With Diffraction Grating (bragg Reflector) Patents (Class 372/50.11)
  • Patent number: 11099451
    Abstract: Some embodiments are directed to a light modulator comprising transparent or reflective substrates, multiple electrodes being applied to the substrates in a pattern across the substrate. A controller may apply an electric potential to the electrodes to obtain an electro-magnetic field between the electrodes providing electrophoretic movement of the particles towards or from an electrode.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: August 24, 2021
    Assignee: ELSTAR DYNAMICS PATENTS B.V.
    Inventors: Romaric Mathieu Massard, Anthony John Slack, Lennart Ten Kate
  • Patent number: 11081860
    Abstract: The present invention discloses an integrated broadband chaotic semiconductor laser using optical microcavities. The arc-shaped hexagonal laser outputs light. Part of the light is totally reflected through the deformed microcavity and then reflected out of the deformed microcavity from the passive waveguide II; after entering the passive feedback waveguide, another part of the light is fed back into the deformed microcavity by the high reflection film, passes through an in-cavity ray track and then is also reflected out of the deformed microcavity from the passive waveguide II; the two-path light is coupled into the arc-shaped hexagonal laser, and finally generated chaotic laser light is directionally coupled and output through the passive waveguide I at the other end of the arc-shaped hexagonal laser. The present invention has wide broadband, flat spectrum, compact structure, and no time delay signature.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: August 3, 2021
    Assignee: TAIYUAN UNIVERSITY OF TECHNOLOGY
    Inventors: Anbang Wang, Yixuan Wang, Yuncai Wang, Yuanyuan Guo, Longsheng Wang, Tong Zhao
  • Patent number: 11081856
    Abstract: A laser integrated photonic platform to allow for independent fabrication and development of laser systems in silicon photonics. The photonic platform includes a silicon substrate with an upper surface, one or more through silicon vias (TSVs) defined through the silicon substrate, and passive alignment features in the substrate. The photonic platform includes a silicon substrate wafer with through silicon vias (TSVs) defined through the silicon substrate, and passive alignment features in the substrate for mating the photonic platform to a photonics integrated circuit. The photonic platform also includes a III-V semiconductor material structure wafer, where the III-V wafer is bonded to the upper surface of the silicon substrate and includes at least one active layer forming a light source for the photonic platform.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: August 3, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Jock T. Bovington, Vipulkumar K. Patel, Dominic F. Siriani
  • Patent number: 11075315
    Abstract: An optical semiconductor element includes a semiconductor substrate, a first laminated structure provided on a front surface of the semiconductor substrate, and a second laminated structure provided on the front surface of the semiconductor substrate, the first laminated structure includes a first quantum cascade region, the second laminated structure includes a dummy region having the same layer structure as the first quantum cascade region, a second quantum cascade region provided on the front surface of the semiconductor substrate via the dummy region, and one of the first quantum cascade region and the second quantum cascade region is a quantum cascade laser, and the other of the first quantum cascade region and the second quantum cascade region is a quantum cascade detector.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: July 27, 2021
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Masahiro Hitaka, Akio Ito, Tatsuo Dougakiuchi, Kazuue Fujita, Tadataka Edamura
  • Patent number: 10910792
    Abstract: Hybrid silicon lasers are provided including a bulk silicon substrate, a localized insulating layer that extends on at least a portion of the bulk silicon substrate, an optical waveguide structure on an upper surface of the localized insulating layer. The optical waveguide structure includes an optical waveguide including a silicon layer. A lasing structure is provided on the optical waveguide structure.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: February 2, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-jae Shin, Dong-hyun Kim, Seong-gu Kim, In-sung Joe, Kyoung-ho Ha
  • Patent number: 10855055
    Abstract: A VCSEL array has VCSELs on a semiconductor substrate and has a prismatic or Fresnel optical structure, which is arranged to transform laser light to provide a continuous illumination pattern in a reference plane. The optical structure increases a size of the illumination pattern in comparison to an untransformed illumination pattern. The optical structure is arranged such that each VCSEL illuminates a sector of the pattern. Sub-surfaces of the optical structure with different height above the semiconductor substrate are arranged next to each other. Each VCSEL is associated with a sub-surface. A distance between each VCSEL and a size of its sub-surface is arranged such that the VCSEL illuminates only a part of the sub-surface without illuminating one of the steps. The VCSEL array has an array of microlenses, each VCSEL being associated with a microlens arranged to collimate the laser light after traversing the optical structure.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: December 1, 2020
    Assignee: TRUMPF PHOTONIC COMPONENTS GMBH
    Inventors: Pascal Jean Henri Bloemen, Stephan Gronenborn
  • Patent number: 10833213
