Monolithic Integrated Patents (Class 372/50.1)
  • Patent number: 11362487
    Abstract: A laser emitter is provided, including a substrate and a dielectric mask layer located proximate to and above the substrate in a thickness direction. The dielectric mask layer may have a plurality of trenches formed therein. The plurality of trenches may have a plurality of different respective widths. The laser emitter may further include a respective nanowire located within each trench of the plurality of trenches. Each nanowire may include a first semiconductor layer located above the substrate in the thickness direction. Each nanowire may further include a quantum well layer located proximate to and above the first semiconductor layer in the thickness direction. Each nanowire may further include a second semiconductor layer located proximate to and above the quantum well layer in the thickness direction.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 14, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Sergei V. Gronin, Geoffrey Charles Gardner, Raymond Leonard Kallaher
  • Patent number: 11342724
    Abstract: A semiconductor optical integrated device comprises a semiconductor amplifier and a plurality of semiconductor lasers, wherein the semiconductor amplifier and the semiconductor lasers are monolithically integrated on a semiconductor substrate, an n-side cladding layer of the semiconductor amplifier and an n-side cladding layer of each of the semiconductor lasers are electrically insulated by an insulating layer formed between the semiconductor substrate and the n-side cladding layer of the semiconductor lasers and an insulating layer formed between the n-side cladding layer of the semiconductor amplifier and the n-side cladding layer of the semiconductor lasers, the n-side cladding layer of the semiconductor lasers and the p-side cladding layer of the semiconductor amplifier is configured to be electrically connected, and the semiconductor amplifier and each semiconductor laser of the plurality of semiconductor lasers are electrically connected in series.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: May 24, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventors: Keisuke Matsumoto, Eitaro Ishimura, Satoshi Kajiya, Satoshi Nishikawa
  • Patent number: 11307087
    Abstract: The present disclosure is directed to optoelectronic modules with substantially temperature-independent performance characteristics and host devices into which such optoelectronic modules can be integrated. In some instances, an optoelectronic module can collect proximity data using light-generating components and light-sensitive components that exhibit temperature-dependent performance characteristics. The light-generating components and light-sensitive components can be configured such that they exhibit complementing temperature-dependent performance characteristics such that the operating performance of the optoelectronic module is substantially temperature independent.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: April 19, 2022
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventor: Jens Geiger
  • Patent number: 11307433
    Abstract: The present invention describes a system for changing the properties of the lenses to create changes in focus, magnification, and optical stabilization without changing the shape of the lens or moving the lenses. It uses an acoustic wave that when propagated through the lenses, creates a standing wave that changes the diffractive capabilities of the lens. It involves the properties of many materials to change the diffractive properties when subjected to acoustic waves. The acoustic waves are generally accomplished with a piezo electric transducer or modulator. The frequencies used are in the RF range, depending on the substrate. Substrates used include glass and silicon, as well as more esoteric transparent materials. The system described in the present invention involves the development of a lensing mechanism that comprises one or more acoustio-optic modulator(s), a transparent or semi-transparent substrate where the modulation is applied, and a non-parallel standing wave being propagated in the substrate.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: April 19, 2022
    Assignee: Robotic Research OpCo, LLC
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Patent number: 11309680
    Abstract: A light source device includes: a base comprising a bottom portion and a peripheral wall portion; a semiconductor laser located on the bottom portion; a cap connected to an upper surface of the peripheral wall portion, wherein the cap and the base define a sealed space; a translucent portion located in the peripheral wall portion or the cap, the translucent portion being configured to transmit a beam emitted from the semiconductor laser; and first and second lead terminals located in the sealed space and crossing from a first inner surface of the peripheral wall portion to a second inner surface of the peripheral wall portion. The semiconductor laser is located between the two lead terminals. The translucent portion is located on an optical axis of the beam emitted from the semiconductor laser.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 19, 2022
    Assignee: NICHIA CORPORATION
    Inventor: Hidenori Matsuo
  • Patent number: 11309453
    Abstract: An optoelectronic device includes a semiconductor substrate and a monolithic array of light-emitting elements formed on the substrate. The light-emitting elements include a first plurality of first emitters, configured to emit respective first beams of light with a first angular divergence, at respective first positions in the array, and a second plurality of second emitters, configured to emit respective second beams of light with a second angular divergence that is at least 50% greater than the first angular divergence, at respective second positions in the array.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: April 19, 2022
    Assignee: APPLE INC.
    Inventors: Arnaud Laflaquière, Marc Drader
  • Patent number: 11309681
    Abstract: A mount member includes first and second conduction parts. In the first conduction part, as seen in a top view, a length in a first direction parallel to an emission end surface of a first semiconductor laser element is smaller than a length in a second direction perpendicular to the emission end surface, and, in relation to the second direction, a first wiring region extends from a first mounting region in a direction from the light emission end surface to an opposite end surface. In relation to the second direction, a second conduction part extends further than the first conduction part in a direction from an emission end surface to an opposite end surface of a second semiconductor laser element, and from a region where the second conduction part extends further than the first conduction part, the second conduction part extends toward the first conduction part in the first direction.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: April 19, 2022
    Assignee: NICHIA CORPORATION
    Inventors: Masatoshi Nakagaki, Soichiro Miura
  • Patent number: 11302352
    Abstract: The present disclosure relates to pretreating a magnetic recording head for magnetic media drive. For a heat assisted magnetic recording (HAMR) head, a light source provides the necessary heat for the drive to operation. A vertical cavity surface emitting laser (VCSEL) is mounted to a top surface of a slider. A plurality of laser beams are emitted from the bottom surface of the VCSEL and directed to a corresponding number of waveguide structures within the HAMR head. The waveguide structures feed into a multimode interference (MMI) device that then directs the laser into a single waveguide for focusing on a near field transducer (NFT). The VCSEL lasers are phase coherent and have no mode hopping.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: April 12, 2022
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Barry Stipe, Takuya Matsumoto, Sergei Sochava
  • Patent number: 11300455
    Abstract: Provided is an optical spectrum line width calculation method, apparatus, and program capable of calculating a spectrum line width of a laser to be measured from an optical interference signal generated by an optical interferometer having a delay line, based on a phase of the optical interference signal having a delay time longer than a delay time due to the delay line. The optical spectrum line width measurement apparatus includes a Mach-Zehnder interferometer, an optical receiver that receives an optical interference signal emitted from the Mach-Zehnder interferometer, an A/D converter that converts an analog electric signal output from the optical receiver into a digital electric signal, and a processing apparatus that processes the digital electric signal. Two light beams having a delay difference ? are generated from light emitted from the laser to be measured, and an optical interference signal is generated by multiplexing the two light beams.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: April 12, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shingo Ono, Kunihiro Toge, Tetsuya Manabe
  • Patent number: 11283236
    Abstract: A tunable laser has a solid state laser medium with optical gain region and generates coherent radiation through a facet. A lens collects the coherent radiation and generates a collimated light beam. An external cavity includes a reflective surface and an optical filter, the reflective surface reflecting the collimated beam back to the lens and laser medium, the optical filter positioned between the reflective surface and the lens and having two surfaces and a thermally tunable optical transmission band within the optical gain region of the laser medium. The optical filter (1) transmits a predominant portion of the collimated beam at a desired wavelength of operation, and (2) specularly reflects a remaining portion of the collimated beam from each surface, the collimated beam being incident on the optical filter such that the reflected collimated beams propagate at a non-zero angle with respect to the incident collimated beam.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: March 22, 2022
    Assignee: RedShift BioAnalytics, Inc.
    Inventors: Eugene Yi-Shan Ma, Charles McAlister Marshall
  • Patent number: 11258227
    Abstract: Some embodiments relate to a generation device that includes: a pulsed laser source generating primary photons having at least one wavelength within pulses having time dissymmetry, a forming device(s) controlling the primary photons so as to generate a selective-polarization, focused input beam, and an optical fiber wherein the primary photons induce secondary photons having different wavelengths resulting from a raman conversion cascade and forming a wide-spectrum output beam having substantially constant energy.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: February 22, 2022
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITÉ DE LIMOGES
    Inventors: Christophe Louot, Dominique Pagnoux, Katarzyna Krupa, Badr Shalaby, Alexis Labruyère, Alessandro Tonello, Vincent Couderc
  • Patent number: 11239631
    Abstract: A method of forming a laser including device is provided that in one embodiment includes providing a laser chip including at least one ridge structure that provides an alignment features. The method further includes bonding a type IV photonics chip to the laser chip, wherein a vertical alignment feature from the type IV photonics chip is inserted in a recess relative to the at least one ridge structure that provides the alignment features of the laser structure.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: February 1, 2022
    Assignee: International Business Machines Corporation
    Inventors: Tymon Barwicz, Yves C. Martin, Jason S. Orcutt
  • Patent number: 11237135
    Abstract: An acoustic sensor for sensing environmental attributes within an enclosure is disclosed. The acoustic sensor may include a bulk acoustic wave (BAW) transducer configured to be installed outside the enclosure. The BAW transducer may generate an acoustic wave pulse and receive a reflected acoustic wave pulse. The acoustic sensor may further a waveguide assembly configured to be installed inside the enclosure. The waveguide assembly configured to receive the acoustic wave pulse from the BAW transducer. The acoustic sensor may further include a sensing device, wherein the sensing device may determine a change in one or more acoustic wave propagation parameters, based on the generated acoustic wave pulse and the reflected acoustic wave pulse. The sensing device may further determine one or more environmental attributes within the enclosure, based on the change in the one or more acoustic wave propagation parameters.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 1, 2022
    Assignee: X-Wave Innovations, Inc.
    Inventors: Dan Xiang, Uday Singh
  • Patent number: 11239634
    Abstract: The present invention provides one or more injection-lockable whistle-geometry semiconductor ring lasers, which may be cascaded, that are integrated on a common silicon-on-insulator (SOI) substrate with a single-frequency semiconductor master laser, wherein the light output from the semiconductor master laser is used to injection-lock the first of the semiconductor ring lasers. The ring lasers can be operated in strongly injection-locked mode, while at least one of them is subjected to direct injection current modulation.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 1, 2022
    Assignee: UNM Rainforest Innovations
    Inventors: Marek Osinski, Gennady A. Smolyakov
  • Patent number: 11193870
    Abstract: The present invention provides a method for estimating a condition parameter of a laser diode having an associated photodiode, to an apparatus for monitoring the operation of such a laser diode, and to a particle sensor apparatus. The photodiode (PD) is operable together with the laser diode (LD), wherein it detects the light (LS) of the laser diode (LD) and converts it into an electrical current, and is thermally coupled to the laser diode (LD). The at least one condition parameter is estimated during the operation of the laser diode (LD) and the estimation is based on current measurements and/or voltage measurements at the laser diode (LD) and/or at the photodiode (PD).
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: December 7, 2021
    Assignees: Robert Bosch GmbH, TRUMPF PHOTONIC COMPONENTS, GMBH
    Inventors: Robert Wolf, Soren Sofke, Philipp Gerlach, Susanne Weidenfeld
  • Patent number: 11164980
    Abstract: Approaches for silicon photonics integration are provided. A method includes: forming at least one encapsulating layer over and around a photodetector; thermally crystallizing the photodetector material after the forming the at least one encapsulating layer; and after the thermally crystallizing the photodetector material, forming a conformal sealing layer on the at least one encapsulating layer and over at least one device. The conformal sealing layer is configured to seal a crack in the at least one encapsulating layer. The photodetector and the at least one device are on a same substrate. The at least one device includes a complementary metal oxide semiconductor device or a passive photonics device.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: November 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, Tymon Barwicz, William M. Green, Marwan H. Khater, Jessie C. Rosenberg, Steven M. Shank
  • Patent number: 11131806
    Abstract: Integrated-optics systems are presented in which an optically active device is optically coupled with a silicon waveguide via a passive compound-semiconductor waveguide. In a first region, the passive waveguide and the optically active device collectively define a composite waveguide structure, where the optically active device functions as the central ridge portion of a rib-waveguide structure. The optically active device is configured to control the vertical position of an optical mode in the composite waveguide along its length such that the optical mode is optically coupled into the passive waveguide with low loss. The passive waveguide and the silicon waveguide collectively define a vertical coupler in a second region, where the passive and silicon waveguides are configured to control the distribution of the optical mode along the length of the coupler, thereby enabling the entire mode to transition between the passive and silicon waveguides with low loss.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: September 28, 2021
    Assignee: Quintessent Inc.
    Inventors: Brian Koch, Michael Davenport, Alan Liu
  • Patent number: 11133431
    Abstract: An LED, a manufacturing method thereof, and a display device including an LED are provided. Specifically, the disclosure relates to a flip-chip LED with high efficiency including a current confinement structure and a manufacturing method thereof, and a display device including such an LED. In particular, a flip-chip LED according to the disclosure includes a resistive area that surrounds a light-emitting layer and restricts current flow from the light emitting layer to the sidewalls.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 28, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jitsuo Ota, Jihoon Kang, Sungtae Kim, Shunsuke Kimura, Yongdok Cha
  • Patent number: 11128102
    Abstract: A semiconductor optical device is provided with a semiconductor substrate that has a length and width, a laser section that is provided on the semiconductor substrate and includes an active layer and an optical waveguide section that is provided adjacent to the laser section on the semiconductor substrate and is joined to the laser section. The optical waveguide section includes a core layer that is connected to an end portion of the active layer, and a pair of cladding layers between which the core layer is sandwiched and emits, from an emission end surface, light incident from the joining interface between the optical waveguide section and the laser section. The semiconductor optical device may be also provided with a reflection suppression layer that is provided on the upper surface of the optical waveguide section.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: September 21, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Ayumi Fuchida, Go Sakaino, Tetsuya Uetsuji, Naoki Nakamura
  • Patent number: 11095096
    Abstract: Methods and structures for forming vertical-cavity light-emitting devices are described. An n-side or bottom-side layer may be laterally etched to form a porous semiconductor region and converted to a porous oxide. The porous oxide can provide a current-blocking and guiding layer that aids in directing bias current through an active area of the light-emitting device. Distributed Bragg reflectors may be fabricated on both sides of the active region to form a vertical-cavity surface-emitting laser. The light-emitting devices may be formed from III-nitride materials.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: August 17, 2021
    Assignee: Yale University
    Inventors: Jung Han, Chia-Feng Lin, Danti Chen
  • Patent number: 11095097
    Abstract: An integrated semiconductor optical amplifier-laser diode (SOA-LD) device includes a laser diode (LD) section fabricated on a substrate, a semiconductor optical amplifier (SOA) section fabricated on the substrate adjacent to the LD section; and a trench formed at least partially between the LD section and SOA section to electrically isolate the LD section and the SOA section while maintaining optical coupling between the LD section and the SOA section.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: August 17, 2021
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Boon Siew Ooi, Chao Shen, Tien Khee Ng
  • Patent number: 11088509
    Abstract: A semiconductor vertical light source includes upper and lower mirrors with an active region in between, an inner mode confinement region, and an outer current blocking region that includes a common epitaxial layer including an epitaxially regrown interface between the active region and upper mirror. A conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors between the first doped region and lower mirror. The outer current blocking region provides a PNPN current blocking region that includes the upper mirror or a p-type layer, first doped region, second doped region, and lower mirror or an n-type layer. The first and second impurity doped region force current flow into the conducting channel during normal operation of the light source.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: August 10, 2021
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Dennis G. Deppe
  • Patent number: 11079532
    Abstract: Embodiments of the present disclosure may relate to a digitized grating that may include a first unit cell that has a first period and a first length, where the first period includes a first grating element width and a first space between adjacent grating elements, and where the first length includes a number of first periods. The digitized grating may further include a second unit cell that has a second period and a second length, where the second period is different than the first period and includes a second grating element width and a second space between adjacent grating elements, and where the second length includes a number of second periods.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: August 3, 2021
    Assignee: Intel Corporation
    Inventors: Richard Jones, Ming Guo, Mahtab Hakami
  • Patent number: 11070033
    Abstract: Conventional integrated optical amplifiers, which combine different types of platforms, e.g. silicon photonic integrated circuit for the device layer, and a Group III-V material for the gain medium, typically include a curved waveguide extending through the gain medium coupled to waveguides in the main device layer. Unfortunately, the radius of curvature of the curved waveguide becomes a limiting factor for both size and amplification. Accordingly, an optical amplifier which eliminates the need for the curved waveguide by including a coupler for splitting an input optical signal into two sub-beams, for passage through the gain medium, and a reflector, such as a U-turn, for reflecting or redirecting the two sub-beams back through the gain medium to the coupler for recombination, would be a welcome improvement. A phase tuner may also be provided to ensure coherence cancellation between the two sub-beams to maximize output and minimize back reflection without requiring an isolator.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: July 20, 2021
    Assignee: Nokia Solutions & Networks Oy
    Inventors: Thomas Wetteland Baehr-Jones, Saeed Fathololoumi, Yangjin Ma
  • Patent number: 10998696
