Particular Temperature Control Patents (Class 372/34)
  • Patent number: 8660157
    Abstract: A laser diode system is disclosed in which a substrate made of a semiconductor material containing laser diodes is bonded to a substrate made from a metallic material without the use of any intermediate joining or soldering layers between the two substrates. The metal substrate acts as an electrode and/or heat sink for the laser diode semiconductor substrate. Microchannels may be included in the metal substrate to allow coolant fluid to pass through, thereby facilitating the removal of heat from the laser diode substrate. A second metal substrate including cooling fluid microchannels may also be bonded to the laser diode substrate to provide greater heat transfer from the laser diode substrate. The bonding of the substrates at low temperatures, combined with modifications to the substrate surfaces, enables the realization of a low electrical resistance interface and a low thermal resistance interface between the bonded substrates.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: February 25, 2014
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Jonah Jacob
  • Patent number: 8654804
    Abstract: An optical transmitter is disclosed, where the optical transmitter shows an emission wavelength kept stable in one of grid wavelengths of the WDM system during the boot of the transmitter. The optical transmitter includes an LD, a TEC to control a temperature of the LD, and a controller. Detecting the flag to enable the optical output, the controller increases the driving current of the LD concurrently with the decrease of the temperature of the TEC to compensate the self-heating of the LD due to the driving current.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: February 18, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Shogo Amari
  • Patent number: 8654803
    Abstract: A light emitting device includes a semiconductor laser, which oscillates in a single longitudinal mode, formed above a semiconductor substrate, a first heater, which controls a temperature of the semiconductor laser, provided near the semiconductor laser, a gain unit, which amplifies a beam outputted from the semiconductor laser and outputs an amplified beam, formed above the semiconductor substrate, a second heater, which controls a temperature of the gain unit, provided near the gain unit, and a second harmonic generation element, which converts the amplified beam outputted from the gain unit to a second harmonic light and outputs the second harmonic light.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: February 18, 2014
    Assignee: Fujitsu Limited
    Inventor: Akinori Hayakawa
  • Patent number: 8649408
    Abstract: According to one embodiment, a semiconductor laser device with high reliability and excellent heat dissipation is provided. The semiconductor laser device includes an active layer, a p-type semiconductor layer on the active layer, a pair of grooves formed by etching into the p-type semiconductor layer, a stripe sandwiched by the pair of grooves and having shape of ridge, and a pair of buried layers made of insulator to bury the grooves. The bottom surfaces of the grooves are shallower with an increase in distance from the stripe.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Rei Hashimoto, Maki Sugai, Jongil Hwang, Yasushi Hattori, Shinji Saito, Masaki Tohyama, Shinya Nunoue
  • Publication number: 20140036946
    Abstract: A device is provided for managing heat in an optical element, including: the optical element; a material at a reference temperature; and an intermediate gas layer located directly between the reference-temperature material and the optical element, the intermediate gas layer being located on at least a portion of the thickness thereof in a temporary diffusion state defined by a thickness of the intermediate gas layer, such that the ratio of the mean free path of the gas molecules in the intermediate gas layer over said thickness is between 0.1 and 10. The thickness of the intermediate gas layer is between 10 ?m and 5 mm. A corresponding heat-management method is implemented in the device for managing the temperature of an optical element.
    Type: Application
    Filed: April 18, 2012
    Publication date: February 6, 2014
    Inventors: Daniel Albach, Jean-Christophe Chanteloup, Antonio Lucianetti, Thierry Novo, Bernard Vincent
  • Patent number: 8638826
    Abstract: The laser device includes a semiconductor laser element having an emission surface from which laser light is emitted, an optical fiber having an end part facing the emission surface, and an optical fiber supporting member which (i) supports the optical fiber and (ii) has a bonding pad to which the optical fiber is fixed by solder. The optical fiber supporting member includes a beam part having (i) a first main surface on which the bonding pad is provided and (ii) a second main surface opposite to the first main surface, and a pillar part which is fixed to a base and is joined to the beam part on an end portion of the beam part such that the second main surface and the base face each other while being spatially away from each other.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: January 28, 2014
    Assignee: Fujikura Ltd.
