Multiple Wavelength Emissive Patents (Class 372/50.121)
  • Patent number: 8442087
    Abstract: Provided is a mounting member having a light receiving element, capable of constraining increase in size and of arranging a plurality of laser element portions closer to each other. The mounting member includes three or more electrodes, which respectively include element mounting portions arranged in a first direction, and a light receiving element disposed in a second direction intersecting with the first direction relative to the element mounting portions. The length in the second direction of at least one of the element mounting portions disposed at both ends in the first direction among the three or more element mounting portions is smaller than the length in the second direction of an element mounting portion disposed at an inner position in the first direction among the three or more element mounting portions.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 14, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Takumi Tanikawa
  • Patent number: 8428091
    Abstract: Provided is a tunable laser module emitting an optical signal having high speed, high power and wideband wavelength tuning. The tunable laser module includes a laser array configured to emit an optical signal having a plurality of different lasing wavelengths, a temperature controller configured to change a temperature of the laser array, and an optical integration device configured to modulate or amplify the optical signal at a side of the laser array opposing the temperature controller.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 23, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mi-Ran Park, O-Kyun Kwon, Byung-seok Choi, Dae Kon Oh
  • Publication number: 20130089116
    Abstract: A multi-wavelength semiconductor laser device includes a block having a rectangular groove with a bottom face and two side faces extending in a predetermined direction; and laser diodes with different light emission wavelengths mounted on the bottom face and he side faces of the groove in the block so that their laser beams are emitted in the predetermined direction,
    Type: Application
    Filed: December 5, 2012
    Publication date: April 11, 2013
    Applicant: MITSUBISHI ELECLTRIC CORPORATION
    Inventor: MITSUBISHI ELECLTRIC CORPORATION
  • Patent number: 8391328
    Abstract: A diode-laser bar stack includes a plurality of diode-laser bars having different temperature dependent peak-emission wavelengths. The stack is arranged such that the bars can be separately powered. This allows one or more of the bars to be “on” while others are “off”. A switching arrangement is described for selectively turning bars on or off, responsive to a signal representative of the temperature of the diode-laser bar stack, for providing a desired total emission spectrum.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: March 5, 2013
    Assignee: Coherent, Inc.
    Inventors: David Schleuning, Mark M. Gitin, R. Russel Austin
  • Patent number: 8385380
    Abstract: Light emitting systems are disclosed. The light emitting system includes an electroluminescent device that emits light at a first wavelength. The light emitting system further includes an optical cavity that enhances emission of light from a top surface of the light emitting system and suppresses emission of light from one or more sides of the light emitting system. The optical cavity includes a semiconductor multilayer stack that receives the emitted first wavelength light and converts at least a portion of the received light to light of a second wavelength. The semiconductor multilayer stack includes a II-VI potential well. The integrated emission intensity of all light at the second wavelength that exit the light emitting system is at least 10 times the integrated emission intensity of all light at the first wavelength that exit the light emitting system.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: February 26, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Catherine A. Leatherdale, Michael A. Haase
  • Patent number: 8325773
    Abstract: One embodiment of the present invention provides a system that facilitates adjusting the wavelengths of lasers via temperature control. This system includes a chip with an active face upon which active circuitry and signal pads reside. A thermal-control mechanism provides localized thermal control of two lasers mounted upon the active face of the chip. By individually controlling the temperature of the lasers, the thermal-control mechanism controls the wavelengths emitted by each respective laser. By creating a temperature gradient that causes a temperature difference between two or more lasers, the system can cause the lasers to emit different wavelengths.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: December 4, 2012
    Assignee: Oracle America, Inc.
    Inventors: Ashok V. Krishnamoorthy, John E. Cunningham, Bruce M. Guenin, Howard L. Davidson
  • Patent number: 8315280
    Abstract: A multiwavelength laser system for opthalmological applications. The system including a first semiconductor diode laser including a first working beam of a first wavelength; and at least one second semiconductor diode laser having a second working beam of a second wavelength. The second wavelength being different from the first wavelength.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: November 20, 2012
    Assignee: Carl Zeiss Meditec AG
    Inventors: Diego Zimare, Manfred Dick, Martin Wiechmann, Alexander Kalies, Regina Schuett
  • Patent number: 8290015
    Abstract: A two-beam semiconductor laser device 10 includes: a two-beam semiconductor element LDC having a first and a second semiconductor laser elements LD1 and LD2 that can be driven independently and that are formed integrally on a substrate; and a submount 63 having, mounted on a front part thereof, the two-beam semiconductor laser element LDC with the light-emitting face thereof directed forward and having a first and a second electrode pads 64 and 65 connected to electrodes 61 and 62 of the first and second semiconductor laser element LD1 and LD2 by being kept in contact therewith. The first and second electrode pads 64 and 65 are formed to extend farther behind the two-beam semiconductor laser element LDC, and wires 14 and 16 are wire-bonded behind the two-beam semiconductor laser element LDC.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: October 16, 2012
    Assignees: Sanyo Electric Co., Ltd., Tottori Sanyo Electric Co. Ltd.
    Inventors: Yasuhiro Watanabe, Kouji Ueyama, Shinichirou Akiyoshi
  • Publication number: 20120250718
    Abstract: A multi-wavelength semiconductor laser device includes: first and second device sections monolithically formed on a substrate; and a rear end face film formed together on a rear end face of each of the first and second device sections. The first device section is a light-emitting device section having an oscillation wavelength of ?1. The second device section is a light-emitting device section having an oscillation wavelength of ?2 (?1<?2). The rear end face film includes a layer in which N sets (N?2) of layers each having the combination of a low refractive index layer having a refractive index of n1 and a high refractive index layer having a refractive index of n3 (n1<n3) as one set are laminated, and an intermediate refractive index layer having a refractive index of n2 (n1<n2<n3) in order from the rear end face side, and is constituted by a film different from an Si film.
    Type: Application
    Filed: March 15, 2012
    Publication date: October 4, 2012
    Applicant: SONY CORPORATION
    Inventors: Yoshihiko Takahashi, Fumitake Oikawa
  • Patent number: 8275013
    Abstract: A semiconductor laser device includes a first semiconductor laser element formed on a surface of a first conductive type substrate, obtained by stacking a first conductive type first semiconductor layer, a first active layer and a second conductive type second semiconductor layer successively from the first conductive type substrate and a second semiconductor laser element obtained by successively stacking a first conductive type third semiconductor layer, a second active layer and a second conductive type fourth semiconductor layer, wherein the third semiconductor layer is electrically connected to the first semiconductor layer by bonding a side of the third semiconductor layer to the surface of the first conductive type substrate through a fusible layer.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: September 25, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yasuyuki Bessho, Masayuki Hata, Hiroki Ohbo
  • Patent number: 8270068
    Abstract: Methods, apparatus and systems for an up-converter resonant cavity light emitting diode device includes a semiconductor light source, an up-converter to form the light emitter with up-converting materials and an electrical source coupled with the semiconductor light source for providing electrical energy to the semiconductor light source to provide a desired wavelength emitted light. The semiconductor light source is a resonant cavity light emitting diode or laser that emits an approximately 975 mm wavelength to provide electrical and optical confinement to the semiconductor light source to form a resonant cavity up-converting light emitting diode (UC/RCLED). Rows and columns of electrodes provide active matrix addressing of plural sets of UC/RCLEDs for display devices.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: September 18, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Michael Bass, Dennis G. Deppe
  • Patent number: 8243769
    Abstract: A semiconductor light emitting device downsized by devising arrangement of connection pads is provided. A second light emitting device is layered on a first light emitting device. The second light emitting device has a stripe-shaped semiconductor layer formed on a second substrate on the side facing to a first substrate, a stripe-shaped p-side electrode supplying a current to the semiconductor layer, stripe-shaped opposed electrodes that are respectively arranged oppositely to respective p-side electrodes of the first light emitting device and electrically connected to the p-side electrodes of the first light emitting device, connection pads respectively and electrically connected to the respective opposed electrodes, and a connection pad electrically connected to the p-side electrode. The connection pads are arranged in parallel with the opposed electrodes.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 14, 2012
    Assignee: Sony Corporation
    Inventors: Yuji Furushima, Abe Hiroaki, Kudou Hisashi, Fujimoto Tsuyoshi, Kentaro Aoshima
  • Patent number: 8243770
    Abstract: Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: August 14, 2012
    Assignee: Ostendo Technologies, Inc.
    Inventors: Hussein S. El-Ghoroury, Robert G. W. Brown, Dale A. McNeill, Huibert DenBoer, Andrew J. Lanzone
  • Patent number: 8236588
    Abstract: An object is to provide a multi-wavelength integrated semiconductor laser device which can reduce variations in emission point distance, can be formed by simplified manufacturing processes, and can provide improve electric characteristics. A first semiconductor laser element 100 having an active layer AL1 for emitting a laser beam of a first wavelength from its light-emitting point X1 and a second semiconductor laser element 200 having an active layer AL2 for emitting a laser beam of a second wavelength from its light-emitting point X2 are bonded to each other via an adhesive layer MC made of metal. At least either one of the semiconductor laser elements has a ridge waveguide made of an n-type semiconductor. The semiconductor laser elements 100 and 200 are bonded via the metal adhesive layer MC at the sides of their respective p-type semiconductors. A submount SUB is bonded to the first semiconductor laser element 100 via metal at a side where its ridge waveguide is formed.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: August 7, 2012
    Assignee: Pioneer Corporation
    Inventors: Mamoru Miyachi, Yoshinori Kimura
  • Patent number: 8197066
    Abstract: A laser projector includes a green laser, a two-wavelength laser, a PBS, a collimator lens, a two-axis galvanometer mirror, a group of lenses, and a screen. The green laser emits a green laser beam. The two-wavelength laser emits red and blue laser beams. The PBS is provided at the position where respective optical paths of laser beams emitted from respective lasers cross each other to cause these optical paths to coincide with each other.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: June 12, 2012
    Assignee: Funai Electric Co., Ltd.
    Inventors: Kenji Nagashima, Atsuhiko Chikaoka, Seiji Takemoto, Hiroki Matsubara, Yutaka Takahashi, Ken Nishioka
  • Patent number: 8189643
    Abstract: A vertical cavity surface emitting laser (VCSEL) is described using a sub-wavelength grating (SWG) structure that has a very broad reflection spectrum and very high reflectivity. The grating comprises segments of high and low refractive index materials with an index differential between the high and low index materials. By way of example, a SWG reflective structure is disposed over a low index cavity region and above another reflective layer (either SWG or DBR). In one embodiment, the SWG structure is movable, such as according to MEMS techniques, in relation to the opposing reflector to provide wavelength selective tuning. The SWG-VCSEL design is scalable to form the optical cavities for a range of SWG-VCSELs at different wavelengths, and wavelength ranges.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: May 29, 2012
    Assignee: The Regents of the University of California
    Inventors: Connie J. Chang-Hasnain, Michael Chung-Yi Huang, Ye Zhou, Carlos Fernando Rondina Mateus
  • Patent number: 8189640
    Abstract: Provided is a laser light emitting device that has light sources of multiple wavelengths including an oscillation wavelength in a green region and the like, and that can be miniaturized. A metal wiring 4 is formed on a supporting substrate 5. A green LD 1 and a red LD 2 are bonded to the metal wiring 4. Each of the green LD 1 and the red LD 2 is a laser diode element formed of a semiconductor having a layered structure. One of a positive electrode and a negative electrode of the element is bonded to the metal wiring 4, and the other electrode is connected to a lead wire 6 or a lead wire 7. The green LD 1 is formed of a GaN-based semiconductor laser diode having a nonpolar plane or a semipolar plane as a main surface for crystal growth. The red LD 2 is formed of an AlInGaP-based semiconductor laser diode.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: May 29, 2012
    Assignee: Rohm Co., Ltd.
    Inventors: Taketoshi Tanaka, Kuniyoshi Okamoto, Hiroaki Ohta
  • Patent number: 8189641
    Abstract: The semiconductor device includes: a base; a first mount placed on the bottom of the base; a second mount placed on the top of the base; a first light-emitting element placed on the bottom of the first mount; and a second light-emitting element placed on the top of the second mount for emitting light. The first light-emitting element and the second light-emitting element are placed so that the emission direction of light from the second light-emitting element is at an angle of depression with respect to the emission direction of light from the first light-emitting element and that the emission direction of light from the first light-emitting element and the emission direction of light from the second light-emitting element substantially coincide with each other as viewed from above the base.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: May 29, 2012
    Assignee: Panasonic Corporation
    Inventors: Toshiyuki Fukuda, Mitsuhiro Mishima, Isao Hayami
  • Patent number: 8160115
    Abstract: It is demonstrated that substantial operating-parameter-dependent temperature-differences can exist between diode-laser bars in pulsed operation of a stack of such bars arranged to provide a two-dimensional array of diode-laser emitters. These differences can produce distortion of the aggregate output spectrum of the stack. By selecting particular nominal emitting wavelengths of the diode-laser bars for specific positions in the stack, the aggregate emission-spectrum can be tailored to a desired shape for one or more sets of operating parameters of the stack.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: April 17, 2012
    Assignee: Coherent, Inc.
    Inventor: David Schleuning
  • Patent number: 8138663
    Abstract: The present invention provides a light emitting device solving weakness caused by bonding between first and second light emitting elements and a method of manufacturing the same. A chip-shaped first light emitting element and a second light emitting element overlapped each other are disposed on a supporting base. Four island-shaped projections are provided on the top face of the supporting base, and support the second light emitting element. The projections are formed by wet-etching or dry-etching the supporting base, and a pad electrode is provided on the top face of the projection. The pad electrode is electrically connected to the second light emitting element and is also electrically connected to a wire.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: March 20, 2012
    Assignee: Sony Corporation
    Inventors: Yuichi Hamaguchi, Noriyuki Banno
  • Patent number: 8126026
    Abstract: A two-beam semiconductor laser device 10 includes: a two-beam semiconductor element LDC having a first and a second semiconductor laser elements LD1 and LD2 that can be driven independently and that are formed integrally on a substrate; and a submount 63 having, mounted on a front part thereof, the two-beam semiconductor laser element LDC with the light-emitting face thereof directed forward and having a first and a second electrode pads 64 and 65 connected to electrodes 61 and 62 of the first and second semiconductor laser element LD1 and LD2 by being kept in contact therewith. The first and second electrode pads 64 and 65 are formed to extend farther behind the two-beam semiconductor laser element LDC, and wires 14 and 16 are wire-bonded behind the two-beam semiconductor laser element LDC.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: February 28, 2012
    Assignees: Sanyo Electric Co., Ltd., Tottori Sanyo Electric Co., Ltd.
    Inventors: Yasuhiro Watanabe, Kouji Ueyama, Shinichirou Akiyoshi
  • Patent number: 8121168
    Abstract: A multibeam laser diode capable of improving heat release characteristics in the case of junction-down assembly is provided. Contact electrodes are provided respectively for protruding streaks of a laser diode device, and pad electrodes are provided to avoid the protruding streaks and the contact electrodes. The contact electrodes and the pad electrodes are connected by wiring electrodes, and the contact electrodes are covered with a first insulating film. Thereby, electric connection is enabled without straightly jointing the contact electrodes to a solder layer. A heat conduction layer configured of a metal is provided on the first insulating film, the heat conduction layer is jointed to the solder layer, and thereby the heat release characteristics are able to be improved even in the case of junction-down assembly.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: February 21, 2012
    Assignee: Sony Corporation
    Inventor: Shinya Sato
  • Patent number: 8121167
    Abstract: A dual wavelength laser device including a cap, a header, a first laser chip and a second laser chip. The cap includes a cap body and a lens embedded on the cap body. The header forms an accommodating space with the cap. The first laser chip is arranged in the accommodating space and emitting a first laser beam toward the lens. The second laser chip is arranged in the accommodating space and emitting a second laser beam toward the lens.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: February 21, 2012
    Assignee: Truelight Corporation
    Inventors: Jin-Shan Pan, Shang-Cheng Liu, Cheng-Ju Wu, Chang-Cherng Wu
  • Patent number: 8111729
    Abstract: A multi-wavelength array of hybrid silicon lasers and a method of fabricating such a device. The method may include providing a silicon-on-insulator wafer; patterning waveguides in the silicon-on-insulator wafer; providing a III-V wafer comprising multiple layers; applying quantum well intermixing to obtain a plurality of regions of different bandgaps within the III-V wafer; and bonding the silicon on insulator wafer with the III-V wafer.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: February 7, 2012
    Assignee: Intel Corporation
    Inventors: Matthew Sysak, Richard Jones
  • Patent number: 8102892
    Abstract: A semiconductor laser device 1 includes infrared and red laser elements 3, 4 provided on a substrate 2, where the infrared element 3 includes a laminate of a first lower clad layer 11, a first active layer 12 and a first upper clad layer 13, and the red element 4 includes a laminate of a second lower clad layer 21, a second active layer 22 and a second upper clad layer 23. The clad layer 11 includes a third lower clad layer 17 formed on the substrate 2, an etching stop layer 18 formed on the third lower clad layer 17, and a fourth lower clad layer 19 formed on the etching stop layer 18 at a region provided with the infrared element 3. The second lower clad layer 21 is formed on the etching stop layer 18 except at the region of the infrared element 3.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: January 24, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Tsuguki Noma
  • Patent number: 8098699
    Abstract: A semiconductor laser apparatus comprises a first semiconductor laser device that emits a blue-violet laser beam, a second semiconductor laser device that emits a red laser beam, and a conductive package body. The first semiconductor laser device has a p-side pad electrode and an n-side electrode. The p-side pad electrode and n-side electrode of the first semiconductor laser device are electrically isolated from the package body. The p-side pad electrode of the first semiconductor laser device is connected with a drive circuit that generates a positive potential, while the n-side electrode thereof is connected with a dc power supply that generates a negative potential.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: January 17, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Daijiro Inoue, Yasuyuki Bessho, Masayuki Hata, Yasuhiko Nomura
  • Patent number: 8098704
    Abstract: A monolithic red/infrared semiconductor laser device is joined to a blue-violet semiconductor laser device. The distance between a blue-violet emission point in the blue-violet semiconductor laser device and an infrared emission point in an infrared semiconductor laser device is significantly shorter than the distance between a red emission point in a red semiconductor laser device and the infrared emission point. A blue-violet laser beam, a red laser beam, and an infrared laser beam respectively emitted from the blue-violet emission point, the red emission point, and the infrared emission point are introduced into a photodetector after being incident on an optical disk by an optical system comprising a polarizing beam splitter, a collimator lens, a beam expander, a ?/4 plate, an objective lens, a cylindrical lens, and an optical axis correction element.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: January 17, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masayuki Hata, Yasuyuki Bessho, Yasuhiko Nomura, Masayuki Shono, Kenji Nagatomi, Yoichi Tsuchiya
  • Patent number: 8089995
    Abstract: One embodiment of the present invention provides a system that facilitates adjusting the wavelengths of lasers via temperature control. This system includes a chip with an active face upon which active circuitry and signal pads reside. A thermal-control mechanism provides localized thermal control of two lasers mounted upon the active face of the chip. By individually controlling the temperature of the lasers, the thermal-control mechanism controls the wavelengths emitted by each respective laser. By creating a temperature gradient that causes a temperature difference between two or more lasers, the system can cause the lasers to emit different wavelengths.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: January 3, 2012
    Assignee: Oracle America, Inc.
    Inventors: Ashok V. Krishnamoorthy, John E. Cunningham, Bruce M. Guenin, Howard L. Davidson
  • Patent number: 8064492
    Abstract: A method of manufacturing a semiconductor laser device comprises steps of forming a first semiconductor laser device substrate having first grooves for cleavage on a surface thereof, bonding a second semiconductor laser device substrate onto the surface side having the first grooves and thereafter cleaving the first and second semiconductor laser device substrates along at least the first grooves.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: November 22, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yasuyuki Bessho, Hiroki Ohbo, Kunio Takeuchi, Seiichi Tokunaga, Yasumitsu Kunoh, Masayuki Hata
  • Patent number: 8059690
    Abstract: A vertical cavity surface emitting laser (VCSEL) is described using a sub-wavelength grating (SWG) structure that has a very broad reflection spectrum and very high reflectivity. The grating comprises segments of high and low refractive index materials with an index differential between the high and low index materials. By way of example, a SWG reflective structure is disposed over a low index cavity region and above another reflective layer (either SWG or DBR). In one embodiment, the SWG structure is movable, such as according to MEMS techniques, in relation to the opposing reflector to provide wavelength selective tuning. The SWG-VCSEL design is scalable to form the optical cavities for a range of SWG-VCSELs at different wavelengths, and wavelength ranges.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: November 15, 2011
    Assignee: The Regents of the University of California
    Inventors: Connie J. Chang-Hasnain, Michael Chung-Yi Huang, Ye Zhou, Carlos Fernando Rondina Mateus
  • Patent number: 8017957
    Abstract: A sub-substrate, a blue-violet semiconductor laser device, an insulating layer, and a red semiconductor laser device are stacked in order on a support member through a plurality of fusion layers. The insulating layer is stacked on an n-side pad electrode of the blue-violet semiconductor laser device, and a conductive layer is formed on the insulating layer. The red semiconductor laser device is stacked on the conductive layer through a fusion layer. The conductive layer is electrically connected to a p-side pad electrode of the red semiconductor laser device. The n-side pad electrode of the blue-violet semiconductor laser device and the n-side pad electrode of the red semiconductor laser device are electrically connected to each other.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: September 13, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Daijiro Inoue, Masayuki Hata, Yasuyuki Bessho
  • Publication number: 20110211610
    Abstract: A light emitting device includes: a support base; a first light emitting element which is provided at one surface side of the support base and has a first substrate; and a second light emitting element which is provided between the first light emitting element and the support base and has a second substrate, which has a light emitting section as a semiconductor layer and a peripheral section other than the light emitting section at the first light emitting element side of the second substrate, and which has an embedded layer formed of a material with higher heat conductivity than the semiconductor layer in the peripheral section.
