Semiconductor Patents (Class 372/75)
  • Patent number: 8532151
    Abstract: A passively Q-switched laser comprises a pump laser diode, a micro laser resonant cavity including a lasing medium and a saturable absorber, a filter and a photodiode. The lasing medium and saturable absorber are bonded together, and dielectric film is coated on the surfaces of the bonded body to form the laser resonant cavity. The filter reflects a portion of the Q-switched laser pulse beam. The photodiode can detect and convert the laser pulse to electric signal for triggering purpose.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: September 10, 2013
    Assignee: Photop Suwtech, Inc.
    Inventors: Dashan Li, Shaofeng Zhang, Chao Lv
  • Patent number: 8526480
    Abstract: A semiconductor laser device comprising an optically pumped surface emitting vertical emitter which emits in a vertical main radiation direction, and at least one monolithically integrated pump radiation source for optically pumping the vertical emitter, wherein the pump radiation source emits pump radiation in a pump main radiation direction extending transversely with respect to the vertical main radiation direction. In accordance with the invention, suitably dimensioned vertical sections are provided such that modes of the pump radiation are forced completely or at least partly in a vertical direction from this section to reduce absorption losses of the pump radiation at conductive layers.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: September 3, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Wolfgang Schmid, Martin Müller
  • Publication number: 20130223470
    Abstract: There is disclosed an apparatus for femtosecond laser optically pumped by a laser diode pumping module that is able to mechanically couple optical mounts for mounting optical mounts to each other by using a bar with a low thermal expansion coefficient and to form a light pumping module distant from a laser platform or a case, to provide a stable mode locking for an ultrashort laser and to enhance a power stability and a beam stability.
    Type: Application
    Filed: March 29, 2013
    Publication date: August 29, 2013
    Applicant: Korea Electrotechnology Research Institute
    Inventor: Korea Electrotechnology Research Institute
  • Patent number: 8520713
    Abstract: An array of Surface Emitting Laser (SEL) elements can be used to efficiently pump a disk or rod of solid-state laser glass or crystal, or harmonic-generating crystal. Placing the laser array chip against or near the surface of this solid-state material provides very high and uniform optical power density without the need for lenses or fiber-optics to conduct the light from typical edge-emitting lasers, usually formed in a stack of bars. The lasers can operate in multi-mode output for highest output powers. Photolithography allows for an infinite variety of connection patterns of sub-groups of lasers within the array, allowing for spatial contouring of the optical pumping power across the face of the solid-state material. The solid-state material may be pumped either within (intra-cavity) or externally (extra-cavity) to the SEL laser array.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 27, 2013
    Assignee: TriLumina Corporation
    Inventor: John R Joseph
  • Publication number: 20130182738
    Abstract: The present invention relates w a wavelength-convertible semiconductor laser which is driven by a pulse, and more specifically, to a wavelength-convertible semiconductor laser, wherein: an expanded resonator is formed by including a laser diode chip on the outside of a pump semiconductor laser diode chip; and an oscillating wavelength of a pump laser is driven by a pulse determined from the outside of the semiconductor laser diode chip by inserting a filter, which is capable of selecting a wavelength, on the inside of said expanded resonator.
    Type: Application
    Filed: September 28, 2011
    Publication date: July 18, 2013
    Applicant: Phovel Co., Ltd.
    Inventor: Jeong Soo Kim
  • Patent number: 8467429
    Abstract: A laser comprises an end pump light source and a gain medium having a first end, a second end, and four sides comprising a first, a second, a third, and a fourth side. The end pump light source is optically coupled to the first end and pumps the gain medium. The first side and the third side are tapered inwardly from the first end to the first end to the second end at a taper angle ? relative to a longitudinal lasing axis and have a polished finish capable of reflecting light inside the gain medium. The second side and the fourth side are substantially parallel to the longitudinal lasing axis have a ground blasted finish. The first side is also tilted inwardly at a slant angle ? from the fourth side to the second side. A laser beam R0 exits the second end of the gain medium.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: June 18, 2013
    Assignee: Innova, Inc.