    Abstract: A vertical cavity surface emitting laser includes a first laminate including first semiconductor layers having a first Al composition, and second semiconductor layers having a second Al composition greater than the first Al composition; a current confinement structure including a current aperture and a current blocker; a first compound semiconductor layer adjacent to the current confinement structure; and a second compound semiconductor layer adjacent to the first laminate and the first compound semiconductor layer. The first compound semiconductor layer has a first aluminum profile changing monotonously in a direction from the first laminate to the current confinement structure from a first minimum Al composition within a range greater than the first Al composition and smaller than the second Al composition to a first maximum Al composition. The second compound semiconductor layer has an Al composition greater than the first Al composition and smaller than the first maximum Al composition.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: May 4, 2021
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Natsumi Kaneko, Yutaka Onishi, Takeshi Aoki
  • Patent number: 10989983
    Abstract: An amplification waveguide device and an amplification beam steering apparatus are provided. The amplification beam steering apparatus includes a beam steerer configured to control emission directions of light beams output therefrom, a plurality of waveguides configured to guide the light beams output from the beam steerer, and a light amplifier configured to amplify the light beams traveling through the plurality of waveguides.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: April 27, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eunkyung Lee, Byounglyong Choi, Jungwoo Kim
  • Patent number: 10928659
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; an epitaxial crystalline cladding layer, on top of the substrate; and an optically active region, above the epitaxial crystalline cladding layer; wherein the epitaxial crystalline cladding layer has a refractive index which is less than a refractive index of the optically active region, such that the optical power of the optoelectronic device is confined to the optically active region.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: February 23, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Andrew Rickman, Aaron Zilkie, Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Jones
  • Patent number: 10923879
    Abstract: It is provided a method for fabricating an electroabsorption modulated laser comprising generating a single mode laser section and an electroabsorption modulator section, comprising fabricating at least one n-doped layer of the laser section and at least one n-doped layer of the modulator section; generating an isolating section for electrically isolating at least the n-doped layer of the laser section and the n-doped layer of the modulator section from one another. Generating the isolating section comprises epitaxially growing at least one isolating layer and structuring the isolating layer before the generation of the n-doped layer of the laser section and the n-doped layer of the modulator section.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: February 16, 2021
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Martin Moehrle, Victor Dolores Calzadilla, Marlene Zander, Francisco Soares
  • Patent number: 10916907
    Abstract: A uni-block optical pulse compressor which acts to manipulate an input beam with a train of pulses in such a way that the pulses returned after a round-trip though the uni-block compressor are temporally compressed as described. The device is comprised of two optically transparent dielectric blocks whose indices of refraction are larger than the ambient, and provides a compact, portable and robust means for temporally compressing long duration pulses.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: February 9, 2021
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Chang Yang, Elias Towe
  • Patent number: 10886704
    Abstract: In one embodiment of the invention, the semiconductor laser (1) comprises a semiconductor layer sequence (2). The semiconductor layer sequence (2) contains an n-type region (23), a p-type region (21) and an active zone (22) lying between the two. A laser beam is produced in a resonator path (3). The resonator path (3) is aligned parallel to the active zone (22). In addition, the semiconductor laser (1) contains an electrical p-contact (41) and an electrical n-contact (43) each of which is located on the associated region (21, 23) of the semiconductor layer sequence (2) and is configured to input current directly into the associated region (21, 23). The n-contact (43) extends from the p-type region (21) through the active zone (22) and into the n-type region (23) and is located, when viewed from above, next to the resonator path (3).
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: January 5, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Frank Singer, Norwin Von Malm, Tilman Ruegheimer, Thomas Kippes
  • Patent number: 10886701
    Abstract: A semiconductor vertical light source includes upper and lower mirrors with an active region in between, an inner mode confinement region, and an outer current blocking region that includes a common epitaxial layer including an epitaxially regrown interface between the active region and upper mirror. A conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors between the first doped region and lower mirror. The outer current blocking region provides a PNPN current blocking region that includes the upper mirror or a p-type layer, first doped region, second doped region, and lower mirror or an n-type layer. The first and second impurity doped region force current flow into the conducting channel during normal operation of the light source.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: January 5, 2021
    Assignee: sdPhotonics LLC
    Inventor: Dennis G. Deppe
  • Patent number: 10840673
    Abstract: An electrically pumped surface-emitting photonic crystal laser has a second surface of a first metal electrode arranged on a photonic crystal structure, a first electrical currents confining structure and a filled layer, and a substrate having a top surface arranged on a first surface of the first metal electrode for the photonic crystal structure to be inversely disposed. The photonic crystal laser has its epitaxy structure etched from above to fabricate the photonic crystal to allow laser beams to be reflected by the first metal electrode due to the inverse disposition and to be emitted from a rear surface of the epitaxy structure.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: November 17, 2020
    Assignee: Conary Enterprise Co., Ltd.