    Type: Application
    Filed: February 7, 2011
    Publication date: September 1, 2011
    Applicant: Sony Corporation
    Inventors: Kazunari Saito, Noriyuki Banno, Kota Tokuda
  • Patent number: 8005123
    Abstract: A wavelength tunable laser includes a first facet including a high reflection coating film; a gain region disposed adjacent to the first facet, the gain region including two or more light emitting devices that are arranged parallel to one another; an optical wavelength multiplexer optically connected to the light emitting devices; and an optical reflector disposed adjacent to a second facet opposite the first facet, the optical reflector having a reflection spectrum with periodic reflection peaks. The optical wavelength multiplexer is disposed between the gain region and the optical reflector, and the optical reflector and the first facet including the high reflection coating film form a laser cavity.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: August 23, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Chie Fukuda
  • Patent number: 7970036
    Abstract: An organic semiconductor laser, which is produced integrally with an electrically operable inorganic LED (1), and also the method for producing said laser.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: June 28, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Norbert Linder, Martin Reufer
  • Publication number: 20110150020
    Abstract: Light sources are disclosed. A disclosed light source includes a III-V based pump light source (170) that includes nitrogen and emits light at a first wavelength. The light source further includes a vertical cavity surface emitting laser (VCSEL) that converts at least a portion of the first wavelength light (174) emitted by the pump light source (170) to at least a partially coherent light at a second wavelength (176). The VCSEL includes first and second mirrors (120, 160) that form an optical cavity for light at the second wavelength. The first mirror (120) is substantially reflective at the second wavelength and includes a first multilayer stack. The second mirror (160) is substantially transmissive at the first wavelength and partially reflective and partially transmissive and the second wavelength. The second mirror includes a second multilayer stack.
    Type: Application
    Filed: August 18, 2009
    Publication date: June 23, 2011
    Inventors: Michael A. Haase, Thomas J. Miller, Xiaoguang Sun
  • Patent number: 7961769
    Abstract: An object is to provide a wavelength tunable semiconductor laser device, a controller for the same and a control method for the same, which prevent wavelength drifts. The wavelength tunable semiconductor laser device includes an active region for oscillating a laser beam, and a wavelength tuning region for shifting a wavelength of the laser beam. In this device, a thermal compensation region for converting most of the inputted electric power to heat is provided adjacent to the wavelength tuning region, and the sum of an electric power inputted into the wavelength tuning region and an electric power inputted into the thermal compensation region is always kept constant.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 14, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Naoki Fujiwara, Hiroyuki Ishii, Hiromi Oohashi, Hiroshi Okamoto
  • Patent number: 7959297
    Abstract: A digital image projector includes a light assembly configured to project light along a light path from at least one laser array light source, the projected light having an overlapping far field illumination in a far field illumination portion of the light path; a temporally varying optical phase shifting device configured to be in the light path; an optical integrator configured to be in the light path; a spatial light modulator located downstream of the temporally varying optical phase shifting device and the optical integrator in the light path, the spatial light modulator configured to be located in the far field illumination portion of the light path; and projection optics located downstream of the spatial light modulator in the light path, the projection optics configured to direct substantially speckle free light from the spatial light modulator toward a display surface.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: June 14, 2011
    Assignee: Eastman Kodak Company
    Inventors: Barry D. Silverstein, Gary E. Nothhard
  • Patent number: 7949020
    Abstract: A tunable distributed feedback semiconductor laser includes a substrate; an optical waveguide structure disposed on a main surface of the substrate and including an active layer and a diffraction grating, the optical waveguide structure being divided into a first DFB portion, a wavelength-tuning region, and a second DFB portion in that order; a first electrode for injecting carriers into the active layer in the first DFB portion; a second electrode for injecting carriers into the active layer in the second DFB portion; and a third electrode for supplying a wavelength tuning signal to the wavelength-tuning region. The diffraction grating extends over the first DFB portion, the wavelength-tuning region, and the second DFB portion. An optical confinement factor of the wavelength-tuning region is smaller than that of the first and second DFB portions.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: May 24, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Takashi Kato
  • Patent number: 7936800
    Abstract: A light source device includes a plurality of light emission sections disposed in parallel with an interval, wherein the interval for the light emission sections near each end portion in an array of the light emission sections is narrower than the interval near a center portion in the array.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: May 3, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Masatoshi Yonekubo
  • Patent number: 7916767
    Abstract: Various methods and apparatuses are described in which an array of optical gain mediums capable of lasing are contained in a single integral unit. The array may contain four or more optical gain mediums capable of lasing. Each optical gain medium capable of lasing supplies a separate optical signal containing a band of wavelengths different than the other optical gain mediums capable of lasing in the array to a first multiplexer/demultiplexer. A connection for an output fiber exists to route an optical signal to and from a passive optical network.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: March 29, 2011
    Assignee: Novera Optics, Inc.
