the wavelength range having a first wavelength as the upper boundary and a second wavelength as the lower boundary, the first wavelength is generated when the laser operates at a first temperature of an ambient and the second wavelength is generated when the laser operates at a predetermined temperature higher than a second temperature of the ambient. The apparatus includes a heater that heats the laser such that a wavelength in the controlled wavelength range that is generated by the laser when heated by the heater from the second temperature is longer than a short wavelength that is generated by the laser centered on the specific wavelength that operates at the second temperature; and a control circuit configured to turn on the heater.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: November 4, 2014
    Assignee: ARRIS Solutions, Inc.
    Inventors: Thomas Paul Simler, Charles Jay Pifer, Robert Allen Shincovich
  • Publication number: 20140321488
    Abstract: A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.
    Type: Application
    Filed: April 30, 2014
    Publication date: October 30, 2014
    Applicant: Futurewei Technologies, Inc.
    Inventors: Hongmin Chen, Xuejin Yan, Rongshen Miao, Xiao Shen, Zongrong Liu
  • Publication number: 20140314111
    Abstract: Heat management systems for vertical cavity surface emitting laser (VCSEL) chips are provided. Embodiments of the invention provide substrates having, a vertical cavity surface emitting laser chip disposed on the substrate surface and electrically interconnected with the substrate, a thermal frame disposed on the substrate surface and proximate to at least three sides of the vertical cavity surface emitting laser chip, and a thermal interface material disposed between the at least three sides of the vertical cavity surface emitting laser chip and the thermal frame. The substrate can also include a transceiver chip that is operably coupled to a further integrated circuit chip and that is capable of driving the VCSEL chip.
    Type: Application
    Filed: November 18, 2011
    Publication date: October 23, 2014
    Inventors: Feras Eid, Shawna M. Liff, Henning Braunisch
  • Publication number: 20140314110
    Abstract: A laser source (340) comprises a first frame (356), a laser (358), and a first mounting assembly (360). The laser (358) generates an output beam (354) that is directed along a beam axis (354A). The first mounting assembly (360) allows the laser (358) to expand and contract relative to the first frame (356) along a first axis and along a second axis that is orthogonal to the beam axis, while maintaining alignment of the output beam (354) so the beam axis (354A) is substantially coaxial with the first axis. The first mounting assembly (360) can include a first fastener assembly (366) that couples the laser (358) to the first frame (356), and a first alignment assembly (368) that maintains alignment of the laser (358) along a first alignment axis (370) that is substantially parallel to the first axis.
    Type: Application
    Filed: September 22, 2011
    Publication date: October 23, 2014
    Inventors: David F. Arnone, David P. Caffey, Michael Pushkarsky, Miles Weida
  • Patent number: 8861559
    Abstract: A method or algorithm to control a driving current supplied to a semiconductor laser diode (LD) is disclosed. the method first prepares the look-up-table (LUT) that stores a set of parameters, ? and ?, for evaluating the modulation current Im by the equation of Im=?×Ib+?, where Ib is determined by the auto-power-control (APC) loop. In a practical operation of the LD, the APC loop determines Ib, while, Im is calculated according to the equation above by reading above two parameters corresponding to the current temperature of the LD from the LUT.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: October 14, 2014
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventors: Fengliang Tang, Kentarou Kitagawa
  • Patent number: 8861561
    Abstract: Provided is a semiconductor laser chip improved more in heat dissipation performance. This semiconductor laser chip includes a substrate, which has a front surface and a rear surface, nitride semiconductor layers, which are formed on the front surface of the substrate, an optical waveguide (ridge portion), which is formed in the nitride semiconductor layers, an n-side electrode, which is formed on the rear surface of the substrate, and notched portions, which are formed in regions that include the substrate to run along the optical waveguide (ridge portion). The notched portions have notched surfaces on which a metal layer connected to the n-side electrode is formed.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: October 14, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshiyuki Kawakami, Akira Ariyoshi
  • Publication number: 20140293287
    Abstract: An optical semiconductor package includes an optical semiconductor device, a temperature detection unit, and a temperature control unit including a support member, the optical semiconductor device and the temperature detection unit being arranged such that a temperature of a portion of a surface of the support member where the optical semiconductor device is arranged and a temperature of a portion of the surface of the support member where the temperature detection unit is arranged are substantially in thermal equilibrium with each other.
    Type: Application
    Filed: November 27, 2012
    Publication date: October 2, 2014
    Applicant: KONICA MINOLTA, INC.
    Inventor: Yusuke Hirao
  • Patent number: 8848753
    Abstract: A diode laser assembly including a plurality of diode bars disposed on a generally flat base plate and being oriented to emit a plurality of laser beams in a first direction. A reflector is spaced in the first direction from each of the diode bars in the first. Each reflector has at least two reflecting surfaces, one for reflecting the laser beams into a second direction different from the first direction and the other for reflecting the laser beams into a third direction different from the first and second directions to produce a spatially combined laser beam. Each reflector is moveable relative to one another and to the diode bars for adjusting the individual laser beams within the spatially-combined laser beam for optimizing the quality of the spatially combined laser beam.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: September 30, 2014
    Assignee: Dilas Diode Laser Inc.