    Inventor: M. Cem Gokay
  • Patent number: 8428094
    Abstract: A surface-emitting semiconductor laser is described, with a semiconductor chip (1), which has a substrate (2), a DBR-mirror (3) applied to the substrate (2) and an epitaxial layer sequence (4) applied to the DBR mirror (3), said layer sequence comprising a radiation-emitting active layer (5), and with an external resonator mirror (9) arranged outside the semiconductor chip (1). The DBR mirror (3) and the substrate (2) are partially transmissive for the radiation (6) emitted by the active layer (5) and the back (14) of the substrate (2) remote from the active layer (5) is reflective to the emitted radiation (6).
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 23, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hans Lindberg, Stefan Illek
  • Publication number: 20130077648
    Abstract: A VECSEL-type surface-emitting semiconductor laser device is manufactured by providing a first component part (10) comprising a layered first mirror (12), providing a second component part (20) comprising a layered active region (22), permanently joining the second component part to the first component part to form an integral unit, and arranging a second mirror (32) so as to form an optical cavity containing the active region. This method of manufacture enables production at lower cost and enables greater flexibility in the choice of materials for the mirrors and the active region well as for the substrates on which the first mirror and the active region are deposited, as compared to traditional monolithic epitaxy methods. Preferably, the laser device is a IV-VI-type VECSEL emitting in the mid-IR range of the electromagnetic spectrum.
    Type: Application
    Filed: March 21, 2011
    Publication date: March 28, 2013
    Applicant: ETH ZURICH, ETH TRANSFER
    Inventors: Ferdinand Felder, Mohamed Rahim, Matthias Fill, Martin Arnold, Hans Zogg
  • Patent number: 8406265
    Abstract: An optoelectronic component (1) is specified, comprising a semiconductor body (2) with a semiconductor layer sequence. The semiconductor layer sequence of the semiconductor body (2) comprises a pump region (3) provided for generating a pump radiation and an emission region (4) provided for generating an emission radiation. The emission region (4) and the pump region (3) are arranged one above the other. The pump radiation optically pumps the emission region (4) during operation of the optoelectronic component (1). The emission radiation emerges from the semiconductor body (2) with the semiconductor layer sequence in a lateral direction during operation of the optoelectronic component (1).
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: March 26, 2013
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Matthias Sabathil, Peter Brick, Christoph Eichler
  • Patent number: 8396092
    Abstract: An optically pumped semiconductor apparatus having a surface-emitting semiconductor body (1) which has a radiation passage area (1a) which faces away from a mounting plane of the semiconductor body (1), and an optical element (7) which is suitable for directing pump radiation (17) onto the radiation passage area (1a) of the semiconductor body (1).
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: March 12, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Ulrich Steegmüller, Frank Singer, Thomas Schwarz, Michael Kühnelt
  • Publication number: 20130039378
    Abstract: A laser including a semiconductor laser stack group, a beam compositor, a pump beam collimator, a thin-disk laser crystal, a first and a second parabolic reflectors with the same facial contour function, a corrective reflector, an output mirror, and a jet-flow impact cooling system. The thin-disk laser crystal and the output mirror form a laser resonant cavity. The first parabolic reflector, second parabolic reflector, thin-disk laser crystal, and corrective reflector form a multi-pumping focus cavity. The jet-flow impact cooling system is used for cooling the thin-disk laser crystal. The pump light produced by the semiconductor laser stack group is composited by the beam compositor, collimated by the pump light collimator, and enters the multi-pumping focus cavity. Within the multi-pumping focus cavity, the pump light is focused, collimated, and deflected to converge on the thin-disk laser crystal. The laser resonant cavity produces and outputs a laser beam.
    Type: Application
    Filed: October 19, 2012
    Publication date: February 14, 2013
    Applicant: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventor: Huazhong University of Science and Technology
  • Patent number: 8331415
    Abstract: A laser light source device includes a pump light source which emits transverse-multimode light; a plurality of resonator mirrors which define a resonator, at least part of the resonator mirrors outputting light to the outside, where the output light having plural wavelengths; a laser medium arranged in the resonator, the laser medium being pumped with the transverse-multimode light emitted from the pump light source; and a wavelength conversion element arranged in the resonator, the wavelength conversion element being irradiated with a transverse-multimode line beam of fundamental wave obtained by oscillation at the laser medium and outputting a line beam of converted wave.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: December 11, 2012
    Assignee: Sony Corporation
    Inventors: Kaoru Kimura, Michio Oka
  • Patent number: 8320425
    Abstract: Systems, apparatus, devices and methods for pumping rod shaped solid state lasers with interchangeable arrays of diode laser pump sources that allows for rapid change of the diode laser array pump source without affecting or altering the solid state laser resonator. An embodiment includes a roof top structure having a light scattering reflection roof-top portion, sides with an interior specular reflecting surface and base opposite the top portion. The cavity includes a laser rod within the top portion of the structure positioned between opposing side walls, laser rod optics, and a pump source connected with the base plate to pump the laser rod. The pump cavity can include a mechanism for automating the rapid interchangeability of the pump source.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: November 27, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Ying Chen, Michael Bass
  • Patent number: 8315283
    Abstract: Laser systems and related methods are provided. In this regard, a representative laser system includes: a laser diode array that generates light; a first crystal having a cavity; an optical element operative to focus the generated light onto the first crystal such that the light generates a high-power circulating beam within the cavity; a second crystal positioned with respect to the first crystal such that the frequency of the high-power circulating beam is doubled; and a first coating applied to the first crystal and second coating applied to the second crystal, the first coating and the second coating being operative to cause at least a portion of the beam to be emitted within a particular wavelength range of the generated light.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: November 20, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Robert C. Hoffman
  • Patent number: 8315288
    Abstract: To reduce the laser threshold by efficiently exciting a light-emitting body in a solid-state dye laser with light having high density, thereby facilitating emission of laser beams, and to miniaturize a solid-state dye laser including an excitation light source. A solid-state dye laser capable of emitting laser beams by efficiently introducing light from an excitation light source to a light-emitting body incorporated in an optical resonator structure and exciting the light-emitting body with light with high density, is realized.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mikio Yukawa, Tetsuo Tsutsui
  • Patent number: 8270443
    Abstract: A side-pumped, diode-pumped solid-state laser cavity includes a conductively cooled housing having an opening for pump radiation from a diode array in close proximity to a laser rod. The pump light is absorbed by the rod and excites the laser ions. The cavity includes a thin, diffuse reflector encircling the rod, having a shaped opening for the collection and redirection of the pump light into the rod, and a good heat conductor as the heat sink and heat conductor. A split heat sink inhibits the flow of heat from the pump diodes into the laser rod, and pre-formed air spacings are designed to provide uniform temperature distribution around the laser rod.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: September 18, 2012
    Assignee: Israel Aerospace Industries Ltd.
    Inventors: Ram Oron, Doron Nevo, Moshe Oron
  • Patent number: 8243765
    Abstract: In a branched resonator OPS-laser arrangement, a combination of intra-cavity optical parametric generation and intra-cavity frequency conversion provides output radiation in a range between about 550 nanometers about 800 nanometers from an OPS fundamental wavelength in a range between about 900 nm and about 1100 nm.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: August 14, 2012
    Assignee: Coherent, Inc.
    Inventor: Andrea Caprara
  • Patent number: 8238399
    Abstract: A laser amplifier includes a laser active slab with a source of pump power to amplify an input laser beam, the laser active slab including a block of laser active material having opposed lateral faces defining a wedge lateral dihedral angle, opposed longitudinal faces, and opposed parallel transverse faces, the wedge lateral dihedral angle specified to minimize parasitic amplified spontaneous emission. The source of pump power may be one or more laser diode bars and microlenses producing a gain sheet in the laser active slab. The lateral faces may include optical coatings highly transmitting at a wavelength of the pump power and highly reflecting at a lasing wavelength to provide a folded path for the input laser beam though the gain sheet.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: August 7, 2012
    Inventor: Jeffrey G. Manni
  • Patent number: 8218588
    Abstract: A diode-pumped solid state pulsed laser includes an intracavity nonlinear crystal for wavelength conversion by difference frequency mixing and a secondary resonant cavity containing an additional nonlinear crystal for parametric amplification. Primary and secondary cavities are capable of injection seeding and wavelength stabilization resulting in a very narrow, stable, and well defined spectral output. The combination of pump diode pulsing, the implementation of the intracavity parametric oscillator and parametric amplifier results in very efficient operation. Optical fiber coupled parametric oscillator byproduct light allows simple and non-invasive wavelength diagnostics and monitoring upon connection to an optical spectrum analyzer.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: July 10, 2012
    Assignee: Exelis, Inc.
    Inventors: Jarett Levi Bartholomew, Mark Steven Janosky
  • Patent number: 8204089
    Abstract: There is provided a mode locked laser device including: a cavity, the cavity having a semiconductor saturable absorbing mirror and a negative dispersion mirror that controls group velocity dispersion within the cavity, disposed in a straight line; a solid-state laser medium, disposed in the cavity and outputting oscillating light due to excitation light being incident thereon; an excitation unit that causes the excitation light to be incident on the solid-state laser medium; and a cavity holder, the light incident face of the semiconductor saturable absorbing mirror attached to one end of the cavity holder, the negative dispersion mirror attached to the other end of the cavity holder, and the cavity holder integrally supporting the semiconductor saturable absorbing mirror and the negative dispersion mirror.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: June 19, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Tadashi Kasamatsu, Shogo Yamazoe, Yutaka Korogi
  • Publication number: 20120140782
    Abstract: A laser system includes a first laser diode configured to generate first light in a first direction along an optical path; a laser resonator having a gain medium, anisotropic saturable absorber, and a wavelength selective outcoupler positioned in the optical path upon which the first light impinges a first side thereof so as to pump the gain medium (first light from the first laser diode is absorbed in the gain medium), a second laser diode configured to generate second light in a second direction along the optical path toward a second side of the resonator, passes through the wavelength selective outcoupler unimpeded and is absorbed by the saturable absorber element, wherein the second light has a polarization corresponding to the orientation of the saturable absorber; the wavelength selective outcoupler is configured to only allow third light of a predetermined wavelength to have feedback in the laser resonator, achieve gain in the resonator, and be emitted from the laser resonator.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Applicant: RAYTHEON COMPANY
    Inventors: Juan C. SOTELO, Robert D. STULTZ, David FILGAS
  • Publication number: 20120128015
    Abstract: An array of Surface Emitting Laser (SEL) elements can be used to efficiently pump a disk or rod of solid-state laser glass or crystal, or harmonic-generating crystal. Placing the laser array chip against or near the surface of this solid-state material provides very high and uniform optical power density without the need for lenses or fiber-optics to conduct the light from typical edge-emitting lasers, usually formed in a stack of bars. The lasers can operate in multi-mode output for highest output powers. Photolithography allows for an infinite variety of connection patterns of sub-groups of lasers within the array, allowing for spatial contouring of the optical pumping power across the face of the solid-state material. The solid-state material may be pumped either within (intra-cavity) or externally (extra-cavity) to the SEL laser array.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Applicant: TRILUMINA CORPORATION
    Inventor: John R. Joseph
  • Publication number: 20120114008
    Abstract: An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 10, 2012
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Andrew James Bayramian, Kenneth Manes, Robert Deri, Al Erlandson, John Caird, Mary Spaeth
  • Publication number: 20120069864
    Abstract: For a diode pumped solid-state laser, measures to improve the pump light absorption in anisotropic crystals are proposed. The proposed measures reduce the dependency of the pump light absorption on the diode current and the diode temperature as well as on the detuning of the pump diode from the absorption line. These measures include sending the pump radiation twice through the crystal, placement of the laser crystal in an orientation that does not exhibit the optimum absorption and the use of a retarder.
    Type: Application
    Filed: May 21, 2010
    Publication date: March 22, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ulrich Weichmann, Uwe Mackens
  • Publication number: 20120033692
    Abstract: A diode-laser bar stack includes a plurality of diode-laser bars having different temperature dependent peak-emission wavelengths. The stack is arranged such that the bars can be separately powered. This allows one or more of the bars to be “on” while others are “off”. A switching arrangement is described for selectively turning bars on or off, responsive to a signal representative of the temperature of the diode-laser bar stack, for providing a desired total emission spectrum.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Applicant: Coherent, Inc.
    Inventors: David M. Schleuning, Mark M. Gitin, R. Russel Austin
  • Patent number: 8102890
    Abstract: A semiconductor light emitting device includes a first-conductivity-type first multilayer film reflecting mirror, and a second-conductivity-type second multilayer film reflecting mirror; a cavity layer; and a first conductive section, a second conductive section, and a third conductive section. The cavity layer has a stacked configuration including a first-conductivity-type or undoped first cladding layer, an undoped first active layer, a second-conductivity-type or undoped second cladding layer, a second-conductivity-type first contact layer, a first-conductivity-type second contact layer, a first-conductivity-type or undoped third cladding layer, an undoped second active layer, and a second-conductivity-type or undoped fourth cladding layer.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: January 24, 2012
    Assignee: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Yoshinori Yamauchi, Rintaro Koda, Tomoyuki Oki, Naoki Jogan
  • Publication number: 20110305256
    Abstract: A method of direct diode pumping a fiber laser includes disposing a plurality of diode lasers in a wavelength beam combining cavity for generating a wavelength beam combining laser output, and optically coupling the wavelength beam combining laser output to the gain medium of a fiber laser. The wavelength beam combining cavity may comprise a fast axis wavelength beam combining cavity. Also, the plurality of diode lasers may comprise a multidimensional array of diode lasers arranged as diode laser bars disposed in a stack and spatially interleaved or optically aligned to form an optical stack. Each of the diode lasers may produce a distinct wavelength laser beam.
    Type: Application
    Filed: March 4, 2011
    Publication date: December 15, 2011
    Applicant: TERADIODE, INC.
    Inventors: Bien Chann, Robin Huang
  • Publication number: 20110280271
    Abstract: The disclosure discloses a fabry-Perot (F-P) cavity, which is a folded confocal cavity integrally formed by a monolithic optical element, the folded confocal cavity having three reflection surfaces, wherein a first reflection surface is a plane and at the same time serves as an input/output coupling surface, a second reflection surface is a plane, and a third surface is a spherical surface, curvature radius of which is equal to half of a round trip geometric length of light in the folded confocal cavity. The invention further discloses a laser based on the F-P cavity. The solution of the disclosure solves the problems in existing folded F-P cavity, such as unsatisfactory stability, sensitive to outside inferences, bulky and complicated construction.
    Type: Application
    Filed: July 7, 2011
    Publication date: November 17, 2011
    Inventors: Erjun Zang, Yang Zhao, Jianping Cao, Ye Li, Zhanjun Fang
  • Publication number: 20110222572
    Abstract: A laser arrangement includes an optical resonator having a V arrangement of two resonator branches. At least one active medium includes an active volume associated with each resonator branch. The arrangement also includes folding element that is highly reflective for a fundamental wavelength of the laser arrangement and an optical pump imaging system configured to unidirectionally pump the two resonator branches. The optical pump imaging system includes a common objective lens for both resonator branches. The folding element is transparent for the pump wavelength.
    Type: Application
    Filed: February 23, 2011
    Publication date: September 15, 2011
    Applicant: LPKF LASER & ELECTRONICS AG
    Inventors: Gennadij Kusnezow, Andreas Boenke
  • Patent number: 8000371
    Abstract: A semiconductor light emitting device includes a pump light source, a gain structure, and an out-coupling mirror. The gain structure is comprised of InGaN layers that have resonant excitation absorption at the pump wavelength. Light from the pump light source causes the gain structure to emit light, which is reflected by the out-coupling mirror back to the gain structure. A distributed Bragg reflector causes internal reflection within the gain structure. The out-coupling mirror permits light having sufficient energy to pass therethrough for use external to the device. A frequency doubling structure may be disposed between the gain structure and the out-coupling mirror. Output wavelengths in the deep-UV spectrum may be achieved.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 16, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Andre Strittmatter, Christopher L. Chua, Peter Kiesel, Noble M. Johnson
  • Patent number: 7991026
    Abstract: In a branched resonator OPS-laser arrangement, a combination of intra-cavity optical parametric generation and intra-cavity sum-frequency mixing provides output radiation in a range between about 550 nanometers about 700 nanometers from an OPS fundamental wavelength in a range between about 900 nm and about 1100 nm.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: August 2, 2011
    Assignee: Coherent, Inc.
    Inventor: Andrea Caprara
  • Publication number: 20110176566
    Abstract: A compact semiconductor laser pumped solid-state laser device is provided that can suppress unnecessary parasitic oscillation in a microchip and efficiently extract energy.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 21, 2011
    Applicant: INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION, NATIONAL INSTITUTES OF NATURAL SCIENCES
    Inventors: Masaki Tsunekane, Takunori Taira
  • Publication number: 20110164649
    Abstract: A pump module comprises a power source, a plurality of laser diodes, a controller and light combining optics. The laser diodes each have an activated state and a deactivated state. The laser diodes receive current from the power source and output light when in the activated state and do not receive current from the power source when in the deactivated state. The controller switches the plurality of laser diodes from a first power mode, in which a first subset of the laser diodes is in the activated state, to a second power mode, in which a second subset of the laser diodes is in the activated state, responsive to a power mode setting. The light combining optics are configured to combine the light from the activated laser diodes and output the combined light as pump energy. A laser system comprises a pump module and a gain medium. The pump module is configured to output pump energy having a wavelength that is within a wavelength range of 874-881 nm.
    Type: Application
    Filed: September 8, 2009
    Publication date: July 7, 2011
    Applicant: AMS RESEARCH CORPORATION
    Inventors: Rongwei Jason Xuan, Michael R. Hodel, Douglas G. Stinson, Ramond Adam Nemeyer
  • Publication number: 20110150026
    Abstract: There is provided a semiconductor laser pumped solid-state laser device for engine ignition that can stably provide optical energy required for ignition across a wide temperature range. In the semiconductor laser pumped solid-state laser device for engine ignition, a plurality of semiconductor lasers 21, 22, 23, and 24 are used that have locking ranges, a temperature width thereof divided into a plurality of temperature ranges corresponding to a variation width of an ambient temperature, and that have the respective wavelengths falling within an absorption wavelength band of a solid-state laser medium 5 of the solid-state laser device in the temperature width of each locking range, to pump the solid-state laser medium 5 by multiplexing emitted lights from the plurality of semiconductor lasers 21, 22, 23, and 24 using a multiplexing mechanism to irradiate the solid-state laser medium 5.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 23, 2011
    Applicants: INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION, NATIONAL INSTITUTES OF NATURAL SCIENCES, NIPPON SOKEN, INC.
    Inventors: Masaki Tsunekane, Takunori Taira, Kenji Kanehara
  • Publication number: 20110150012
    Abstract: Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.
    Type: Application
    Filed: August 31, 2009
    Publication date: June 23, 2011
    Applicants: and Spec Admi
    Inventor: Steven X. Li
  • Patent number: 7965750
    Abstract: A semiconductor light emitting device includes a first-conductivity-type first multilayer film reflecting mirror, and a second-conductivity-type second multilayer film reflecting mirror; a cavity layer; and a first conductive section, a second conductive section, and a third conductive section. The cavity layer has a stacked configuration including a first-conductivity-type or undoped first cladding layer, an undoped first active layer, a second-conductivity-type or undoped second cladding layer, a second-conductivity-type first contact layer, a first-conductivity-type second contact layer, a first-conductivity-type or undoped third cladding layer, an undoped second active layer, and a second-conductivity-type or undoped fourth cladding layer.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: June 21, 2011
    Assignee: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Yoshinori Yamauchi, Rintaro Koda, Tomoyuki Oki, Naoki Jogan
  • Patent number: 7961771
    Abstract: A laser amplifier includes a laser active slab with a source of pump power to amplify an input laser beam, the laser active slab including a block of laser active material having opposed lateral faces defining a wedge lateral dihedral angle specified to minimize parasitic amplified spontaneous emission. The laser amplifier may include one or more external mirrors highly reflecting at the lasing wavelength positioned and oriented to provide for zig-zag passes through the gain sheet for the input laser beam to yield a multi-pass-amplified laser beam. The source of pump power may be one or more laser diode bars and microlenses producing a gain sheet in the laser active slab.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 14, 2011
    Inventor: Jeffrey G. Manni
  • Patent number: 7949022
    Abstract: An integrated, low profile, high power laser light emission device is disclosed. The integrated laser light emission device provides uniform heat dissipation, as well as uniform pumping of the laser gain medium without the need for a pumping cavity. The laser system includes a pump diode array that can be mounted directly to a laser gain medium without intervening correcting optics hardware. Heat generated by the laser light emission device is cooled by a single cooling system. In the laser device, a pump diode array is preferably a Vertical-Cavity Surface-Emitting Laser (VCSEL) array. VCSEL arrays are mounted on the laser gain crystal by a metal cavity frame or metal stilts. The slightly elevated mounting of the VCSEL's enables increased cooling and maximizing the quantity of VCSEL's on the laser gain medium in order to achieve highly efficient and high power laser light output.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: May 24, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Edward J. Miesak, Paul E. Jackson, Pei-Luen Li
  • Publication number: 20110116523
    Abstract: The present invention provides a method of fabricating a beam formatting diode laser using a surface-emitting distributed feedback (SE-DFB) laser array (SELA), instead of edge-emitting diodes that provides a brighter diode and results in simple and few optical components to reduce the complexity and cost of solid-state laser pump modules and direct-diode applications.