    Inventors: Akira Sakamoto, Nozomu Toyohara, Yohei Kasai
  • Patent number: 8638831
    Abstract: A diode-laser bar stack includes a plurality of diode-laser bars having different temperature dependent peak-emission wavelengths. The stack is arranged such that the bars can be separately powered. This allows one or more of the bars to be “on” while others are “off”. A switching arrangement is described for selectively turning bars on or off, responsive to a signal representative of the temperature of the diode-laser bar stack, for providing a desired total emission spectrum.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: January 28, 2014
    Assignee: Coherent, Inc.
    Inventors: David Schleuning, Mark M. Gitin, R. Russel Austin
  • Publication number: 20140023100
    Abstract: A system for circulating an alkali vapor to operate as, for example, a gain medium in a diode pumped alkali laser. The system includes a pump configured to pump a buffer gas to a metal source. A source heat exchanger heats the alkali metal source to produce a metal vapor that flows with the buffer gas. An action chamber receives the metal vapor and buffer gas combination and contains the combination while the metal vapor performs its required functions. The metal vapor and buffer combination continue to flow to a metal vapor trap and heat exchanger that cools the metal vapor and buffer gas combination. The metal vapor trap collects alkali metal condensate as the combination cools. The diffuser transport channel provides an inflow of clean buffer gas to the pump. The pump provides a circulating gas flow through the closed loop system.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 23, 2014
    Inventors: Jason Zweiback, Claudio Filappone
  • Publication number: 20140023101
    Abstract: A single-cavity dual-electrode discharge cavity and an excimer laser including such a discharge cavity are disclosed. The discharge cavity may comprise a cavity body and two sets of main discharge electrodes. The cavity body may comprise a left chamber and a right chamber arranged to form a symmetric dual-chamber cavity. The left and right chambers can interface and communicate with each other at a plane of symmetry of the entire discharge cavity. The two sets of main discharge electrodes can be disposed in the left and right chambers on the upper side, respectively. According to the present disclosure, the single-cavity configuration can be used to achieve functions of dual-cavity configurations, such as MOPA, MOPO, and MOPRA. Thus, it is possible to reduce system complexities and also ensure synchronization of discharging in the discharge cavity.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 23, 2014
    Applicant: Academy of Opto-Electronics, Chinese Academy of Sciences
    Inventors: Yu Wang, Yi Zhou, Jinbin Ding, Bin Liu, Lijia Zhang, Jiangshan Zhao, Pengfei Sha
  • Patent number: 8625991
    Abstract: A laser system includes an array of lasers that emit light at a number of different, fixed wavelengths. A group of optical transport systems connect to the laser system. Each of the optical transport systems is configured to modulate data signals onto the light from the laser system to create optical signals and transmit the optical signals on one or more optical fibers.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: January 7, 2014
    Assignee: Juniper Networks, Inc.
    Inventor: Pradeep Sindhu
  • Publication number: 20140003457
    Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.
    Type: Application
    Filed: November 28, 2012
    Publication date: January 2, 2014
    Applicant: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, Vipulkumar Patel, Bipin Dama, Kishor Desai
  • Patent number: 8619825
    Abstract: A light-emitting device reliably supplying electric power to a light-emitting element on a supporting base and securing heat dissipation, and a method of manufacturing the light-emitting device are provided. A light-emitting device includes: a light-emitting element arranged on a first supporting base; a package covering the first supporting base and the light-emitting element therewith, and supporting the first supporting base; and a thermal conductive member having ends which are bonded to the light-emitting element and the package, respectively, so as to also have a wiring function.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: December 31, 2013
    Assignee: Sony Corporation
    Inventors: Hiroyuki Fukasawa, Hiroshi Nishida
  • Publication number: 20130336347
    Abstract: According to one embodiment, the invention relates to a laser gain module (1) comprising: a laser rod (5) having a shaft and two optical interfaces (7, 9) facing each other, the rod (5) being used for longitudinal or quasi-longitudinal optical pumping; and a metal cooling body (3), at least one part of which is moulded around the laser rod (5) in order to cover all of the surfaces other than the optical interfaces in such a way that the laser gain module (1) forms a solid body that cannot be disassembled at ambient temperature.