    Inventors: Wayne V. Sorin, Ben J. Vakoc
  • Publication number: 20110064111
    Abstract: Provided is a mounting member having a light receiving element, capable of constraining increase in size and of arranging a plurality of laser element portions closer to each other. The mounting member includes three or more electrodes, which respectively include element mounting portions arranged in a first direction, and a light receiving element disposed in a second direction intersecting with the first direction relative to the element mounting portions. The length in the second direction of at least one of the element mounting portions disposed at both ends in the first direction among the three or more element mounting portions is smaller than the length in the second direction of an element mounting portion disposed at an inner position in the first direction among the three or more element mounting portions.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 17, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: Takumi Tanikawa
  • Patent number: 7907646
    Abstract: According to the present invention, a laser light source comprises plural semiconductor lasers (2), a solid laser (4), a non-linear material (3) as a wavelength conversion element, a reflection coat (5) formed on one facet of the solid laser, and a reflection coat (6) formed on one facet of the non-linear material (3), and the solid laser and the wavelength conversion element are disposed between the both reflection coats to constitute a laser resonator, and plural pump parts (8) in the solid laser (4) which are pumped by the plural semiconductor lasers are separated from each other by 300 ?m or more. Thereby, interference between transverse modes of laser oscillation is avoided, thereby providing a high-power, stable, and compact solid laser light source with which a stable high output power can be obtained.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: March 15, 2011
    Assignee: Panasonic Corporation
    Inventors: Kiminori Mizuuchi, Kazuhisa Yamamoto, Hiroyuki Furuya, Toshifumi Yokoyama
  • Patent number: 7903706
    Abstract: Various embodiments of a multi-laser system are disclosed. In some embodiments, the multi-laser system includes a plurality of lasers, a plurality of laser beams, a beam positioning system, beam focusing optics, a thermally stable enclosure and a temperature controller. The thermally stable enclosure is configured to thermally and mechanically couple to a flow cell. The thermally stable enclosure substantially comprises a material with high thermal conductivity. The thermally stable enclosure can have a relatively small volume.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 8, 2011
    Inventors: John O'Shaughnessy, David E. Hargis, Steven Lee Miller, Mark Lin
  • Publication number: 20110051773
    Abstract: A semiconductor laser device that can suppress size increase of a semiconductor laser element and increase in an interval between light emitting portions and can improve productivity is provided. This semiconductor laser device has a first semiconductor laser element, and a second semiconductor laser element which is a monolithic multi-wavelength semiconductor laser element. The second semiconductor laser element includes a semiconductor substrate, and, of side faces of the semiconductor substrate of the second semiconductor laser element, a side face arranged opposite the first semiconductor laser element is inclined with respect to the normal direction of a major face of the semiconductor substrate so that a distance from the first semiconductor laser element is increasingly large away from a mounting member.