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods related to utilizing optical cladding layers. According to one embodiment, a hybrid optical device includes a silicon semiconductor layer and a III-V semiconductor layer having an overlapping region, wherein a majority of a field of an optical mode in the overlapping region is to be contained in the III-V semiconductor layer. A cladding region between the silicon semiconductor layer and the III-V semiconductor layer has a spatial property to substantially confine the optical mode to the III-V semiconductor layer and enable heat dissipation through the silicon semiconductor layer.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: November 10, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Erik Johan Norberg, Anand Ramaswamy, Brian Robert Koch
  • Patent number: 10826274
    Abstract: A vertical-cavity surface-emitting laser (VCSEL) may include at least one layer forming a grating structure with a selected period, depth, and fill factor, wherein the period, the depth, and the fill factor of the grating structure are configured to achieve greater than a threshold level of efficiency for the VCSEL, less than a threshold current increase caused by power loss from higher order diffraction associated with the grating structure, and greater than a threshold polarization selectivity at an emission wavelength of the VCSEL.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: November 3, 2020
    Assignee: Lumentum Operations LLC
    Inventors: Pengfei Qiao, Chien-Yao Lu
  • Patent number: 10811842
    Abstract: A distributed feedback laser, including: a ridge waveguide; two upper electrodes disposed on two sides of the ridge waveguide, respectively; two lower electrodes disposed on two sides of the upper electrodes, respectively; a substrate; a second waveguide cladding layer; an active layer; and a first waveguide cladding layer. The first waveguide cladding layer is n-doped and includes a conductive layer and a refractive layer disposed on the conductive layer. The refractive index of the refractive layer is greater than the refractive index of the active layer. The ridge waveguide includes a ridge region formed by a middle part of the refractive layer. The ridge region includes a surface provided with Bragg gratings. Two grooves are formed between the ridge waveguide and the upper electrodes. The conductive layer is connected to the upper electrodes. The second waveguide cladding layer includes one or more current restricted areas.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: October 20, 2020
    Assignees: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Qiaoyin Lu, Pengfei Zhang, Weihua Guo
  • Patent number: 10754157
    Abstract: A method for producing an optical element includes a) providing a first shell which is transparent in the predetermined wavelength range, b) applying a coating which is optically effective for the predetermined wavelength range onto the structured portion, c) providing a second shell which is transparent in the predetermined wavelength range, which shell has an integral embodiment and a smooth lower side which has a complementary form to the form of the upper side, d) applying an adhesive layer which is transparent in the predetermined wavelength range onto the upper side of the first shell and/or the lower side of the second shell, and e) connecting the upper side of the first shell with the lower side of the second shell by means of the adhesive layer such that a two-shell optical element is produced, in which the optically effective structure is buried.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: August 25, 2020
    Assignee: tooz technologies GmbH
    Inventors: Jens Hofmann, Gerhard Kelch, Wolf Krause, Joerg Puetz, Georg Michels
  • Patent number: 10690848
    Abstract: The present disclosure relates to shaping of optic beams at the inputs/outputs of a photonic chip, the spectral widening of the light coupled to this chip, and a method for manufacturing the chip. The photonic chip includes a light guiding layer supported by a substrate. The chip includes at least one light guiding structure made of silicon coupled on one side to a vertical coupler and on another side to an optical component integrated in the light guiding layer. The photonic chip has a front face on the vertical coupler side and a rear face on the substrate side. A collimation structure of digital lens type is integrated at the level of the rear face to collimate the mode size of the light beam incident on the lens and coming from the vertical coupler.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: June 23, 2020
    Assignee: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Sylvie Menezo, Salim Boutami, Bruno Mourey
  • Patent number: 10622512
    Abstract: Disclosed is a light emitting diode comprising; a substrate having a front side and a back side; a first conductive type semiconductor layer having a front side and a back side, and formed on the back side of the substrate; a second conductive type semiconductor layer having a front side and a back side, and formed on the back side of the first conductive type semiconductor layer; an active layer having a short wavelength band of 315 to 420 nm, and formed between the back side the first conductive type semiconductor layer and the front side of the second conductive type semiconductor layer; a plurality DBR unit layers having a front side and a back side, and comprising a low refractive index layer and a high refractive index layer adjacent to the low refractive index layer; and a metal reflective layer having a front side and a back side, and formed on the back side of the plurality DBR unit layers, wherein an intermediate layer for improving ohmic contact, and formed between the back side of the plurality DB
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: April 14, 2020
    Assignee: LUMENS CO., LTD.