    Type: Application
    Filed: December 14, 2011
    Publication date: December 19, 2013
    Applicants: CNRS, FIBERCRYST
    Inventors: Nicolas Aubry, Didier Perrodin, Julien Didierjean, Jean-Marie Fourmigue, François Balembois, Igor Martial
  • Patent number: 8611389
    Abstract: A light emitting device includes a light emitting element mounting component, including a cubic package component formed of a silicon member covered with a insulating layer, and the package component including a bottom portion, a sidewall portion provided to stand upright on both ends of the bottom portion respectively, and a backwall portion provided to stand upright on an innermost part of the bottom portion, and the package component in which a cavity is provided in an inner side, and a light emitting element mounted on an inner side surface of the backwall portion of the package component, and including a light emitting surface on an upper end part, wherein a plurality of said light emitting element mounting components are stacked in a depth direction of the cavity to direct toward an identical direction.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: December 17, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Akinori Shiraishi, Mitsutoshi Higashi
  • Patent number: 8611383
    Abstract: A gain-module for use in an OPS-laser includes a multilayer semiconductor gain-structure surmounting a multilayer compound mirror-structure. Within the multilayer compound mirror-structure is a relatively thick layer of diamond which serves as a heat-spreader.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: December 17, 2013
    Assignee: Coherent, Inc.
    Inventors: Sergei Govorkov, Luis Spinelli
  • Patent number: 8605763
    Abstract: The existing diodes in an LED or laser diode package are used to measure the junction temperature of the LED or laser diode. The light or laser emissions of a diode are switched off by removing the operational drive current applied to the diode package. A reference current, which can be lower the operational drive current, is applied to the diode package. The resulting forward voltage of the diode is measured using a voltage measurement circuit. Using the inherent current-voltage-temperature relationship of the diode, the actual junction temperature of the diode can be determined. The resulting forward voltage can be used in a feedback loop to provide temperature regulation of the diode package, with or without determining the actual junction temperature. The measured forward voltage of a photodiode or the emissions diode in a diode package can be used to determine the junction temperature of the emissions diode.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 10, 2013
    Assignee: Microsoft Corporation
    Inventors: Leo Del Castillo, Dawson Yee
  • Patent number: 8594141
    Abstract: The present invention provides a femtosecond laser apparatus using laser diode optical pumping. To provide a stable mode locking and improve power stability and beam stability in an ultrafast laser such as a femtosecond laser, optical mounts which have mounted thereon optical parts of a diode pumping unit are mechanically engaged using bars of low thermal expansion coefficients and form a pumping module, and the pumping module is maximally separated from a laser platform or case.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: November 26, 2013
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Guang Hoon Kim, Uk Kang, Ju Hee Yang, Elena Sall, Sergey Chizhov, Andrey Kulik
  • Patent number: 8594147
    Abstract: A diode pumped solid-state laser for high shock, high vibration environments such as those found in laser ignition systems for artillery systems which internally integrate into the breech of an artillery system such as a 155 mm howitzer. The diode pumped solid-state laser employs a unique gain medium mounting which permits its use in such high shock/high vibration environments. Contributing further to robustness is a monolithic design based on diode arrays mounted in a linear configuration along with an advanced polycrystalline gain medium laser rod. Advantageously, and in sharp contrast to laser ignition systems incorporating flash lamps, the diode pumped solid-state laser of the present invention permits a seamless integration into a howitzer artillery weapons system without other complex mounting provisions or shock isolation system(s).
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: November 26, 2013
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Gregory Burke, Luke Helsel, Thomas DeVoe, Jacqueline Quinn Baeder, David Bound
  • Publication number: 20130308666
    Abstract: A semiconductor laser includes: a first reflector that is provided in a gain region and has a sampled grating in which a plurality of segments are combined; and a second reflector that is optically connected to the first reflector and has a sampled grating in which a plurality of segments are combined, the plurality of segments of the first reflector having a short-segment region and a long-segment region, the long-segment region having an optical length that is larger than that of the short-segment region and being positioned closer to the second reflector than at least one of the short-segment region, the optical length of the long-segment region being larger than that of the short-segment region in a range of integral multiple (n?1) plus-minus 25% of the optical length of the short-segment.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 21, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tsutomu Ishikawa, Toshimitsu Kaneko
  • Patent number: 8588265
    Abstract: Disclosed herein is a semiconductor laser element including: on a substrate, a laser structure section configured to include a semiconductor laminated structure having an n-type semiconductor layer, active layer and p-type semiconductor layer in this order, and a p-side electrode on top of the p-type semiconductor layer; a pair of resonator edges provided on two opposed lateral sides of the semiconductor laminated structure; and films made of a non-metallic material having a thermal conductivity higher than that of surrounding gas, and provided in the region of the top side of the laser structure section including the positions of the resonator edges.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: November 19, 2013
    Assignee: Sony Corporation
    Inventors: Kazuhiro Hongo, Koji Fukumoto
  • Patent number: 8582615
    Abstract: There is provided a semiconductor light-emitting device including a temperature detecting section which is allowed to accurately estimate an element temperature. The semiconductor light-emitting device includes: one or a plurality of surface-emitting semiconductor light-emitting sections and one or a plurality of semiconductor temperature detecting sections on a semiconductor substrate, the surface-emitting semiconductor light-emitting sections emitting light in a direction normal to the semiconductor substrate, the semiconductor temperature detecting sections not emitting light to outside. The semiconductor light-emitting sections and the semiconductor temperature detecting sections have a PN junction or a PIN junction in a direction normal to the semiconductor substrate.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: November 12, 2013
    Assignee: Sony Corporation
    Inventors: Osamu Maeda, Masaki Shiozaki, Susumu Sato, Takahiro Arakida, Shiro Uchida
  • Publication number: 20130294470
    Abstract: A temperature controller for a gas laser which controls temperatures of a plurality of temperature-controlled apparatuses including a first temperature-controlled portion requiring a high-precision temperature-control and a second temperature-controlled portion requiring a low-precision temperature-control as compared with the first temperature-controlled portion and allowing a temperature-control with a low or high temperature as compared with the first temperature-controlled portion, comprises a first temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each first temperature-controlled portion, a second temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each second temperature-controlled portion, a first piping system connecting the first temperature control portion and each first temperature-controlled portion in parallel, and a second piping system connecting the second temperature control portion an
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventors: Yukio WATANABE, Hideyuki HAYASHI, Kouji KAKIZAKI, Michio SHINOZAKI, Hideo HOSHINO
  • Patent number: 8576885
    Abstract: Optical pump modules using VCSEL arrays are provided to pump optical gain media for achieving high power laser output in CW, QCW and pulse operation modes for operation. Low divergence and symmetric far-field emission from VCSELs are particularly suitable for compact arrays. VCSEL arrays configured as laser pump modules are operable at high temperatures with practically no degradation over a long period of time. VCSEL pump modules are adaptable for side- or end-pumping configurations to pump high power lasers in CW, QCW and pulse mode. Power output from VCSEL pump modules is scalable. Incorporating microlens arrays with the VCSEL arrays improve brightness of the pump modules. High power and high temperature operation of VCSEL modules make it suitable for making compact high power solid state lasers that are operable in small spaces such as, ignition of internal combustion engines, stationary power generation engines and pulsed detonation engines.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: November 5, 2013
    Assignee: Princeton Optronics, Inc.
    Inventors: Robert van Leeuwen, Yihan Xiong, Jean F Seurin, Chuni L Ghosh, Bing Xu
  • Publication number: 20130287052
    Abstract: In one embodiment, the instant invention is an optical structure that includes: an optical active medium of a solid state laser, where the optical active medium has a first coefficient of thermal expansion; and a protective structure that is directly cladded a portion of the optical active medium, where the protective structure has a second coefficient of thermal expansion which matches the first coefficient of thermal expansion of the optical active medium, and where the protective structure is transparent to a wavelength that is within an absorption band of the optical active medium so that the optical structure has: the optical active medium that is protected from a physical damage, and the optical active medium that is capable of generating a laser beam having a first energy that is larger than a second energy generated by a control optical structure having the optical active medium without the protective structure.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 31, 2013
    Inventors: Burton E. Sarnoff, Donald Heller, Jerzy Krasinski
  • Patent number: 8571420
    Abstract: An apparatus for driving a wavelength-independent light source is provided. The apparatus includes a seed light signal generation unit configured to generate seed light signals with one or more wavelengths based on a wavelength identification signal, a wavelength light detection unit configured to detect the wavelength identification signal from the seed light signals, an extraction unit configured to extract wavelength information corresponding to the detected wavelength identification signal and extract a driving condition of a wavelength-independent light source corresponding to the extracted wavelength information, and a driving unit configured to drive the wavelength-independent light source according to the extracted driving condition.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-Hyun Cho, Han-Hyub Lee, Jie-Hyun Lee, Jong-Hoon Lee, Eun-Gu Lee, Eui-Suk Jung, Sang-Soo Lee
  • Patent number: 8565276
    Abstract: A high power laser source comprises a bar of laser diodes having a first coefficient of thermal expansion CTEbar on a submount having a second coefficient CTEsub and a cooler having a third coefficient CTEcool. The submount/cooler assembly shows an effective fourth coefficient CTEeff differing from CTEbar. This difference leads to a deformation of the crystal lattice of the lasers' active regions by mechanical stress. CTEeff is selected to be either lower than both CTEbar and CTEcool or is selected to be between CTEbar and CTEcool. The submount may either comprise layers of materials having different CTEs, e.g., a Cu layer of 10-40 ?m thickness and a Mo layer of 100-400 ?m thickness, or a single material with a varying CTEsub. Both result in a CTEsub varying across the submount's thickness.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: October 22, 2013
    Inventors: Martin Krejci, Norbert Lichtenstein, Stefan Weiss, Julien Boucart, René Todt
  • Publication number: 20130272329
    Abstract: A laser diode device including a housing having a mounting area in a cavity of the housing, at least one laser diode chip that emits electromagnetic radiation through a radiation exit area during operation, at least one covering element which is transmissive, at least in places, to the electromagnetic radiation generated by the laser diode chip during operation, and a deflection element, that directs at least part of the electromagnetic radiation generated by the laser diode chip during operation in a direction of the covering element, wherein the radiation exit area of the laser diode chip runs substantially transversely or substantially perpendicularly with respect to the mounting area and/or with respect to the covering element, the covering element connects to the housing, and the covering element tightly closes the housing.
    Type: Application
    Filed: April 15, 2013
    Publication date: October 17, 2013
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Karsten Auen, Uwe Strauss, Thomas Höfer
  • Patent number: 8559474
    Abstract: An optoelectronic (OE) package or system and method for fabrication is disclosed which includes a silicon layer with wiring. The silicon layer has an optical via for allowing light to pass therethrough. An optical coupling layer is bonded to the silicon layer, and the optical coupling layer includes a plurality of microlenses for focusing and or collimating the light through the optical via. A plurality of OE elements are coupled to the silicon layer and electrically communicating with the wiring. At least one of the OE elements positioned in optical alignment with the optical via for receiving the light. A carrier is interposed between electrical interconnect elements. The carrier is positioned between the wiring of the silicon layer and a circuit board and the carrier is electrically connecting first interconnect elements connected to the wiring of the silicon layer and second interconnect elements connected to the circuit board.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Russell A. Budd, Bing Dang, David Danovitch, Benjamin V. Fasano, Paul Fortier, Luc Guerin, Frank F. Libsch, Sylvain Ouimet, Chrirag S. Patel
  • Patent number: 8559475
    Abstract: A heat sink for cooling parts, subassemblies, modules, or similar components, for cooling electrical or electronic components. The heat sink includes at least one cooling element which forms at least one cooling area for connecting the component that is to be cooled and which is made of a metallic material in the cooling area.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: October 15, 2013
    Assignee: Curamik Electronics GmbH
    Inventors: Ernst Hammel, Jürgen Schulz-Harder
  • Patent number: 8553738
    Abstract: In a laser light source device having an optical element and a plurality of heat sinks on which the optical element is joined directly or through a sub mount, and obtained by joining the heat sinks to each other by means of a joining material such that optical elements are optically directly joined to each other, the laser light source device includes a groove portion extending in a direction substantially orthogonal to an optical axis of light in the laser light source device on any one of a joining surface of the optical element or the sub mount to join with the heat sink and a joining surface of the heat sink to join with the optical element or the sub mount.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: October 8, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichi Oe, Motoaki Tamaya, Akira Nakamura, Keiichi Fukuda
  • Patent number: 8553736
    Abstract: A laser device includes: a semiconductor laser element having an output surface; an optical fiber having a leading end portion facing the output surface of the semiconductor laser element; and an optical fiber supporting member for supporting the optical fiber, the optical fiber supporting member being made from a non heat insulating material and having a bonding pad to which the optical fiber is fixed by use of solder. The optical fiber supporting member includes a contact portion thermally in contact with a base. The bonding pad is (i) spaced apart from the contact portion so as to be located on a side opposite from the contact portion so that a region to which laser light is applied from another laser element when the optical fiber is fixed to the bonding pad is sandwiched between the bonding pad and the base and (ii) separated spatially from the base.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: October 8, 2013
    Assignee: Fujikura Ltd.
    Inventors: Nozomu Toyohara, Akira Sakamoto, Yohei Kasai
  • Patent number: 8553737
    Abstract: Embodiments are directed to laser emitter modules and methods and devices for making the modules. Some module embodiments are configured to provide hermetically sealed enclosures that are convenient and cost effective to assemble and provide for active alignment of optical elements of the module.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: October 8, 2013
    Assignee: Oclaro Photonics, Inc.
    Inventors: Serge Cutillas, Daming Liu, Sang-Ki Park, John Kelly Johnson, Edmund Wolak
  • Patent number: 8548015
    Abstract: Provided is a wavelength-tunable external cavity laser module. The wavelength-tunable external cavity laser module includes: a gain medium generating light; an optical waveguide combined with the gain medium and including a Bragg grating and a thin film heater adjusting a temperature of the Bragg grating; and a high frequency transmission medium delivering a high frequency signal to the gain medium, wherein the high frequency transmission medium controls an operating speed of the light.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: October 1, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Byung-seok Choi
  • Publication number: 20130250984
    Abstract: A laser element includes a laser rod and a thermally conductive jacket on an exterior surface of the laser rod. The thermally conductive jacket assists in dissipating heat generated in the laser rod during the application of pump energy to the laser rod.
    Type: Application
    Filed: January 29, 2013
    Publication date: September 26, 2013
    Applicant: AMS Research Corporation
    Inventors: Rongwei Jason Xuan, Douglas L. Evans
  • Publication number: 20130243017
    Abstract: A method for preparing a surface of a YAG crystal for thermal bonding includes performing an ion implantation process to introduce nitrogen into a surface layer of the YAG crystal to replace depleted oxygen therein, to change surface energy of the surface layer of the YAG crystal and to provide desired bonding characteristics for the surface layer; and joining the ion implanted surface layer with a thermal management device configured to dissipate heat from the YAG crystal. Also, a micro-chip device having a YAG crystal whose surface is prepared with the above disclosed method is provided and a device for forming a metallization pattern on a surface of the YAG crystal is provided.
    Type: Application
    Filed: May 9, 2013
    Publication date: September 19, 2013
    Applicant: Raytheon Company
    Inventor: Michael Ushinsky
  • Patent number: 8537873
    Abstract: The present invention relates to the packaging of high power laser(s) in a surface mount technology (SMT) configuration at low-cost using wafer-scale processing. A reflective sidewall is used to redirect the output emission from edge-emitting lasers through an optical element (e.g., a diffuser, lens, etc.). A common electrical pad centered inside the package provides p-side connection to multiple laser diodes (i.e. for power scalability). Thick plating (e.g. 75 um to 125 um) with a heat and electrically conductive material, e.g. copper, on a raised bonding area of a substrate provides good heat dissipation and spreading to the substrate layer during operation. The composite CTE of the substrate layer, e.g. AlN, and the heat/electrical conductive plating, e.g. Cu, substantially matches well with the laser substrates, e.g. GaAs-based, without the requirement for an additional submount.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: September 17, 2013
    Assignee: JDS Uniphase Corporation
    Inventors: Kong Weng Lee, James Yonghong Guo, Vincent V. Wong, Jay A. Skidmore, An-Chun Tien
  • Patent number: 8537867
    Abstract: A method for fabricating an optical device including: a first step of preparing a carrier having a first area and a second area, both edges of the second area having a wall of a step, one edge of the second area being adjacent to the first area, the first area having a first thickness, the second area having a second thickness larger than the first thickness, a second step of mounting the carrier on a temperature control device after the first step, and a third step of mounting a first optical component on the first area of the carrier after the second step.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 17, 2013
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventors: Keiji Nakazawa, Haruo Yonetani
  • Patent number: 8532153
    Abstract: Thermal chirp compensation in a chirp managed laser. In one example embodiment, a laser package including a laser and an optical spectrum reshaper configured to convert frequency modulated optical signals from the laser into an amplitude modulated optical signals is provided. A thermal chirp compensation device is in communication with the laser package and a laser driver. The thermal chirp compensation device includes means for generating bias condition and temperature specific thermal chirp compensation signals that each corresponds to a predetermined level of thermal chirp that is induced in the laser by operating the laser at a particular bias condition and temperature.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: September 10, 2013
    Assignee: Finisar Corporation
    Inventors: Xueyan Zheng, Jianying Zhou, Vincent Bu, Daniel Mahgerefteh