    Inventor: Tobias Koenning
  • Patent number: 8842705
    Abstract: A laser diode grid element comprising laser diodes arranged along a corresponding substantially flat surface; and a collimator for each laser diode for generating collimated light beams substantially perpendicular on the respective substantially flat surface. The laser diodes are comprised in standard packages including a base plate serving as cooling surface of the laser diode, a metal housing arranged on the base plate to protect the laser diode, and at least two driving pins which extend from the laser diode through the base plate and which are used for driving the laser diode within the package. The laser diode grid element includes a heat sink arranged in contact with the base plates, and the at least two driving pins of each laser diode extend at least partially through the heat sink. Also provided are light emitting systems comprising such grid elements, and an optical component for use in such system.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: September 23, 2014
    Assignee: Barco N.V.
    Inventors: Peter Eric Rita Janssens, Bart Van Den Bossche, Glenn Jacques Suzanne Van Den Bergh, Wouter Theo Maria D'Oosterlinck
  • Publication number: 20140269795
    Abstract: A laser assembly and a method for manufacturing the same are provided according to embodiments of the present disclosure. The laser assembly (900) may comprise a first plate (903) having first projections (918, 928); a printed circuit board assembly (902) including a printed circuit board (912) having first openings (913, 915) and a laser module (100) thereon, and a second plate (901) having second projections (917, 927). The printed circuit board assembly (902) can be retained between the first plate (903) and the second plate (901) by the first projections (918, 928) and the second projections (917, 927). The laser assembly may further comprises a first pad (930) provided between the laser module (100) and the first plate (903) and/or a second pad (920) provided between the laser module (100) and the second plate (901).
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Emcore Corporation
    Inventors: Boyang Liu, Andrew John Daiber, Yinan Wu
  • Publication number: 20140269796
    Abstract: Embodiments of the invention describe an illuminator having a light source to originate an illumination beam, wherein the light source further comprises a set of vertical-cavity surface emitting lasers (VCSELs), including a first VCSEL having a first laser emission wavelength, and a second VCSEL having a second laser emission wavelength different than the first laser emission wavelength. Thus, by varying laser emission wavelengths of VCSELs in a VCSEL array, embodiments of the invention produce low-contrast speckle, and do not limit the imaging capabilities of the host illumination system. In some embodiments of the invention, vertical external cavity surface emitting lasers (VECSELs) are utilized to produce the above described varying laser emission wavelengths.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Jonathan Geske, Chad Wang, Elliot Burke
  • Publication number: 20140268111
    Abstract: An apparatus includes a laser source configured to output laser light at a target frequency, and a measurement unit configured to measure a deviation between an actual frequency outputted by the laser source at a current period of time and the target frequency of the laser source. The apparatus includes a feedback control unit configured to, based on the measured deviation between the actual and target frequencies, control the laser source to maintain a constant frequency of laser output from the laser source so that the frequency of laser light transmitted from the laser source is adjusted to the target frequency. The feedback control unit can control the laser source to maintain a linear rate of change in the frequency of its laser light output, and compensate for characteristics of the measurement unit utilized for frequency measurement. A method is provided for performing the feedback control of the laser source.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Philip R. COUCH, Kent A. Murphy, Michael F. Gunther, Charles B. Gause
  • Patent number: 8837541
    Abstract: In one embodiment, the instant invention is an optical structure that includes: an optical active medium of a solid state laser, where the optical active medium has a first coefficient of thermal expansion; and a protective structure that is directly cladded a portion of the optical active medium, where the protective structure has a second coefficient of thermal expansion which matches the first coefficient of thermal expansion of the optical active medium, and where the protective structure is transparent to a wavelength that is within an absorption band of the optical active medium so that the optical structure has: the optical active medium that is protected from a physical damage, and the optical active medium that is capable of generating a laser beam having a first energy that is larger than a second energy generated by a control optical structure having the optical active medium without the protective structure.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: September 16, 2014
    Assignee: Light Age, Inc.
    Inventors: Burton E. Sarnoff, Donald Heller, Jerzy Krasinski
  • Patent number: 8837540
    Abstract: A spectroscopic assembly is provided. The spectroscopic assembly includes a thermal isolation platform, a gas reference cell encasing a gas and attached to the thermal isolation platform, the gas reference cell having at least one optically-transparent window, and at least one heater configured to raise a temperature of the encased gas. When a beamsplitter is configured to reflect a portion of an input optical beam emitted by a laser to be incident on the at least one optically-transparent window of the gas reference cell, the reflected portion of the input optical beam is twice transmitted through the gas. When a detector is configured to receive the optical beam twice transmitted through the gas, a feedback signal is provided to the laser to stabilize the laser.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: September 16, 2014
    Assignee: Honeywell International Inc.
    Inventors: Kenneth Salit, Jeff A. Ridley, Mary K. Salit, Jennifer S. Strabley, Jeffrey Kriz
  • Patent number: 8831058
    Abstract: Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: September 9, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Yannick C. Morel, Igor I. Smolyaninov
  • Patent number: 8829393
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 9, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin