Excimer Or Exciplex Patents (Class 372/57)
  • Patent number: 6700916
    Abstract: An E-Diagnostic system for monitoring a state of an excimer laser or molecular fluorine laser system includes a processing device and an interface. The processing device runs a program for outputting parameter requests to the laser system, receiving parameter values from the laser system in response to the parameter requests, and storing the parameter values such that a record of the state of the excimer or molecular fluorine laser system is kept. The interface signal-couples the processing device with the laser system permitting the outputting of the parameter requests and the receiving of the parameter values between the processing device and the laser system.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: March 2, 2004
    Assignee: Lambda Physik AG
    Inventors: Matthias Kramer, Günter Nowinski, Juergen Kleinschmidt, Marcus Serwazi
  • Patent number: 6700915
    Abstract: A gas discharge laser system for generating a laser beam, such as an excimer or molecular fluorine laser system, includes a laser resonator with an optical element for making wavefront corrections such as an adaptable optical element, a phase conjugating mirror, or a retroreflector array. The resonator preferably also has one or more line-narrowing optical elements for narrowing the bandwidth of the laser beam. One of the resonator reflectors or a transmissive or reflective intracavity optical element of the laser may include the adaptable optical element, phase conjugating mirror or retroreflector plate. A beam expander may be disposed before the adaptable optical element, phase conjugating mirror or retroreflector array for increasing the radius of curvature of the wavefront of the laser beam. A detection and control system including a processor and a detector may be used for controlling the contour of the wavefront correcting optical element in a feedback loop.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: March 2, 2004
    Assignee: Lambda Physik AG
    Inventor: Juergen Kleinschmidt
  • Patent number: 6690703
    Abstract: A molecular fluorine laser includes a discharge chamber filled with a gas mixture including molecular fluorine and a buffer gas and not including a laser active rare gas, multiple electrodes within the discharge chamber defining a discharge region therebetween connected to a pulsed discharge circuit for applying discharge pulses to the electrodes for energizing the gas mixture, and a resonator including the discharge chamber for generating an oscillator laser beam at a wavelength around 157 nm and a bandwidth of less than 0.6 pm. The laser further includes a power amplifier for increasing the energy of the attenuated oscillator laser beam to a second predetermined energy for lithographic processing, a line-narrowing unit for reducing the bandwidth, a low intensity suppressor module to suppress the weaker lines of the F2-laser, and a synchronization unit to synchronize the oscillator and amplifier.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: February 10, 2004
    Assignee: Lambda Physik AG
    Inventors: Klaus Wolfgang Vogler, Sergei V. Govorkov, Gongxue Hua, Frank Voss, Elko Bergmann
  • Patent number: 6690702
    Abstract: In an excimer laser oscillation apparatus including a laser chamber (20) constituted by a laser tube (2) for storing a laser gas containing a gas mixture of at least one inert gas selected from the group consisting of Kr, Ar, and Ne, He and F2 gas, and an optical resonator consisting of a pair of reflection mirrors (5, 6) arranged to sandwich the laser chamber (20) therebetween, the inner surface of the laser chamber (20) for storing the laser gas has a reflection-free surface with respect to light of a desired wavelength of 248 nm, 193 nm, or 157 nm, and the uppermost surface of the inner surface consists of a fluoride, and a means (waveguide 1) for introducing a microwave for exciting the laser gas in the laser chamber (20) is prepared.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: February 10, 2004
    Assignees: Canon Kabushiki Kaisha
    Inventors: Tadahiro Ohmi, Nobuyoshi Tanaka, Masaki Hirayama
  • Patent number: 6690706
    Abstract: The present invention provides a gas discharge laser having at least one long-life elongated electrode for producing at least 12 billion high voltage electric discharges in a fluorine containing laser gas. In a preferred embodiment at least one of the electrodes is comprised of a first material having a relatively low anode erosion rate and a second anode material having a relatively higher anode erosion rate. The first anode material is positioned at a desired anode discharge region of the electrode. The second anode material is located adjacent to the first anode material along at least two long sides of the first material. During operation of the laser erosion occurs on both materials but the higher erosion rate of the second material assures that any tendency of the discharge to spread onto the second material will quickly erode away the second material enough to stop the spread of the discharge.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: February 10, 2004
    Assignee: Cymer, Inc.
    Inventors: Richard G. Morton, Timothy S. Dyer, Thomas D. Steiger, Richard C. Ujazdowski, Tom A. Watson, Bryan Moosman, Alex P. Ivaschenko
  • Patent number: 6678291
    Abstract: An efficient F2 laser is provided with improvements in line selection, monitoring capabilities, alignment stabilization, performance at high repetition rates and polarization characteristics. Line selection is preferably provided by a transmission grating or a grism. The grating or grism preferably outcouples the laser beam. The line selection may be fully provided at the front optics module. A monitor grating and an array detector monitor the intensity of the selected (and unselected) lines for line selection control. An energy detector is enclosed in an inert gas purged environment at slight overpressure. A blue or green reference beam is used for F2 laser beam alignment stabilization and/or spectral monitoring of the output laser beam. The blue or green reference beam advantageously is not reflected out with a atomic fluorine red emission of the laser and is easily resolved from the red emission.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: January 13, 2004
    Assignee: Lambda Physik AG
    Inventors: Klaus Wolfgang Vogler, Juergen Kleinschmidt
  • Publication number: 20040004987
    Abstract: Method and system provide a variable delay between the external trigger pulse for a laser system and the light pulse such that the total delay is controlled. The method and system utilize a digital time measuring circuit which measure a time interval which corresponds to a time between the generation of the trigger pulse and generation or a laser light pulse. Based on the measurement by the digital time measuring circuit a processor controls a delay circuit which thereby controls the time between the trigger pulse and the generation of the laser light pulse.
    Type: Application
    Filed: May 20, 2003
    Publication date: January 8, 2004
    Inventors: Rainer Desor, Thomas Wenzel
  • Patent number: 6671302
    Abstract: A device for use with a repetitively pulsed gas laser provides self-initiated UV preliminary ionization of the active volume of a laser, which has extended high-voltage and grounded electrodes disposed parallel to one another, to which peaking capacitors distributed along the length of the electrodes are connected in a low-inductance manner. The low-voltage contacts of the peaking capacitors are either connected directly to the grounded electrode or, if this connection is interrupted, dielectric plates are inserted that are disposed either on one side or on both sides of the grounded electrode. If the capacitors are charged rapidly, a surface discharge which effects UV pre-ionization of the volume of the main discharge and is uniformly distributed over the whole surface of the dielectric plates is produced on the surface of the dielectric plates.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: December 30, 2003
    Assignee: Lambda Physik AG
    Inventors: Vladimir Mikhailovich Borisov, Alexander Yurivich Vinokhodov, Vladimir Alexeevich Vodchits
  • Patent number: 6671294
    Abstract: An integrated circuit lithography technique called spectral engineering by Applicants, for bandwidth control of an electric discharge laser. In a preferred process, a computer model is used to model lithographic parameters to determine a desired laser spectrum needed to produce a desired lithographic result. A fast responding tuning mechanism is then used to adjust center wavelength of laser pulses in a burst of pulses to achieve an integrated spectrum for the burst of pulses approximating the desired laser spectrum. The laser beam bandwidth is controlled to produce an effective beam spectrum having at least two spectral peaks in order to produce improved pattern resolution in photo resist film. Line narrowing equipment is provided having at least one piezoelectric drive and a fast bandwidth detection control system having a time response of less than about 2.0 millisecond.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: December 30, 2003
    Assignee: Cymer, Inc.
    Inventors: Armen Kroyan, Ivan Lalovic, Igor V. Fomenkov, Palash P. Das, Richard L. Sandstrom, John M. Algots, Khurshid Ahmed
  • Patent number: 6665326
    Abstract: Disclosed is a light source device capable of further enhancing an effective pulse rate. A light source device according to the present invention comprises: a plurality of light sources (1a to 1h) emitting radiation light; a rotating reflection body (2) having one or more reflection surfaces (2a) and emitting the radiation light emitted from the respective light sources (1a to 1h) along an optical path (L) common to the light sources; a position detecting device (5) detecting a position of the reflection surface (2a) of the rotating reflection body (2); a timing control circuit (6) generating a synchronization signal for driving the plurality of light sources in synchronization with the position of the rotating reflection body based on an output signal from the position detecting device; and a power supply circuit (7) sequentially pulse-driving the light sources based on an output signal from the timing control circuit.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: December 16, 2003
    Assignee: Lasertec Corporation
    Inventor: Haruhiko Kusunose
  • Publication number: 20030227956
    Abstract: An excimer or molecular fluorine laser system includes a discharge chamber filled with a gas mixture, multiple electrodes within the discharge chamber and connected to the discharge circuit for energizing the gas mixture, a resonant cavity including the discharge chamber for generating a laser beam, and an intracavity homogenizer for homogenizing an intensity profile of the laser beam generated in the resonator. The intracavity homogenizer may include each of a first bi-prism and a second bi-prism disposed at opposite ends of the resonant cavity and having the discharge chamber disposed therebetween. In this case, optical axes of the first bi-prism and the second bi-prism are each at least substantially parallel to the optical axis of the laser beam.
    Type: Application
    Filed: October 18, 2001
    Publication date: December 11, 2003
    Applicant: Lambda Physik AG
    Inventor: Michael J. Scaggs
  • Patent number: 6661826
    Abstract: A feedthrough structure of a gas discharge laser chamber conducts electric power through the wall of a sealed gas enclosure to a single piece elongated electrode inside the enclosure. The feedthrough structure includes a single piece integrated main insulator larger than the electrode. The main insulator is compressed between the electrode and the wall of the enclosure. The surfaces forming interfaces between the electrode and the single piece insulator are the insulator and the wall are all very smooth to permit the parts to expand and contract as the chamber temperature varies. The feedthrough structure also provides mechanical support and alignment for the electrode and includes seals to prevent gas leakage around the feedthrough structure.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: December 9, 2003
    Assignee: Cymer, Inc.
    Inventors: Richard C. Ujazdowski, Timothy S. Dyer, William N. Partlo, Michael Altheim, Brian Strate, Thomas Hofmann
  • Publication number: 20030219056
    Abstract: The present invention provides long life optics for a modular, high repetition rate, ultraviolet gas discharge laser systems producing a high repetition rate high power output beam. The invention includes solutions to a surface damage problem discovered by Applicants on CaF2 optics located in high pulse intensity sections of the output beam of prototype laser systems. Embodiments include an enclosed and purged beam path with beam pointing control for beam delivery of billions of output laser pulses. Optical components and modules described herein are capable of controlling ultraviolet laser output pulses with wavelength less than 200 nm with average output pulse intensities greater than 1.75×106 Watts/cm2 and with peak intensity or greater 3.5×106 Watts/cm2 for many billions of pulses as compared to prior art components and modules which failed after only a few minutes in these pulse intensities.
    Type: Application
    Filed: March 8, 2003
    Publication date: November 27, 2003
    Inventors: Thomas A. Yager, William N. Partlo, Richard L. Sandstrom, Xiaojiang Pan, John T. Melchior, John Martin Algots, Matthew Ball, Alexander I. Ershov, Vladimir Fleurov, Walter D. Gillespie, Holger K. Glatzel, Leonard Lublin, Elizabeth Marsh, Richard G. Morton, Richard C. Ujazdowski, David J. Warkentin, R. Kyle Webb
  • Publication number: 20030219057
    Abstract: A beam parameter monitoring unit for coupling with an excimer or molecular fluorine (F2) laser resonator that produces an output beam having a wavelength below 200 nm includes an on-line laser pulse energy detector. This, in turn, allows output pulse energy stabilization to the same degree of accuracy, which is crucial for stability of exposure dose and other process parameters in microlithography and industrial applications.
    Type: Application
    Filed: May 14, 2003
    Publication date: November 27, 2003
    Inventors: Sergei V. Govorkov, Gongxue Hua
  • Patent number: 6650666
    Abstract: An electric discharge laser with fast wavelength correction. Fast wavelength correction equipment includes at least one piezoelectric drive and a fast wavelength measurement system and fast feedback response times. In a preferred embodiment, equipment is provided to control wavelength on a slow time frame of several milliseconds, on a intermediate time from of about one to five milliseconds and on a very fast time frame of a few microseconds. Preferred techniques include a combination of a relatively slow stepper motor and a very fast piezoelectric driver for tuning the laser wavelength using a tuning mirror. A preferred control technique is described (utilizing a very fast wavelength monitor) to provide the slow and intermediate wavelength control with the combination of a stepper motor and a piezoelectric driver. Very fast wavelength control is provided with a piezoelectric load cell in combination with the piezoelectric driver.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: November 18, 2003
    Assignee: Cymer, Inc.
    Inventors: Ronald L. Spangler, Robert N. Jacques, John A. Rule, Frederick A. Palenschat, Igor V. Fomenkov, John M. Algots, Jacob P. Lipcon, Richard L. Sandstrom
  • Publication number: 20030210726
    Abstract: The invention relates to an High Repetition Rate UV Excimer Laser which includes a source of a laser beam and one or more windows which include magnesium fluoride. Another aspect of the invention relates to an excimer laser which includes a source of a laser beam, one or more windows which include magnesium fluoride and a source for annealing the one or more windows. Another aspect of the invention relates to a method of producing a predetermined narrow width laser beam.
    Type: Application
    Filed: June 10, 2003
    Publication date: November 13, 2003
    Inventor: Robert W. Sparrow
  • Publication number: 20030210715
    Abstract: A tunable laser system includes a gain medium and an optical resonator for generating a laser beam, and a spectral narrowing and tuning unit within the resonator. A detection and control unit controls a relative wavelength of the laser system. A wavelength calibration module calibrates the detection and control unit. The module contains more than one species each having an optical transition line within the tuning spectrum of the laser.
    Type: Application
    Filed: January 29, 2003
    Publication date: November 13, 2003
    Applicant: Lambda Physik AG.
    Inventors: Peter Lokai, Thomas Schroeder, Juergen Kleinschmidt, Uwe Stamm, Klaus Wolfgang Vogler
  • Patent number: 6643312
    Abstract: An ArF excimer laser device and a fluoride laser device for exposure which is structured so that primary current that infuses energy from a magnetic pulse compression circuit to discharge electrodes via a peaking capacitor overlaps secondary current that infuses energy from the capacitor in the final stage of the magnetic pulse compression circuit to the discharge electrodes, the oscillation cycle of the secondary current is set longer than the oscillation cycle of the primary current, and a pulse of laser oscillation operation is effected by the initial half-cycle of the discharge oscillation current waveform that reverses the polarity of the primary current being overlapped by the secondary current and by at least two half-cycles continuing thereafter, as a result of which a high repetition rate, pulse stretch, line-narrowed ArF excimer laser device and fluorine laser device can be implemented at repetition rate exceeding 2 kHz.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 4, 2003
    Assignee: Ushiodenki Kabushiki Kaisha
    Inventors: Koji Kakizaki, Yoichi Sasaki
  • Patent number: 6639929
    Abstract: A pulse oscillating gas laser device, which can reduce an influence of a shock wave caused by primary discharge and perform stable laser oscillation is provided. To this end, the device is a pulse oscillating gas laser device for exciting a laser gas by causing primary discharge in a pulse form between a pair of discharge electrodes (14, 15) opposing each other and oscillating laser light, in which a rib portion (42) with insulating properties for preventing creeping discharge is provided on a cathode base (36) with insulating properties, to which the discharge electrode (15) at a high voltage side is fixed, and a damping material (45) for attenuating a shock wave (41) caused by the primary discharge is inserted in an inside of a groove portion (52) between a raised portion (43) of the rib portion (42) and the high-voltage side discharge electrode (15).
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: October 28, 2003
    Assignee: Gigaphoton Inc.
    Inventors: Hakaru Mizoguchi, Koji Kakizaki, Takashi Saito, Naoki Kataoka
  • Patent number: 6636546
    Abstract: The present invention relates to an ArF excimer laser apparatus for lithography capable of stretching the laser pulse width even when the repetition rate exceeds 4 kHz and also relates to a KrF excimer laser apparatus and fluorine laser apparatus for lithography capable of stretching the laser pulse width even when the repetition rate exceeds 2 kHz.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: October 21, 2003
    Assignee: Ushio Denki Kabushiki Kaisya
    Inventors: Koji Kakizaki, Yoichi Sasaki
  • Patent number: 6628682
    Abstract: Of spontaneous emission beams emitted from a laser medium but not line-narrowed, a spontaneous emission beam whose wavelength approximates a narrowed emission beam and whose light intensity is equal to or higher than a certain level is used as a reference light.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: September 30, 2003
    Assignee: Komatsu Ltd.
    Inventors: Kiwamu Takehisa, Kouji Shio, Shinji Nagai, Yasuaki Iwata, Osamu Wakabayashi
  • Publication number: 20030174754
    Abstract: The invention provides a ≧4 kHz repetition rate fluoride excimer laser system for producing an UV wavelength <200 nm, and in particular an argon fluoride excimer laser system for producing a UV wavelength 193 nm output. The ≧4 kHz repetition rate argon fluoride excimer laser system includes an argon fluoride excimer laser chamber for producing a 193 nm discharge at a pulse repetition rate ≧4 kHz. The ≧4 kHz repetition rate argon fluoride excimer laser chamber also includes magnesium fluoride crystal optic windows for outputting the 193 nm discharge as a ≧4 kHz repetition rate excimer laser 193 nm output with the magnesium fluoride crystal optic windows having a 255 nm induced absorption less than 0.08 Abs/42 mm when exposed to 5 million pulses of 193 nm light at a fluence ≧40 mj/cm2/pulse and a 42 mm crystal 120 nm transmission of at least 30%.
    Type: Application
    Filed: February 13, 2003
    Publication date: September 18, 2003
    Inventors: Michael A. Pell, Charlene M. Smith, Robert W. Sparrow, Paul M. Then
  • Patent number: 6621846
    Abstract: Electric discharge laser with active chirp correction. This application discloses techniques for moderating and dispensing these pressure waves. In some lasers small predictable patterns remain which can be substantially corrected with active wavelength control using relatively slow wavelength control instruments of the prior art. In a preferred embodiment a simple learning algorithm is described to allow advance tuning mirror adjustment in anticipation of the learned chirp pattern. Embodiments include stepper motors having very fine adjustments so that size of tuning steps are substantially reduced for more precise tuning. However, complete elimination of wavelength chirp is normally not feasible with structural changes in the laser chamber and advance tuning; therefore, Applicants have developed equipment and techniques for very fast active chirp correction. Improved techniques include a combination of a relatively slow stepper motor and a very fast piezoelectric driver.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: September 16, 2003
    Assignee: Cymer, Inc.
    Inventors: Richard L. Sandstrom, Palash P. Das, George J. Everage, Frederick G. Erie, William N. Partlo, Igor V. Fomenkov
  • Patent number: 6621847
    Abstract: An excimer laser apparatus using a bandwidth-narrowing optical system including a beam diameter-enlarging optical system and a Littrow mounting reflection type diffraction grating is made suitable for use as a laser light source for semiconductor lithography or the like by surmounting the limit to bandwidth narrowing due to wavefront distortion induced by the reflection type diffraction grating. In an excimer laser apparatus having a bandwidth-narrowing optical system including a Littrow mounting reflection type diffraction grating and a combination of a beam diameter-enlarging optical system and a slit placed on the entrance side of the reflection type diffraction grating, diffracted wavefront distortion (a measured value for He—Ne laser light) within the laser irradiation area of the reflection type diffraction grating in Littrow mounting is not more than &lgr;/10, where &lgr; is a measuring wavelength.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: September 16, 2003
    Assignee: Ushio Denki Kabushiki Kaisha
    Inventor: Akifumi Tada
  • Patent number: 6614828
    Abstract: A tunable laser is provided having a gain medium and a resonator for generating a laser beam, and an angular dispersion element. The laser further includes a beam expander with adjustable magnification for adjusting an angular dispersion provided by the dispersion element. The adjustable beam expander preferably includes one or two rotatable prisms. When two prisms are used, the prisms are preferably synchronously rotatable according to a preset ratio such that any changes in refraction angle due to the rotation of the first prism are automatically compensated by the rotation of the second prism. A single prism may serve both as a dispersion element and as a beam expansion element. A processor preferably monitors the linewidth and wavelength of the output beam and adjusts an orientation of the prism or prisms of the expansion unit, and the tilt of either a reflection grating or a highly reflective mirror of the resonator in a feedback loop.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: September 2, 2003
    Assignee: Lambda Physik AG
    Inventors: Dirk Basting, Sergei V. Govorkov
  • Publication number: 20030161373
    Abstract: The invention provides a two-stage laser mode of photolithographic molecular fluorine laser system for matching the center wavelength of an oscillation-stage laser to the center wavelength of an amplification-stage laser, thereby oscillating a laser beam having a low spectral purity and a narrow linewidth. The laser system is of the two-stage mode comprising an oscillation-stage laser 10 and an amplification-stage mode 20. The center wavelength of a laser beam emitted out of the oscillation-stage laser 10 is compared with and substantially matched to the center wavelength of a laser beam emitted out of the amplification-stage laser 20 when the latter is oscillated by itself.
    Type: Application
    Filed: December 27, 2002
    Publication date: August 28, 2003
    Inventors: Naoki Kitatochi, Tatsuya Ariga, Osamu Wakabayashi
  • Publication number: 20030161374
    Abstract: A spectrometer based on a high-resolution confocal Fabry-Perot interferometer for detection of wavelength, FWHM and/or 95% bandwidth of a laser beam of a narrow band tunable excimer or molecular fluorine lithography laser, or EUV generating source, preferably includes a reduction telescope for reducing the laser beam, a diffusor to homogenize the incident excimer or molecular fluorine lithography laser beam, a housing for mounting the confocal Fabry-Perot interferometer between windows in a sealed and temperature-stabilized housing, imaging optics for bringing the incident beam to focus at approximately a center of the interferometer, interferometer fringe imaging optics, and a photoelectric detector of the interferometer fringe image.
    Type: Application
    Filed: November 12, 2002
    Publication date: August 28, 2003
    Applicant: Lambda Physik AG
    Inventor: Peter Lokai
  • Publication number: 20030161362
    Abstract: The invention is directed to a method for the energy stabilization of a gas discharge-pumped radiation source that is operated in defined pulse sequences, particularly for suppression of overshooting and undershooting of excimer lasers and EUV radiation sources in burst operation. It is the object of the invention to find a novel possibility for the stabilization of the energy emission of a gas discharge-pumped radiation source that is operated in defined pulse sequences (bursts) which makes it possible to take into account a temporary behavior of the radiation source at the beginning of every burst without repeated recalibration of the energy-voltage curve.
    Type: Application
    Filed: February 7, 2003
    Publication date: August 28, 2003
    Applicant: XTREME technologies GmbH
    Inventor: Juergen Kleinschmidt
  • Patent number: 6609540
    Abstract: A supplying method and a supplying apparatus for supplying fluorine gas, in which when a fluorine-occluding substance is used for the fluorine gas-generating means, a necessary amount of fluorine gas can be stably and swiftly supplied to have a uniform concentration to &a chamber of an excimer laser device or the like even at running, to say nothing of the gas exchange time. In a fluorine gas-generating means, fluorine gas is generated at the use point by controlling a fluorine-occluding substance to a predetermined temperature, the fluorine gas is introduced into a mixing container, a diluting gas is introduced into the mixing container to mix it with the fluorine gas to prepare a fluorine mixed gas having a predetermined pressure and a predetermined fluorine gas concentration, and the fluorine mixed gas reserved in the mixing container is supplied to a use side such as chamber, using the pressure difference.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: August 26, 2003
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Junichi Torisu, Mituyoshi Yamazaki, Yasuyuki Hoshino, Yuji Sakai, Shunzou Nakagawa
  • Patent number: 6608853
    Abstract: The invention provides a discharge electrodes structure which can be easily replaced and adjustable a distance between the discharge electrodes, and a laser apparatus employing the discharge electrodes. Accordingly, the laser apparatus is provided with a pair of anode (5A) and cathode (5B) provided within a laser chamber (2) for sealing a laser medium in an opposing manner, generating a discharge so as to excite the laser medium and oscillating a laser beam, a conductive anode base (6) holding the anode, an insulative cathode base (8) placed so as to close an opening portion (4) provided in the laser chamber and holding the cathode, a return plate (9) suspending the anode base from the cathode base so as to supply a current to the anode, and an anode support bar (23) for connecting the cathode base to the anode base so as to suspend the anode from the cathode base.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: August 19, 2003
    Assignee: Komatsu, Ltd.