    Inventors: Kuo-Jui Lin, Yu-Chen Chen
  • Patent number: 10825952
    Abstract: An optoelectronic device includes a semiconductor substrate and a monolithic array of light-emitting elements formed on the substrate. The light-emitting elements include a first plurality of first emitters, configured to emit respective first beams of light with a first angular divergence, at respective first positions in the array, and a second plurality of second emitters, configured to emit respective second beams of light with a second angular divergence that is at least 50% greater than the first angular divergence, at respective second positions in the array.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: November 3, 2020
    Assignee: APPLE INC.
    Inventors: Arnaud Laflaquiere, Marc Drader
  • Patent number: 10816830
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; an epitaxial crystalline cladding layer, on top of the substrate; and an optically active region, above the epitaxial crystalline cladding layer; wherein the epitaxial crystalline cladding layer has a refractive index which is less than a refractive index of the optically active region, such that the optical power of the optoelectronic device is confined to the optically active region.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: October 27, 2020
    Assignee: ROCKLEY PHOTONICS LIMITED
    Inventors: Andrew Rickman, Aaron Zilkie, Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Jones
  • Patent number: 10739518
    Abstract: Wavelength division multiplexing devices, and methods of forming the same, include a coupling lens and a waveguide, the lens being positioned over a mirror formed in a transmission path of the waveguide. The mirror reflects incoming light signals out of the transmission path through the lens and further reflects light signals coming from the lens and into the transmission path. An optical chip is positioned near a focal length of the lens. The optical chip has an optical filter configured to transmit a light signal at a first wavelength and to reflect received light signals at wavelengths other than the first wavelength.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventor: Jean Benoit Héroux
  • Patent number: 10727368
    Abstract: Optoelectronic device modules having a silicon photonics transmitter die connected to a silicon interposer are described. In an example, the optoelectronic device module includes a silicon photonics transmitter die connected to a silicon interposer, and the silicon interposer is disposed between the silicon photonics transmitter die and a substrate. The silicon interposer provides an electrical interconnect between the silicon photonics transmitter die and the substrate, and reduces a likelihood that a hybrid silicon laser on the silicon photonics transmitter die will be damaged during module operation.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: July 28, 2020
    Assignee: Intel Corporation
    Inventors: Myung Jin Yim, Seungjae Lee, Sandeep Razdan
  • Patent number: 10622513
    Abstract: A semiconductor light emitting device includes a first light emitting portion including a first semiconductor stack, as well as a first lower dispersion Bragg reflector (DBR) layer and a first upper dispersion Bragg reflector (DBR) layer, disposed above and below the first semiconductor stack, a second light emitting portion including a second semiconductor stack, as well as a second lower dispersion Bragg reflector (DBR) layer and a second upper dispersion Bragg reflector (DBR) layer, disposed above and below the second semiconductor stack, a third light emitting portion including a third semiconductor stack, as well as a third lower dispersion Bragg reflector (DBR) layer and a third upper dispersion Bragg reflector (DBR) layer, disposed above and below the third semiconductor stack, a first bonding layer disposed between the first light emitting portion and the second light emitting portion, and a second bonding layer disposed between the second light emitting portion and the third light emitting portion.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 14, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong Gun Lee, Yong Il Kim, Jin Sub Lee
  • Patent number: 10613409
    Abstract: An amplification waveguide device and an amplification beam steering apparatus are provided. The amplification beam steering apparatus includes a beam steerer configured to control emission directions of light beams output therefrom, a plurality of waveguides configured to guide the light beams output from the beam steerer, and a light amplifier configured to amplify the light beams traveling through the plurality of waveguides.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: April 7, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eunkyung Lee, Byounglyong Choi, Jungwoo Kim
  • Patent number: 10553571
    Abstract: Backplane-side bonding structures including a common metal are formed on a backplane. Multiple source coupons are provided such that each source coupon includes a transfer substrate and an array of devices to be transferred. Each array of devices are arranged such that each array includes a unit cell structure including multiple devices of the same type and different types of bonding structures including different metals that provide different eutectic temperatures with the common metal. Different types of devices can be sequentially transferred to the backplane by sequentially applying the supply coupons and selecting devices providing progressively higher eutectic temperatures between respective bonding pads and the backplane-side bonding structures. Previously transferred devices stay on the backplane during subsequent transfer processes, enabling formation of arrays of different devices on the backplane.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: February 4, 2020
    Assignee: GLO AB
    Inventors: Anusha Pokhriyal, Sharon N. Farrens
  • Patent number: 10554010
    Abstract: A method of producing a semiconductor laser device includes the steps of preparing first and second substrate products each of which includes a substrate and a stacked semiconductor layer formed on the substrate, the first and second substrate products being different from each other; etching the first substrate product with a chlorine-based gas in a vacuum chamber by using a dry etching method; evacuating the vacuum chamber while monitoring the pressure of hydrogen chloride in the vacuum chamber so as to obtain a partial pressure of the hydrogen chloride within a predetermined range; after evacuating the vacuum chamber, introducing the second substrate product into the vacuum chamber while maintaining a vacuum state inside the vacuum chamber; and etching the second substrate product with a chlorine-based gas in the vacuum chamber by using the dry etching method.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: February 4, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro Tsuji
  • Patent number: 10554019
    Abstract: In one embodiment of the invention, the semiconductor laser (1) comprises a semiconductor layer sequence (2). The semiconductor layer sequence (2) contains an n-type region (23), a p-type region (21) and an active zone (22) lying between the two. A laser beam is produced in a resonator path (3). The resonator path (3) is aligned parallel to the active zone (22). In addition, the semiconductor laser (1) contains an electrical p-contact (41) and an electrical n-contact (43) each of which is located on the associated region (21, 23) of the semiconductor layer sequence (2) and is configured to input current directly into the associated region (21, 23). The n-contact (43) extends from the p-type region (21) through the active zone (22) and into the n-type region (23) and is located, when viewed from above, next to the resonator path (3).
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: February 4, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Frank Singer, Norwin Von Malm, Tilman Ruegheimer, Thomas Kippes
  • Patent number: 10555079
    Abstract: A system includes a laser microphone or laser-based microphone or optical microphone. The laser microphone includes a laser transmitter to transmit an outgoing laser beam towards a human speaker. The laser transmitter acts also as a self-mix interferometry unit that receives the optical feedback signal reflected from the human speaker, and generates an optical self-mix signal by self-mixing interferometry of the laser beam and the received optical feedback signal. Instead of utilizing a single laser beam, multiple laser beams are used, by operating an array of laser transmitters, or by utilizing a laser beam splitter or a crystal to split laser beams or to diffract or scatter laser beams. Optionally, one or more laser beams may temporally scan a target area.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: February 4, 2020
    Assignee: VOCALZOOM SYSTEMS LTD.
    Inventor: Tal Bakish
  • Patent number: 10530127
    Abstract: A semiconductor vertical light source includes upper and lower mirrors with an active region in between, an inner mode confinement region, and an outer current blocking region that includes a common epitaxial layer including an epitaxially regrown interface between the active region and upper mirror. A conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors between the first doped region and lower mirror. The outer current blocking region provides a PNPN current blocking region that includes the upper mirror or a p-type layer, first doped region, second doped region, and lower mirror or an n-type layer. The first and second impurity doped region force current flow into the conducting channel during normal operation of the light source.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: January 7, 2020
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Dennis G. Deppe
  • Patent number: 10514497
    Abstract: A photonics packaging method is provided. The photonics packaging method includes providing a substrate (10) and attaching a first optical device (12) to the substrate (10). The first optical device (12) includes a first mode converter (14) optically coupled to a first integrated photonics chip (16). A second optical device (32) is also attached to the substrate (10). The second optical device (32) includes a second mode converter (34) optically coupled to a second integrated photonics chip (36). The second optical device (32) is of a greater height than the first optical device (12). An index-matching material (56) is disposed in a space between the first and second optical devices (12) and (32) and a force is applied on the second optical device (32) to cause the second optical mode converter (34) to align with the first optical mode converter (14). The index-matching material (56) is subsequently cured.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: December 24, 2019
    Assignee: Rain Tree Photonics PTE. LTD.