    Inventor: Dae Won Kim
  • Patent number: 10581223
    Abstract: A structure of distributed feedback (DFB) laser includes a grating layer having a phase-shift grating structure and a gratingless area. In addition, both side-surfaces of the DFB laser are coated with anti-reflection coating to improve SMSR and to obtain good slope efficiency (SE). The grating layer is divided by the phase-shift grating structure in a horizontal direction into a first grating area and a second grating area adjacent to a laser-out surface of the DFB laser. The phase-shift grating structure provides a phase-difference distance, such that a shift of phase exists between the micro-grating structures located within the first grating area and the other micro-grating structures located within the second grating area. The gratingless area located within the second grating area contains no micro-grating structure, and moreover, the gratingless area will not change the phase of the micro-grating structures located within the second grating area.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: March 3, 2020
    Assignee: TrueLight Corporation
    Inventors: Chien Hung Pan, Cheng Zu Wu
  • Patent number: 10541512
    Abstract: The present invention is a surface emitting laser luminescent diode structure which is characterized in that a recess comprises two tilted slopes on two sides and a protruding trapezoidal cylinder located at the bottom center of the recess is disposed at the bottom of a laser resonant cavity. Thus, a reflecting mirror disposed along the surface of the recess includes two tilted side surfaces as leak-proof sides, which reduces the divergence angle and avoid the lateral light leakage. Additionally, a current isolating layer is disposed on the reflecting mirror and is designed to satisfy the condition (¼*wavelength*1/refractive index) of an optical film, thereby allowing the reflecting mirror to receive an excellent reflectance. Besides, the current isolating layer limits the flow direction of the current, thus increasing operating speed.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: January 21, 2020
    Assignee: High Power Opto. Inc.
    Inventors: Wei-Yu Yen, Li-Ping Chou, Tau-Jin Wu, Chih-Sung Chang
  • Patent number: 10461507
    Abstract: A vertical-cavity surface-emitting laser (VCSEL), substrate emitting VCSEL, and multi-beam emitting device and corresponding manufacturing processes are provided. An example VCSEL comprises a substrate having a first surface and a second surface; an output coupling mirror disposed on the second surface of the substrate; a high reflectivity mirror; and an active cavity material structure disposed between the output coupling mirror and the high reflectivity mirror. The active cavity material structure comprises a first current-spreading layer, a second current-spreading layer, an active region disposed between the first current-spreading layer and the second current-spreading layer, and a tunnel junction overgrown by the second current spreading layer, wherein the tunnel junction is disposed adjacent the active region. The VCSEL is configured to emit radiation outward through the first surface of the substrate.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: October 29, 2019
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Alexei Sirbu, Vladimir Iakovlev, Yuri Berk, Elad Mentovich
  • Patent number: 10447003
    Abstract: A system and method for stabilizing and combining multiple emitted beams into a single system using both WBC and WDM techniques.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: October 15, 2019
    Assignee: TERADIODE, INC.
    Inventors: Parviz Tayebati, Bien Chann
  • Patent number: 10431703
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods related to utilizing optical cladding layers. According to one embodiment, a hybrid optical device includes a silicon semiconductor layer and a III-V semiconductor layer having an overlapping region, wherein a majority of a field of an optical mode in the overlapping region is to be contained in the III-V semiconductor layer. A cladding region between the silicon semiconductor layer and the III-V semiconductor layer has a spatial property to substantially confine the optical mode to the III-V semiconductor layer and enable heat dissipation through the silicon semiconductor layer.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: October 1, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: Erik Johan Norberg, Anand Ramaswamy, Brian Robert Koch
  • Patent number: 10396529
    Abstract: A VCSEL can include: an active region configured to emit light; a blocking region over or under the active region, the blocking region defining a plurality of channels therein; a plurality of conductive channel cores in the plurality of channels of the blocking region, wherein the plurality of conductive channel cores and blocking region form an isolation region; a top electrical contact; and a bottom electrical contact electrically coupled with the top electrical contact through the active region and plurality of conductive channel cores. At least one conductive channel core is a light emitter, and others can be spare light emitters, photodiodes, modulators, and combinations thereof. A waveguide can optically couple two or more of the conductive channel cores. In some aspects, the plurality of conductive channel cores are optically coupled to form a common light emitter that emits light (e.g., single mode) from the plurality of conductive channel cores.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: August 27, 2019
    Assignee: Finisar Corporation
    Inventors: Jim Tatum, Gary Landry
  • Patent number: 10381222
    Abstract: A substrate treatment method of performing a plurality of predetermined treatments on a substrate to form a plurality of patterns stacked on the substrate, the substrate treatment method includes: a calculation step of calculating, about patterns in two layers stacked on the substrate, a mutual pattern displacement amount being a displacement amount between the patterns in the two layers, based on an end portion positional displacement of a pattern in an upper layer, an end portion positional displacement of a pattern in a lower layer, and an overlay of the patterns in the two layers; and a correction step of correcting, when the mutual pattern displacement amount exceeds a predetermined threshold, treatment conditions in the predetermined treatments to make the mutual pattern displacement amount fall within the predetermined threshold.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: August 13, 2019
    Assignee: Tokyo Electron Limited
    Inventor: Shinji Kobayashi
  • Patent number: 10355449
    Abstract: A QCL may include a substrate, an emitting facet, and semiconductor layers adjacent the substrate and defining an active region. The active region may have a longitudinal axis canted at an oblique angle to the emitting facet of the substrate. The QCL may include an optical grating being adjacent the active region and configured to emit one of a CW laser output or a pulsed laser output through the emitting facet of substrate.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: July 16, 2019
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventor: Arkadiy Lyakh
  • Patent number: 10348056
    Abstract: Laser diode comprises an active layer; a waveguiding region at least partially surrounding the active layer; a rear facet; a front facet designed for outcoupling laser radiation, wherein the active layer extends at least partially along a first axis (X) between the rear facet and the front facet; and a grating operatively connected to the waveguiding region, wherein the grating comprises a plurality of bridges and trenches designed such that an average increase of a coupling parameter P for the plurality of trenches along the grating is non-zero, wherein the coupling parameter P of a trench is defined by the equation, wherein dres is a distance of the trench to the active layer, w is a width of the trench and ?n is the refractive index difference between a refractive index of the trench and a refractive index of a material surrounding the trench.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: July 9, 2019
    Assignee: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Jörg Fricke, Götz Erbert, Paul Crump, Jonathan Decker
  • Patent number: 10324258
    Abstract: A light emitting device, an optical module and a manufacturing method thereof are disclosed. According to an example of the disclosure, the light emitting device may comprise an optical waveguide chip, a light emitting chip and a grating between the light emitting chip and the optical waveguide chip. The light emitting chip may emit laser light. The grating may couple the laser light emitted from the active layer into the optical waveguide chip in a way that the laser light is output along a length direction of the optical waveguide chip.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: June 18, 2019
    Assignees: Hisense Broadband Multimedia Technologies Co., Ltd., Hisense Broadband Multimedia Technologies, Ltd., Huazhong University of Science and Technology
    Inventors: Xun Li, Zekun Lin, Hua Zhang
  • Patent number: 10288940
    Abstract: An optical element includes, on a surface thereof, a plurality of structural bodies which extend in a first direction, where the plurality of structural bodies are aligned at a pitch of a sub-wavelength in a second direction which intersects with the first direction, and the widths of the structural bodies are changed periodically.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: May 14, 2019
    Assignee: Sony Corporation
    Inventors: Kazuya Hayashibe, Shunichi Kajiya
  • Patent number: 10281746
    Abstract: An optical transmitter includes a reflective semiconductor optical amplifier (RSOA) coupled to an input end of a first optical waveguide. An end of the first optical waveguide provides a transmitter output for the optical transmitter. Moreover, a section of the first optical waveguide between the input end and the output end is optically coupled to a ring modulator that modulates an optical signal based on an electrical input signal. A passive ring filter (or a 1×N silicon-photonic switch and a bank of band reflectors) is connected to provide a mirror that reflects light received from the second optical waveguide back toward the RSOA to form a lasing cavity. Moreover, the ring modulator and the passive ring filter have different sizes, which causes a Vernier effect that provides a large wavelength tuning range for the lasing cavity in response to tuning the ring modulator and the passive ring filter.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: May 7, 2019
    Assignee: Oracle International Corporation
    Inventors: Xuezhe Zheng, Ying Luo, Jin Yao, Ashok V. Krishnamoorthy
  • Patent number: 10271904
    Abstract: A system and method for selectively processing target tissue material in a patient include a laser subsystem for generating an output laser beam and a catheter assembly including an optical fiber for guiding the output laser beam. The beam has a predetermined selected wavelength between 900 nm and 2600 nm. The catheter assembly is sized to extend through an opening in a first part of the patient to a tissue material processing site within the patient. A beam delivery and focusing subsystem includes a focal distance, which may be adjustable, that positions the beam into at least one focused spot on the target tissue material disposed within a second part of the patient for a duration sufficient to allow laser energy to be absorbed by the target tissue material and converted to heat to produce a desired physical change in the target tissue material without causing undesirable changes to adjacent non-target material.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: April 30, 2019
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 10263394
    Abstract: A high-speed, single-mode, high power, reliable and manufacturable wavelength-tunable light source operative to emit wavelength tunable radiation over a wavelength range contained in a wavelength span between about 950 nm and about 1150 nm, including a vertical cavity laser (VCL), the VCL having a gain region with at least one compressively strained quantum well containing Indium, Gallium, and Arsenic.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: April 16, 2019
    Assignees: Praevium Research, Inc., Thorlabs, Inc.
    Inventors: Vijaysekhar Jayaraman, Christopher Burgner, Demis John, Peter Heim, Alex Ezra Cable
  • Patent number: 10243326
    Abstract: A waveguide includes a narrow waveguide, wide waveguides, and tapered waveguides. A width Ww of the wide waveguides is wider than A width Wn of the narrow waveguide. The tapered waveguides have their width continuously varying so as to couple the narrow waveguide and the wide waveguides, respectively. Assuming a length of the waveguide as L and an area as S, Ks=S/(Wn·L) and 1<ks?1.5 are satisfied.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: March 26, 2019
    Assignee: Renesas Electronics Corporation
    Inventor: Kazuhisa Fukuda
  • Patent number: 10209603
    Abstract: A switching optical antenna that includes: a waveguide including a light input end and a light output end; a ring waveguide coupled with the waveguide through a first directional coupler; a diffraction grating that is disposed within the ring waveguide and that is coupled with the ring waveguide through a second directional coupler; and a refractive index adjusting section that changes a refractive index of at least a portion of the ring waveguide.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: February 19, 2019
    Assignee: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Daisuke Inoue, Hiroyuki Matsubara, Tadashi Ichikawa
  • Patent number: 10205304
    Abstract: A high-speed, single-mode, high power, reliable and manufacturable wavelength-tunable light source operative to emit wavelength tunable radiation over a wavelength range contained in a wavelength span between about 950 nm and about 1150 nm, including a vertical cavity laser (VCL), the VCL having a gain region with at least one compressively strained quantum well containing Indium, Gallium, and Arsenic.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: February 12, 2019
    Assignees: PRAEVIUM RESEARCH, INC., THORLABS, INC.
    Inventors: Vijaysekhar Jayaraman, Christopher Burgner, Demis John, Peter Heim, Alex Ezra Cable
  • Patent number: 10177274
    Abstract: A red light emitting device, a fabricating method of the light emitting device, a light emitting device package and a lighting system are provided. The red light emitting device according to an embodiment may include a first conductive type first semiconductor layer 112; an active layer 114 on the first conductive type first semiconductor layer 112; a second conductive type third semiconductor layer 116 on the active layer 114; a second conductive type fourth semiconductor layer 124 on the second conductive type third semiconductor layer 116; and a second conductive type fifth semiconductor layer 125 on the second conductive type fourth semiconductor layer 124. The second conductive type fifth semiconductor layer 125 may include a superlattice structure of a GaP layer 125a/InxGa1-xP layer (0?x?1) 125b.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 8, 2019
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Yong Jun Kim, Sung Wook Moon
  • Patent number: 10164406
    Abstract: A tunable laser device comprises a multi-section distributed feedback (DFB) laser having a first Bragg section including a waveguide and a Bragg grating, a second Bragg section comprising a waveguide and a Bragg grating, and a phase section being longitudinally located between the first Bragg section and the second Bragg section. The phase section is made of a passive material, and each Bragg section has a first longitudinal end joining the phase section and a second longitudinal end opposed to the phase section. The Bragg grating of at least one Bragg section has a grating coupling coefficient which decreases from the first longitudinal end to the second longitudinal end of the at least one Bragg section.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: December 25, 2018
    Assignee: ALCATEL LUCENT
    Inventors: Nicolas Chimot, Helene Debregeas-Sillard
  • Patent number: 10128637
    Abstract: A wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) with the use of microelectromechanical system (MEMS) technology is provided as a swept source for Optical Coherence Tomography (OCT). The wavelength-tunable VCSEL comprises a bottom mirror of the VCSEL, an active region, and a MEMS tunable upper mirror movable by electrostatic deflections. The bottom mirror comprising a GaAs based distributed Bragg reflector (DBR) stack, and the active region comprising multiple stacks of GaAs based quantum dot (QD) layers, are epitaxially grown on a GaAs substrate. The MEMS tunable upper mirror includes a membrane part supported by suspension beams, and an upper mirror comprising a dielectric DBR stack. The MEMS tunable quantum dots VCSEL can cover an operating wavelength range of more than 100 nm, preferably with a center wavelength between 250 and 1950 nm, and the sweeping rate can be from a few kHz to hundreds of kHz, and up to a few MHz.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: November 13, 2018
    Assignee: InPhenix, Inc.