    Inventors: Shunsuke Yoshioka, Natsushi Suzuki
  • Patent number: 6608848
    Abstract: A wavelength calibration system determines an absolute wavelength of a narrowed spectral emission band of an excimer or molecular laser system. The system includes a module including an element which optically interacts with a component of an output beam of the laser within the tunable range of the laser system around the narrowed band. An inter-level resonance is detected by monitoring changes in voltage within the module, or photo-absorption is detected by photodetecting equipment. The absolute wavelength of the narrowed band is precisely determinable when the optical transitions occur and are detected. When the system specifically includes an ArF-excimer laser chamber, the module is preferably a galvatron containing an element that photo-absorbs around 193 nm and the element is preferably a gas or vapor selected from the group consisting of arsenic, carbon, oxygen, iron, gaseous hydrocarbons, halogenized hydrocarbons, carbon-contaminated inert gases, germanium and platinum vapor.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: August 19, 2003
    Assignee: Lambda Physik AG
    Inventors: Jürgen Kleinschmidt, Uwe Stamm, Klaus Vogler, Peter Lokai
  • Patent number: 6603788
    Abstract: An excimer or molecular fluorine laser system includes a discharge chamber filled with a laser gas mixture at least including a halogen gas and a buffer gas, a plurality of electrodes within the discharge chamber connected to a power supply circuit for energizing the gas mixture, and a resonator for generating a laser beam including a line-narrowing module on one side of the discharge chamber for reducing a bandwidth of the laser beam. The laser beam is output coupled from the resonator on the same side of the discharge chamber as the line-narrowing module and preferably after the beam is line-narrowed at the line-narrowing module. A substantially total intensity of the laser beam impinges upon a line-narrowing optical element of the line-narrowing module and is thereby line-narrowed. The resonator preferably includes at least one aperture for reducing a bandwidth of the laser beam.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: August 5, 2003
    Assignee: Lambda Physik AG
    Inventors: Klaus Wolfgang Vogler, Uwe Stamm
  • Patent number: 6603790
    Abstract: A gas laser and a dedusting unit thereof are provided. The gas laser comprises a tube containing a gas mixture including a laser gas and preferably a buffer gas. The tube preferably comprises a cylindrical inner wall. A discharge unit is inserted into the tube and has two elongated electrodes defining an electrical gas discharge gap therebetween for providing an electric gas discharge between said electrodes to generate laser light. A circulation means is included in the tube for generating a gas flow within the tube that passes through the discharge gap. A dedusting unit is mounted along the inner cylindrical wall of the tube in such a manner that only a bypass flow which is a part of the gas flow within the tube passes through the dedusting unit.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: August 5, 2003
    Inventors: Hans Kodeda, Helmut Frowein, Claus Strowitzki, Alexander Hohla
  • Patent number: 6603786
    Abstract: This invention relates to an excimer laser oscillation apparatus which has a laser chamber which stores a laser gas containing a gas mixture of at least one inert gas selected from the group consisting of Kr, Ar, and Ne, and F2 gas, and in which an inner surface thereof has a reflection-free surface with respect to light of a desired wavelength of 248 nm, 193 nm, or 157 nm, and the uppermost surface of the inner surface consists of a fluoride, an optical resonator which is made up of a pair of reflection mirrors arranged to sandwich the laser chamber therebetween, and in which the reflectance of the reflection mirror on the output side is 90% or more and microwave introduction means, arranged on the laser chamber, for continuously exciting the laser gas in the laser chamber.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: August 5, 2003
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tadahiro Ohmi, Nobuyoshi Tanaka, Masaki Hirayama
  • Patent number: 6603789
    Abstract: An excimer or molecular fluorine laser system includes a discharge chamber filled with a gas mixture including a halogen-containing molecular species and at least one noble gas including a buffer gas, multiple electrodes within the discharge chamber and connected to a pulsed power supply circuit for energizing the gas mixture, and a resonator for generating an output beam. The resonator includes the discharge chamber and one or more optics for narrowing a bandwidth of the beam and for magnifying the beam in each of orthogonal beam axis directions for suppressing fluctuations in one or more output beam parameters.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: August 5, 2003
    Assignee: Lambda Physik AG
    Inventor: Juergen Kleinschmidt
  • Patent number: 6603787
    Abstract: A discharge-pumped excimer laser device has a casing, a pair main discharge electrodes, a cross-flow fan for producing a high-speed laser gas flow between the main discharge electrodes, the cross-flow fan having a rotatable shaft projecting from opposite ends thereof, magnetic bearings, the rotatable shaft being rotatably supported by the bearings, protective bearings for supporting the rotatable shaft when the magnetic bearings are not in operation, and a motor for actuating the cross-flow fan. The magnetic bearings include radial magnetic bearings disposed on the opposite ends of the rotatable shaft. One of the radial magnetic bearings which is disposed closely to the motor has a bearing rigidity greater than the bearing rigidity of the magnetic bearing that is disposed remotely from the motor.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: August 5, 2003
    Assignee: Ebara Corporation
    Inventors: Shinichi Sekiguchi, Hiroyuki Shinozaki, Toshimitsu Barada, Toshiharu Nakazawa
  • Patent number: 6594291
    Abstract: An etalon as a wavelength selection element is configured by an optical element whose transmittance or reflectivity cyclically varies, such that, of two oscillation lines of different wavelengths and light intensities in fluorine laser, when a center wavelength of an oscillation line having a stronger light intensity is situated at one selected wavelength in the element, a center wavelength of an oscillation line having a weaker light intensity is situated between two adjacent selected wavelengths in the element. Accordingly, it is possible to oscillate an ultra narrow band fluorine laser apparatus by one line only, a wavelength width of this line can be narrowed to about 0.2 pm, and the drop in laser output can be reduced. By monitoring the laser output (output characteristics) with the etalon serving as the wavelength selection element, the wavelength selected by the etalon can be adjusted so as to maximize the output of the laser output from the etalon.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: July 15, 2003
    Assignee: Komatsu Ltd.
    Inventor: Kiwamu Takehisa
  • Patent number: 6590921
    Abstract: The invention relates to a semiconductor exposure ArF excimer laser device having a narrow line width containing 95% of the energy of 1.15 pm or less while using an optical system of prior art beam expansion prisms and a diffraction grating. The ArF excimer laser device for narrowing the bandwidth has a line-narrowing optical system formed of an echelle diffraction grating (3) in a Littrow arrangement, a beam expansion prism system composed of at least three prisms arranged on the incident side of the echelle diffraction grating, and slits 4. The blaze angle (&thgr;) of the diffraction grating 3 is 82° or less, the magnification rate M of the beam expansion prism system is 26 times or less, the oscillation pulse width Tis is 60 ns or less, the length L of the resonator is in a range of 1000 to 1350 mm and the slit width W is 1.0 mm or more, satisfying relation (W+11) cos &thgr;/(LMTis0.853)<4.94×10−6.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: July 8, 2003
    Assignee: Ushiodenki Kabushiki Kaisha
    Inventors: Akifumi Tada, Tatushi Igarashi
  • Patent number: 6590922
    Abstract: A narrow band F2 laser system having two laser subsystems. The first laser subsystem is configured to provide a very narrow band pulsed beam at a first narrow wavelength range corresponding to a first natural emission line of the F2 laser system. This beam is injected into the gain medium of the second laser subsystem in a first direction where the beam is amplified to produce a narrow band pulsed output beam. The seed laser subsystem also produces a second pulsed beam at a second wavelength range corresponding to a second natural emission line of the F2 laser. This line is injected into the gain medium of the second laser subsystem in a second direction opposite said first direction. The second beam is amplified in the gain medium of the second laser subsystem depleting the gain medium of gain potential at the second wavelength range. (This amplified second beam is preferably wasted.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: July 8, 2003
    Assignee: Cymer, Inc.
    Inventors: Eckehard D. Onkels, Richard L. Sandstrom, Richard M. Ness, William N. Partlo, Alexander I. Ershov, Choonghoon Oh
  • Patent number: 6584131
    Abstract: An ArF excimer laser device for performing an oscillating operation with a repetition rate of more than 3 kHz and an oscillating laser pulse width (Tis) of more than 30 ns. The laser operation is carried out in an initial half-period of an electrical discharge oscillating current waveform of a pulse of reversed polarity generated by a high voltage pulse generating device and in at least two subsequent half-periods. The pressure of the laser gas in the laser chamber is 2.5 to 3.5 atm, the fluorine concentration is 0.12% or less, and the argon gas concentration 3% or less. As a result, the laser pulse width (Tis) can be set to more than 30 ns.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: June 24, 2003
    Assignee: Ushiodenki Kabushiki Kaisha
    Inventor: Koji Kakizaki
  • Patent number: 6584132
    Abstract: Electrodes comprised of spinodal copper alloys. Applicant's tests have shown erosion rates of these alloys under certain environmental conditions are a factor of 5 or more lower than erosion rates of similar prior art copper alloys. In one application, the erosion of spinodal electrodes was at least an order of magnitude lower than the prior art material. A preferred application of these electrodes are as electrodes in excimer lasers which utilize a circulating laser gas containing fluorine. A preferred spinodal copper alloy is a copper-tin-nickel alloy known as spinodal bronze. These alloys are prepared using spinodal decomposition. This material forms atomic layers several atoms thick. The spinodal decomposition process permits atoms of one kind to concentrate to an extent while maintaining a relatively uniform crystal structure.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: June 24, 2003
    Assignee: Cymer, Inc.
    Inventor: Richard G. Morton
  • Patent number: 6577663
    Abstract: A molecular fluorine (F2) laser system includes a seed oscillator and power amplifier. The seed oscillator includes a laser tube including multiple electrodes therein which are connected to a discharge circuit. The laser tube is part of an optical resonator for generating a laser beam including a first line of multiple characteristic emission lines around 157 nm. The laser tube is filled with a gas mixture including molecular fluorine and a buffer gas. A low pressure seed radiation generating gas lamp is alternatively used. The gas mixture is at a pressure below that which results in the generation of a laser emission including the first line around 157 nm having a natural linewidth of less than 0.5 pm. The power amplifier amplifies the power of the beam emitted by the seed oscillator to a desired power for applications processing.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: June 10, 2003
    Assignee: Lambda Physik AG
    Inventor: Klaus Vogler
  • Patent number: 6577665
    Abstract: An efficient F2 laser is provided with improvements in line selection, monitoring capabilities, alignment stabilization, performance at high repetition rates and polarization characteristics. Line selection is preferably provided by a transmission grating or a grism. The grating or grism preferably outcouples the laser beam. The line selection may be fully provided at the front optics module. A monitor grating and an array detector monitor the intensity of the selected (and unselected) lines for line selection control. An energy detector is enclosed in an inert gas purged environment at slight overpressure. A blue or green reference beam is used for F2 laser beam alignment stabilization and/or spectral monitoring of the output laser beam. The blue or green reference beam advantageously is not reflected out with a atomic fluorine red emission of the laser and is easily resolved from the red emission.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: June 10, 2003
    Assignee: Lambda Physik AG
    Inventors: Klaus Wolfgang Vogler, Juergen Kleinschmidt
  • Patent number: 6570901
    Abstract: An excimer or molecular fluorine laser system includes a laser tube filled with a gas mixture including fluorine and a buffer gas, and multiple electrodes within the laser tube connected with a pulsed discharge circuit for energizing the gas mixture. At least one of the electrodes is longer than 28 inches in length, preferably two main electrodes are each extended to greater than 28 inches in length. The laser system further includes a resonator including the laser tube for generating a pulsed laser beam having a desired energy. The laser system is configured such that an output beam would be emitted having an energy below the desired energy if each of the electrodes were 28 inches in length or less, and the laser system outputs a beam at the desired energy due to the length of the electrodes being extended to a length greater than 28 inches.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: May 27, 2003
    Assignee: Lambda Physik AG
    Inventors: Uwe Stamm, Juergen Kleinschmidt, Igor Bragin
  • Publication number: 20030095580
    Abstract: A system is provided for delivering a lithographic exposure radiation source beam of wavelength less than 200 nm from a lithographic exposure radiation source through a sealed enclosure preferably sealably connected to the lithographic exposure radiation source, and preferably to another housing, leading ultimately to a workpiece. The enclosure is preferably evacuated and back-filled with an inert gas to adequately deplete any air, water, hydrocarbons or oxygen within the enclosure. Thereafter or alternatively, an inert gas flow is established and maintained within the enclosure during operation of the lithographic exposure radiation source. Also, alternatively, the enclosure may be evacuated and no inert gas flowed. The inert gas preferably has high purity, e.g., more than 99.5% and preferably more than 99.999%, wherein the inert is preferably nitrogen or a noble gas. The enclosure is preferably made of steel and/or copper.
    Type: Application
    Filed: October 7, 2002
    Publication date: May 22, 2003
    Inventors: Sergei V. Govorkov, Klaus Wolfgang Vogler, Frank Voss, Gongxue Hua, Rainer Paetzel
  • Patent number: 6567450
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: May 20, 2003
    Assignee: Cymer, Inc.
    Inventors: David W. Myers, Herve A. Besaucele, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Xiaojiang J. Pan, Eckehard D. Onkels, Richard M. Ness, Daniel J. W. Brown
  • Patent number: 6567451
    Abstract: An excimer or molecular fluorine laser includes a discharge chamber filled with a gas mixture, multiple electrodes within the discharge chamber connected to a power supply circuit for energizing the gas mixture, and a resonator including the discharge chamber and a pair of resonator reflectors for generating an output laser beam. One of the resonator reflectors is an output coupling interferometer including a pair of opposing reflecting surfaces tuned to produce a reflectivity maximum at a selected wavelength for narrowing a linewidth of the output laser beam. One of the pair of opposing reflecting surfaces is configured such that the opposing reflecting surfaces of the interferometer have a varying optical distance therebetween over an incident beam cross-section which serves to suppress outer portions of the reflectivity maximum to reduce spectral purity.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: May 20, 2003
    Assignee: Lambda Physik AG
    Inventors: Juergen Kleinschmidt, Peter Lokai
  • Patent number: 6563853
    Abstract: An excimer or molecular fluorine laser system includes a discharge chamber containing a gas mixture, multiple electrodes connected to a power supply circuit for energizing the gas mixture, a resonator for generating a laser beam, a processor, and means for monitoring an amplified spontaneous emission (ASE) signal of the laser, such as preferably an ASE detector. The processor receives a signal from the preferred ASE detector indicative of the ASE signal of the laser. Based on the signal from the ASE detector, the processor determines whether to initiate a responsive action for adjusting a parameter of the laser system.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: May 13, 2003
    Assignee: Lambda Physik AG
    Inventors: Peter Heist, Matthias Kramer, Juergen Kleinschmidt, Sergei Govorkov, Marcus Serwazi, Thomas Jünemann
  • Patent number: 6560254
    Abstract: An excimer or molecular fluorine laser includes a gain medium surrounded by a resonator and including a line-narrowing module preferably including a prism beam expander and one or more etalons and/or a grating or grism within the resonator. The material of transmissive portions of the line-narrowing module including the prisms and the plates of the etalons comprises a material having an absorption coefficient of less than 5×10−3/cm at 248 nm incident radiation, less than 10×10−3/cm at 193 nm incident radiation, and less than 0.1/cm at 157 nm. Preferably the material also has a thermal conductivity greater than 2.0 W/m° C.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: May 6, 2003
    Assignee: Lambda Physik AG
    Inventor: Uwe Stamm
  • Patent number: RE38372
    Abstract: A narrow band excimer laser and a wavelength detecting apparatus are suitable for use as a light source of a reduction projection aligner of a semiconductor device manufacturing apparatus. In the excimer laser, the ruling direction and the beam expanding direction of a prism beam expander are made substantially coincide with each other, and a polarizing element causing selective oscillation of a linearly polarized light wave substantially parallel with the beam spreading direction of a prism beam expander is contained in a laser cavity. A window at the front or rear side of a laser chamber is disposed such that the window make a Brewster's angle with respect to the axis of the laser beam in a plane containing the beam expanding direction of the prism expander and the laser beam axis.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: December 30, 2003
    Assignee: Kabushiki Kaisha Komatsu Shisakusho
    Inventors: Osamu Wakabayashi, Masahiko Kowaka, Yukio Kobayashi