    Type: Application
    Filed: August 23, 2010
    Publication date: March 3, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Takumi TANIKAWA, Gen SHIMIZU, Daiki MIHASHI
  • Patent number: 7881356
    Abstract: Second and third p-side pad electrodes are formed on an insulating film of a blue-violet semiconductor laser device on both sides of a first p-side pad electrode. The second p-side pad electrode and the third p-side pad electrode are formed separately from each other. Solder films are formed on the upper surfaces of the second and third p-side pad electrodes respectively. A fourth p-side pad electrode of a red semiconductor laser device is bonded onto the second p-side pad electrode with the corresponding solder film sandwiched therebetween. A fifth p-side pad electrode of an infrared semiconductor laser device is bonded onto the third p-side pad electrode with the corresponding solder film sandwiched therebetween. The second and third p-side pad electrodes are formed separately from each other, so that the fourth and fifth p-side pad electrodes are electrically isolated from each other.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: February 1, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yasuyuki Bessho, Masayuki Hata, Daijiro Inoue
  • Patent number: 7873086
    Abstract: In a semiconductor device where a semiconductor element having an asymmetric temperature distribution during an operation is mounted, inner leads on the right and left ends have asymmetric lengths, so that the right and left regions of a semiconductor element mounting part have different sizes. The semiconductor element is mounted so as to have a high-temperature region side in a wide region of the mounting part, and the inner leads are wire bonded at the center to the wide region of the mounting part. It is thus possible to provide a small semiconductor device in which a long semiconductor element is mounted with heat dissipation.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 18, 2011
    Assignee: Panasonic Corporation
    Inventor: Shin-ichi Ijima
  • Patent number: 7873082
    Abstract: A semiconductor integrated device includes a plurality of wavelength tunable lasers, provided on a semiconductor substrate, and having oscillation wavelength ranges different from each other. Each of the wavelength tunable lasers includes an optical waveguide including, alternately in an optical axis direction, a gain waveguide portion and a wavelength controlling waveguide portion, and a diffraction grating provided over both the gain waveguide portion and the wavelength controlling waveguide portion. A value obtained by dividing a width of the wavelength controlling waveguide portion by a width of the gain waveguide portion in one of the plurality of wavelength tunable lasers is larger than a value obtained by dividing a width of the wavelength controlling waveguide portion by a width of the gain waveguide portion in a different one of the wavelength tunable lasers, which oscillates on a shorter wavelength side with respect to an oscillation wavelength range of the one wavelength tunable laser.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: January 18, 2011
    Assignee: Fujitsu Limited
    Inventor: Kazumasa Takabayashi
  • Publication number: 20110007771
    Abstract: This semiconductor laser apparatus includes a support member having a main surface, a first semiconductor laser device bonded onto the main surface through a first bonding layer and a second semiconductor laser device bonded onto the main surface through a second bonding layer to be adjacent to the first semiconductor laser device. The melting point of the second bonding layer is lower than that of the first bonding layer, and a first height from the main surface to a fourth surface of the second semiconductor laser device is larger than a second height from the main surface to a second surface of the first semiconductor laser device.
    Type: Application
    Filed: July 6, 2010
    Publication date: January 13, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Yasuyuki BESSHO, Koji GONSUI, Gen SHIMIZU, Daiki MIHASHI, Kiyoshi OOTA
  • Publication number: 20100329298
    Abstract: The present invention provides an intracavity frequency-converted solid state laser for the visible wavelength region. The laser comprises a semiconductor laser (1) with an extended laser cavity (2). A second laser cavity (4) is formed inside of said extended laser cavity (2). The second laser cavity (4) comprises a gain medium (3) absorbing radiation of the semiconductor laser (1) and emitting radiation at a higher wavelength in the visible wavelength region. The frequency converting gain medium (3) is formed of a rare-earth doped solid state host material. The proposed laser can be manufactured in a highly integrated manner for generating radiation in the visible wavelength region, for example in the green, red or blue wavelength region.
    Type: Application
    Filed: October 15, 2007
    Publication date: December 30, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ulrich Weichmann, Holger Moench
  • Patent number: 7860138
    Abstract: A semiconductor laser device 1 includes infrared and red laser elements 3, 4 provided on a substrate 2, where the infrared element 3 includes a laminate of a first lower clad layer 11, a first active layer 12 and a first upper clad layer 13, and the red element 4 includes a laminate of a second lower clad layer 21, a second active layer 22 and a second upper clad layer 23. The clad layer 11 includes a third lower clad layer 17 formed on the substrate 2, an etching stop layer 18 formed on the third lower clad layer 17, and a fourth lower clad layer 19 formed on the etching stop layer 18 at a region provided with the infrared element 3. The second lower clad layer 21 is formed on the etching stop layer 18 except at the region of the infrared element 3.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: December 28, 2010
    Assignee: Rohm Co., Ltd.
    Inventor: Tsuguki Noma