    Inventors: Ying Huang, Tsung-Yang Liow
  • Patent number: 10509319
    Abstract: The present invention relates to a photosensitive composition comprising at least one nanosized fluorescent material and polysiloxane, to a color conversion film, and to a use of the color conversion film in an optical device. The invention further relates to an optical device comprising the color conversion film and a method for preparing the color conversion film and the optical device.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: December 17, 2019
    Assignees: Merck Patent GmbH, AZ Electronic Materials (Luxembourg) S.a.r.l.
    Inventors: Masayoshi Suzuki, Tadashi Kishimoto, Yuki Hirayama, Stephan Dertinger, Toshiaki Nonaka, Daishi Yokoyama
  • Patent number: 10481328
    Abstract: An optical phased array comprises a substrate layer having a substantially planar surface, a plurality of emitters on the surface of the substrate, and at least one cladding layer over the emitters. A plurality of optics components coupled to the cladding layer is located a predetermined distance away from the emitters, with the optics components in optical communication with the emitters. The optics components comprise a first set of optics configured for angular correction of light beams emitted from the emitters, and a second set of optics separated from the first set of optics, the second set of optics configured for divergence enhancement of the light beams transmitted from the first set of optics. Alternatively, the optics components comprise a combined set of optics configured for angular correction of light beams emitted from the emitters, and for divergence enhancement of the light beams transmitted from the combined set of optics.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: November 19, 2019
    Assignee: Honeywell International Inc.
    Inventors: Neil A. Krueger, Matthew Wade Puckett
  • Patent number: 10475669
    Abstract: A method for fabricating a Mach-Zehnder modulator includes: forming a resin body embedding a semiconductor mesa for an arm waveguide, the resin body having an opening on an upper face of the semiconductor mesa; forming an electrode on the semiconductor mesa and the resin body, the electrode being in contact with the upper face of the semiconductor mesa through the opening of the resin body; forming an inorganic insulating protective layer on the electrode and the resin body, the inorganic insulating protective layer having an arrangement of multiple first openings therethrough to the electrode; and forming a metal body on the inorganic insulating protective layer and the electrode, the metal body being in contact with the electrode through the multiple first openings of the inorganic insulating protective layer.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: November 12, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Takamitsu Kitamura
  • Patent number: 10461505
    Abstract: Laser diodes formed on a common substrate with layers of suitable thickness and refractive indices produce output beams that are coherently coupled. A phase mask can be situated to produce phase differences in one or more of the output beams to produce a common wavefront phase. The phase-corrected beams propagate with reduced angular divergence than conventional lasers that are not coherently coupled, and the coherently coupled laser diodes can provide higher beam brightness, enhanced beam parameter product, and superior power coupled into doped fibers in fiber lasers.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: October 29, 2019
    Assignee: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar
  • Patent number: 10374121
    Abstract: An optoelectronic semiconductor component and a method for producing an optoelectronic semiconductor component are disclosed. In an embodiment, a component includes a semiconductor layer sequence including a first main side, a first layer, an active layer, a second layer and a second main side, a first contact element arranged on the second main side filling a recess in the semiconductor layer sequence, wherein the recess extends from the second main side through the second layer and the active layer and opens out into the first layer and a second contact element arranged on the second main side, the second contact element being arranged laterally next to the recess in a plan view of the second main side, wherein the first contact element comprises a first transparent intermediate layer, a metallic first mirror layer and a metallic injection element.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: August 6, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Dominik Scholz, Alexander F. Pfeuffer
  • Patent number: 10359567
    Abstract: A qualification apparatus for a photonic chip on a wafer that leaves undisturbed an edge coupler that provides an operating port for the photonic devices or circuits on the chip during normal operation in order to not introduce extra loss in the optical path of the final circuit. The qualification apparatus provides an optical path that is angled with regard to the surface of the chip, for example by using a grating coupler. The qualification apparatus can be removed after the chip is qualified. Optionally, the qualification apparatus can be left in communication with the chip and optionally employed as an input port for the chip after the chip has been separated from other chips on a common substrate.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: July 23, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ari Novack, Matthew Akio Streshinsky, Michael J. Hochberg