    Inventors: Toshihiko Makino, Tongning Li, David Eu
  • Patent number: 10078268
    Abstract: A method including: obtaining a measurement of a metrology target on a substrate processed using a patterning process, the measurement having been obtained using measurement radiation; and deriving a parameter of interest of the patterning process from the measurement, wherein the parameter of interest is corrected by a stack difference parameter, the stack difference parameter representing an un-designed difference in physical configuration between adjacent periodic structures of the target or between the metrology target and another adjacent target on the substrate.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: September 18, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Kaustuve Bhattacharyya
  • Patent number: 10079474
    Abstract: A vertical-cavity surface-emitting laser (VCSEL) includes first reflector having a first reflectivity; a second reflector having a second reflectivity, where the second reflectivity is less than the first reflectivity; a gain region between the first and second reflectors; and a substrate having a first surface and a second surface, where the first surface is coupled to the second reflector, and where the second surface is formed into a lens to act upon light emitted the VCSEL through the substrate. The VCSEL lases in a single transverse mode.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: September 18, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Michael Renne Ty Tan, Wayne V Sorin, Sagi V Mathai
  • Patent number: 10069282
    Abstract: An optical device includes a gallium and nitrogen containing substrate comprising a surface region configured in a (20-2-1) orientation, a (30-3-1) orientation, or a (30-31) orientation, within +/?10 degrees toward c-plane and/or a-plane from the orientation. Optical devices having quantum well regions overly the surface region are also disclosed.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 4, 2018
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, You-Da Lin, Christiane Elsass
  • Patent number: 10033158
    Abstract: A semiconductor laser, a laser assembly and a method of making a semiconductor laser are disclosed. In an embodiment the surface-emitting semiconductor laser includes a carrier having a carrier main side mechanically carrying a semiconductor laser; a first Bragg mirror and a second Bragg mirror so that the second Bragg mirror is further away from the carrier than the first Bragg mirror; a semiconductor layer sequence between the first and the second Bragg mirrors having at least one active zone for generating laser radiation; a metal mirror arranged directly on a side of the first Bragg mirror facing the carrier for reflecting laser radiation generated during operation of the semiconductor laser; a bonding agent layer located between the carrier and the semiconductor layer sequence; a resonator oriented perpendicular to the carrier main side; and an electrically insulating passivation layer located in the metal mirror.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: July 24, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Roland Enzmann, Hubert Halbritter, Martin Rudolf Behringer
  • Patent number: 10014660
    Abstract: The invention relates to a III-V heterostructure laser device (1) arranged in and/or on silicon, comprising: a III-V heterostructure gain medium (3); and an optical rib waveguide (11), arranged facing the gain medium (3) and comprising a slab waveguide (15) equipped with a longitudinal rib (17), the optical rib waveguide (11) being arranged in the silicon. The optical rib waveguide (11) is oriented so that at least one Bragg grating (19, 19a, 19b) is arranged on that side (21) of the slab waveguide (15) which is proximal relative to the gain medium (3) and in that the rib (17) is placed on that side (23) of the slab waveguide (15) that is distal relative to the gain medium (3).
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: July 3, 2018
    Assignees: Commisariat A L'Energie Atomique et aux Energies Alternatives, STMICROELECTRONICS SA, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Thomas Ferrotti, Badhise Ben Bakir, Alain Chantre, Sebastien Cremer, Helene Duprez
  • Patent number: 9997890
    Abstract: A multisection digital supermode-distributed Bragg reflector (MSDS-DBR) comprising: a plurality P of digital supermode Bragg reflector (DS-DBR) grating sections arranged along a waveguide; wherein each DS-DBR grating section is configured to pass or reflect light over a given spectral region, the given spectral region being different from the spectral regions of the other DS-DBR grating sections; wherein each DS-DBR grating section comprises a plurality M of grating sub-regions, each sub-region corresponding to a spectral sub-band within the spectral region of the DS-DBR grating section, and wherein each grating sub-region includes a positive electrical contact and a negative electrical contact; said grating sub-region being configured to pass or reflect light of its spectral sub-band when an electrical bias is provided between its positive and negative electrical contacts.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: June 12, 2018
    Assignee: Rockley Photonics Limited
    Inventor: Aaron John Zilkie
  • Patent number: 9917417
    Abstract: A widely tunable laser system includes a substrate, first and second lasers, an output and at least one optical combining device. The first laser is integrated with the substrate, includes a gain medium that includes a first material, and emits light at a wavelength that is tunable within a first wavelength range that is determined at least in part by the first material. The second laser is integrated with the substrate, includes a gain medium that includes a second material, and emits light at a wavelength that is tunable within a second wavelength range that is different from the first wavelength range that is determined at least in part by the second material. The at least one optical combining device is configured to direct light from one or both of the first laser and the second laser to the output.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: March 13, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Guoliang Li, Stephen B. Krasulick, Damien Lambert
  • Patent number: 9893816
    Abstract: Apparatuses including integrated circuit (IC) optical assemblies and processes for operation of IC optical assemblies are disclosed herein. In some embodiments, the IC optical assemblies include a transmitter component to provide light output having a particular beam direction, and a transmitter driver component. The transmitter component includes a light source optically coupled to a plurality of waveguides, a plurality of gratings, and a plurality of phase tuners. The transmitter driver component causes a light provided by the light source to be centered at a particular wavelength and a particular phase to be induced by each phase tuner of the plurality of phase tuners on a respective waveguide of the plurality of waveguides, in accordance with a feedback signal, to generate the light output having the particular beam direction.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: February 13, 2018
    Assignee: Intel Corporation
    Inventors: Woosung Kim, Myung Jin Yim
  • Patent number: 9871344
    Abstract: A tunable laser for tuning a lasing mode based on light beams travelling through at least one block of channel waveguides with at least two tunable combs, includes: a frequency selective optical multiplexer comprising a first terminal for receiving/transmitting light, at least one block of channel waveguides, each channel waveguide having a reflectively coated first tail and a second tail, and an optical coupling element optically coupling the first terminal with the second tails of the channel waveguides of the at least one block of channel waveguides, each of the channel waveguides having a different length; a gain element generating a broad spectrum of light, the gain element coupling the first terminal of the frequency selective optical multiplexer with a reflective element.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: January 16, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Ramsey Selim, Karl Boylan, Richard Wyatt, Ian Lealman
  • Patent number: 9819145
    Abstract: According to various embodiments, there is provided a layer arrangement including a graphene layer; a gating electrode layer configured to provide a tuning voltage to the graphene layer; a laser layer configured to provide an electromagnetic wave; and a concentric-circular grating layer configured to couple the electromagnetic wave to the graphene layer.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: November 14, 2017
    Assignee: Nanyang Technological University
    Inventors: Guozhen Liang, Qijie Wang
  • Patent number: 9800021
    Abstract: A semiconductor laser device having a diffraction grating is disclosed. The semiconductor laser device comprises a first diffraction grating provided on a substrate, a second diffraction grating continuous to one end of the first diffraction grating along an optical waveguide direction, and an active layer provided above the first diffraction grating. The second diffraction grating has a pitch 1.05 times or greater, or 0.95 times or smaller of the pitch of the first diffraction grating.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: October 24, 2017
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Masami Ishiura
  • Patent number: 9793454
    Abstract: This disclosure discloses a method for making a light-emitting device, comprising steps of: providing a substrate; forming a light-emitting stack on the substrate; forming a first layer on the light-emitting stack; providing a permanent substrate; forming a second layer on the permanent substrate; bonding the first layer and the second layer to form a bonding layer to connect the substrate and the permanent substrate; wherein a refractive index of the bonding layer decreases from the light-emitting stack toward the permanent substrate.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: October 17, 2017