  • Patent number: 8531760
    Abstract: It is provided a wavelength converting device oscillating an idler light having a wavelength of 5 to 10 ?m from a pump light. The wavelength of the idler light is longer than that of the pump light. The wavelength converting device includes a wavelength converting layer 5 of a semiconductor non-linear optical crystal and having a thickness of 50 ?m or smaller. The wavelength converting layer 5 includes a crystal orientation inversion structure wherein crystal orientation of the optical crystal is inverted at a predetermined period and at least one flat main face 5b. The device further includes a Peltier device 2 controlling a temperature of the wavelength converting layer 5; and a clad portion 4 joined with the flat main face 5b of the wavelength converting layer 5 and provided between the wavelength converting layer 5 and the Peltier device 2. The pump light, idler light and signal light satisfies a particular phase matching condition.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: September 10, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Jungo Kondo, Yuichi Iwata, Tetsuya Ejiri
  • Patent number: 8514901
    Abstract: Embodiments of silicon-based thermal energy transfer apparatus for gain medium crystal of a laser system are provided. For a disk-shaped crystal, the apparatus includes a silicon-based manifold and a silicon-based cover element. For a rectangular cuboid-shaped gain medium crystal, the apparatus includes a first silicon-based manifold, a second silicon-based manifold, and first and second conduit elements coupled between the first and second manifolds. For a right circular cylinder-shaped gain medium crystal, the apparatus includes a first silicon-based manifold, a second silicon-based manifold, and first and second conduit elements coupled between the first and second manifolds.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: August 20, 2013
    Inventor: Gerald Ho Kim
  • Publication number: 20130208746
    Abstract: The present invention relates to an apparatus comprising a diode laser (10) providing radiation in a first wavelength interval, a radiation conversion unit (12) having an input and an output, the radiation converter configured to receive the radiation in the first wavelength interval from the diode laser at the input, the radiation conversion unit configured to convert the radiation in the first wavelength interval to radiation in a second wavelength interval and the output configured to output the converted radiation, the second wavelength interval having one end point outside the first wavelength interval.
    Type: Application
    Filed: September 14, 2011
    Publication date: August 15, 2013
    Applicant: DANMARKS TEKNISKE UNIVERSITET
    Inventors: Ole Bjarlin Jensen, Peter Eskil Andersen, Paul Michael Petersen
  • Publication number: 20130208744
    Abstract: An excimer laser may include a frame, a base plate on which the frame is disposed, an excimer laser configured to oscillate and output laser light by discharge-pumping within a chamber containing a laser gas, an optical element that is mounted upon the frame and that is disposed in the optical path of the outputted laser light and a heat removal mechanism connected to both the frame and the base plate.
    Type: Application
    Filed: January 10, 2013
    Publication date: August 15, 2013
    Applicant: Gigaphoton Inc.
    Inventor: Gigaphoton Inc.
  • Publication number: 20130208745
    Abstract: A TOSA can include: a light emitting element; and one or more heating elements thermally coupled to the light emitting element so as to provide a substantially constant heat generation profile and/or temperature profile across the TOSA during a light emitting element dormant period and a light emitting element firing period. The TOSA can include a controller operably coupled with the one or more heating elements so as to control the substantially constant heat generation profile and/or temperature profile. In one aspect, the one or more heating elements can include one or more dedicated heating elements. In one aspect, the one or more of the dedicated heating elements can include a resistor element or coil.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 15, 2013
    Applicant: FINISAR CORPORATION
    Inventor: FINISAR CORPORATION
  • Patent number: 8509273
    Abstract: A thermal management apparatus and method for a solid-state laser system enabling the laser system to have near isothermal temperatures across and throughout a solid-state gain material, by mechanically controlling an oscillating heat pipe having effective thermal conductivity of 10-20,000 W/m*K; bonding a solid-state lasing crystal or ceramic to the mechanically controlled oscillating heat pipe; and providing a supporting structure including a surface bonded to the solid-state lasing crystal or ceramic that matches the coefficient of thermal expansion of both the solid-state lasing crystal or ceramic and the mechanically controlled oscillating heat pipe.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: August 13, 2013
    Assignees: Integral Laser Solutions, LLC, The Curators of the University of Missouri
    Inventors: LaVerne Arthur Schlie, Hongbin Ma
  • Patent number: 8503494
    Abstract: Various embodiments are disclosed for a thermal management system and related method for selectively thermally isolating and thermally connecting a target component. One embodiment of a system includes a first component having a first surface proximate to a target component, and an electromagnet between the first surface and the target component. A second component is spaced apart from the first component to form a gap that serves as a thermal boundary between the first component and the second component. A carrier fluid disposed within the gap includes multiple thermally conductive, ferrous particles. The carrier fluid is configured to align at least a portion of the thermally conductive, ferrous particles when the electromagnet generates a magnetic field that attracts the particles, and to displace at least a portion of the particles when the electromagnet generates a magnetic field that repels the particles.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Microsoft Corporation
    Inventor: Dawson Yee
  • Patent number: 8498317
    Abstract: A temperature controller for a gas laser which controls temperatures of temperature-controlled apparatuses including a first temperature-controlled portion requiring a high-precision temperature-control and a second temperature-controlled portion requiring a low-precision temperature-control and allowing a temperature-control with a low or high temperature as compared with the first temperature-controlled portion, comprises a first temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each first temperature-controlled portion, a second temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each second temperature-controlled portion, a first piping system connecting the first temperature control portion and each first temperature-controlled portion in parallel, and a second piping system connecting the second temperature control portion and each second temperature-controlled portion in parallel.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: July 30, 2013
    Assignee: Gigaphoton Inc.
    Inventors: Yukio Watanabe, Hideyuki Hayashi, Kouji Kakizaki, Michio Shinozaki, Hideo Hoshino
  • Patent number: 8483248
    Abstract: A method for preparing a surface of a YAG crystal for thermal bonding includes performing an ion implantation process to introduce nitrogen into a surface layer of the YAG crystal to replace depleted oxygen therein, to change surface energy of the surface layer of the YAG crystal and to provide desired bonding characteristics for the surface layer; and joining the ion implanted surface layer with a thermal management device configured to dissipate heat from the YAG crystal. Also, a micro-chip device having a YAG crystal whose surface is prepared with the above disclosed method is provided and a device for forming a metallization pattern on a surface of the YAG crystal is provided.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: July 9, 2013
    Assignee: Raytheon Company
    Inventor: Michael Ushinsky
  • Patent number: 8483249
    Abstract: A diode-laser bar package includes a diamond composite heat-sink on which is soft-solder bonded a copper-pad having an area much greater than that of the diode-laser bar. A constraining-block of a metal having a CTE matching that of the diode-laser bar is hard-solder bonded to the conductive pad. The constraining-block is configured such that the conductive pad in the region of the diode-laser bar has a CTE about equal to that of the constraining-block, and, accordingly, the diode-laser bar.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: July 9, 2013
    Assignee: Coherent, Inc.
    Inventors: Sergei Govorkov, John H. Jerman
  • Patent number: 8483253
    Abstract: An optoelectronic (OE) package or system and method for fabrication is disclosed which includes a silicon layer with a wiring layer. The silicon layer has an optical via for allowing light to pass therethrough. An optical coupling layer is bonded to the silicon layer, and the optical coupling layer includes a plurality of microlenses for focusing and or collimating the light through the optical via. One or more first OE elements are coupled to the silicon layer and electrically communicating with the wiring. At least one of the first OE elements positioned in optical alignment with the optical via for receiving the light. A second OE element embedded within the wiring layer. A carrier may be interposed between electrical interconnect elements and positioned between the wiring layer and a circuit board.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Paul Fortier, Frank R. Libsch
  • Publication number: 20130170514
    Abstract: A laser machine includes a laser oscillator, a cooler for cooling the laser oscillator, and a control unit for controlling the laser oscillator and the cooler. The control unit includes a controller that stops base discharge of the laser oscillator at a time when a specified time has elapsed from a stop of laser light emission by the laser oscillator. According to the laser machine, since base discharge of the laser oscillator is stopped after the specified time has elapsed from the stop of laser light emission, wasteful energy (power) consumption of the laser oscillator in a standby state can be restricted.
    Type: Application
    Filed: September 5, 2011
    Publication date: July 4, 2013
    Applicant: AMADA COMPANY, LIMITED
    Inventors: Akihiko Sugiyama, Yoshinao Miyamoto, Takahiro Mori