    Assignee: EPISTAR CORPORATION
    Inventors: Chien-Fu Huang, Shiuan-Leh Lin, Chih-Chiang Lu, Chia-Liang Hsu
  • Patent number: 9786238
    Abstract: According to the array substrate provided by this disclosure, in a row of sub-pixels, sub-pixels in the odd columns and even columns are separately coupled to different gate lines, i.e., making the sub-pixels coupled to the same gate line are not adjacent to each other. In this way, during row scanning drive, an up-down twist charging may be implemented, and the sub-pixels cause no interference to each other.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: October 10, 2017
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Yoonsung Um, Heecheol Kim, Yunsik Im
  • Patent number: 9774168
    Abstract: A quantum cascade semiconductor laser includes a substrate with a main surface including a waveguide area and a distributed Bragg reflection area that are arranged in a direction of a first axis; a laser region provided on the waveguide area, the laser region including a mesa waveguide having first and second side surfaces, and first and second burying regions provided on the first and second side surfaces, respectively; a distributed Bragg reflection region provided on the distributed Bragg reflection area, the distributed Bragg reflection region including a semiconductor wall having first bulk semiconductor regions and first laminate regions that are alternately arrayed in a direction of a second axis intersecting the first axis; and an upper electrode provided on the laser region. Each first bulk semiconductor region includes a bulk semiconductor layer. Each first laminate region includes a stacked semiconductor layer having a plurality of semiconductor layers.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: September 26, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Jun-ichi Hashimoto
  • Patent number: 9742151
    Abstract: A terahertz quantum cascade laser device is provided comprising a substrate having a top substrate surface, a bottom substrate surface, and an exit facet extending between the top substrate surface and the bottom substrate surface at an angle ?tap. The device comprises a waveguide structure having a top surface, a bottom surface, a front facet extending between the top surface and the bottom surface and positioned proximate to the exit facet, and a back facet extending between the top surface and the bottom surface and oppositely facing the front facet. The waveguide structure comprises a quantum cascade laser structure configured to generate light comprising light of a first frequency ?1, light of a second frequency ?2, and light of a third frequency ?THz, wherein ?THz=?1??2; an upper cladding layer; and a lower cladding layer.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: August 22, 2017
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Dan Botez, Christopher A. Sigler, Thomas L. Earles, Jeremy D. Kirch
  • Patent number: 9685766
    Abstract: Disclosed is a method of forming a laser source capable of producing mid-IR laser radiation comprises growing a first core structure on a substrate, etching away the first core structure in one or more locations, and growing a second core structure on the substrate. At least one of the core structures comprises a quantum cascade gain medium emitting at a frequency within the range from 3-14 ?m. Also disclosed is a laser source capable of producing mid-IR laser radiation comprising a quantum-cascade core positioned on a substrate for emitting within the range from 3-14 ?m and a second core on the substrate positioned in-plane relative to the first core. The second core is one of a) a passive waveguide core b) a second quantum-cascade core and c) a semiconductor active core region.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: June 20, 2017
    Assignee: Thorlabs Quantum Electronics, Inc.
    Inventors: Catherine Genevieve Caneau, Feng Xie, Chung-En Zah
  • Patent number: 9627851
    Abstract: A multisection digital supermode-distributed Bragg reflector (MSDS-DBR) comprising: a plurality P of digital supermode Bragg reflector (DS-DBR) grating sections arranged along a waveguide; wherein each DS-DBR grating section is configured to pass or reflect light over a given spectral region, the given spectral region being different from the spectral regions of the other DS-DBR grating sections; wherein each DS-DBR grating section comprises a plurality M of grating sub-regions, each sub-region corresponding to a spectral sub-band within the spectral region of the DS-DBR grating section, and wherein each grating sub-region includes a positive electrical contact and a negative electrical contact; said grating sub-region being configured to pass or reflect light of its spectral sub-band when an electrical bias is provided between its positive and negative electrical contacts.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: April 18, 2017
    Assignee: Rockley Photonics Limited
    Inventor: Aaron Zilkie
  • Patent number: 9601901
    Abstract: Disclosed is a semiconductor optical emitter having an optical mode and a gain section, the emitter comprising a low loss waveguide structure made of two alternating layers of semiconductor materials A and B, having refractive indexes of Na and Nb, respectively, with an effective index No of the optical mode in the low loss waveguide between Na and Nb, wherein No is within a 5% error margin of identical to a refractive index of the gain section and wherein the gain section is butt-jointed with the low loss waveguide, and wherein the size and shape of the optical mode(s) in the low loss waveguide and gain section are within a 10% error margin of equal. Desirably, at least one of the semiconductor materials A and B has a sufficiently large band gap that the passive waveguide structure blocks current under a voltage bias of 15 V.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: March 21, 2017
    Assignee: THORLABS QUANTUM ELECTRONICS, INC.
    Inventors: Catherine Genevieve Caneau, Feng Xie, Chung-En Zah