    Type: Application
    Filed: September 13, 2010
    Publication date: May 19, 2011
    Inventors: Manoj Kanskar, Yan Xiao
  • Patent number: 7907646
    Abstract: According to the present invention, a laser light source comprises plural semiconductor lasers (2), a solid laser (4), a non-linear material (3) as a wavelength conversion element, a reflection coat (5) formed on one facet of the solid laser, and a reflection coat (6) formed on one facet of the non-linear material (3), and the solid laser and the wavelength conversion element are disposed between the both reflection coats to constitute a laser resonator, and plural pump parts (8) in the solid laser (4) which are pumped by the plural semiconductor lasers are separated from each other by 300 ?m or more. Thereby, interference between transverse modes of laser oscillation is avoided, thereby providing a high-power, stable, and compact solid laser light source with which a stable high output power can be obtained.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: March 15, 2011
    Assignee: Panasonic Corporation
    Inventors: Kiminori Mizuuchi, Kazuhisa Yamamoto, Hiroyuki Furuya, Toshifumi Yokoyama
  • Patent number: 7903716
    Abstract: A surface emitting semiconductor laser includes a semiconductor chip (1), which emits radiation (12) and contains a first resonator mirror (3). A second resonator mirror (6) is arranged outside the semiconductor chip (1). The first resonator mirror (3) and the second resonator mirror (6) form a laser resonator for the radiation (12) emitted by the semiconductor chip (1). The laser resonator contains an interference filter (9, 17), which is formed from an interference layer system comprising a plurality of dielectric layers.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: March 8, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Thomas Schwarz, Ulrich Steegmüller, Michael Kühnelt
  • Publication number: 20110051759
    Abstract: A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.
    Type: Application
    Filed: June 11, 2010
    Publication date: March 3, 2011
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Steven J. Telford, Anthony S. Ladran
  • Publication number: 20110038031
    Abstract: Master oscillator power amplifier (MOPA) apparatus includes two seed-pulse sources coupled to a single fiber amplifier including one or more stages of amplification. One of the seed-pulse sources is a single-mode source generating pulses having a duration selectively variable between about 0.1 ns and 10 ns. The other seed-pulse source is a multi-mode source generating pulses having a duration selectively variable between about 1 ns and 10 ?s. Selectively operating one or the other of the seed-pulse sources provides that the apparatus can deliver pulses selectively variable in a range between about 0.1 ns and 10 ?s.
    Type: Application
    Filed: August 17, 2009
    Publication date: February 17, 2011
    Applicant: COHERENT, INC.
    Inventors: Andrei STARODOUMOV, Norman HODGSON
  • Publication number: 20110026553
    Abstract: A device is provided. The device includes a first organic light emitting device, which further comprises a first electrode, a second electrode, and an organic emissive layer disposed between the first electrode and the second electrode. The device also includes a first laser device, which further comprises an optical cavity and an organic lasing material disposed within the optical cavity. A focus mechanism is disposed to focus light emitted by the first organic light emitting device onto the first laser device. Preferably, the focus mechanism provides light incident on the first laser device at least 10 times greater, and more preferably at least 100 times greater, in intensity than the light emitted by the first organic light emitting device.
    Type: Application
    Filed: July 29, 2009
    Publication date: February 3, 2011
    Inventors: Stephen R. FORREST, Stephane Kena-Cohen, Noel Giebink
  • Patent number: 7881347
    Abstract: Methods and systems for hybrid gain guiding in laser resonators that combines the features of gain guiding and fiber or other types of lasers into a single system. Hybrid gain guiding in laser resonators is not limited to conventional fiber lasers. Any type of gain guided fiber, index guided or anti-guided, is used as an intracavity element to induce loss on high order modes in an otherwise multimode laser system. The gain guided element contributes little gain to the laser oscillator but allows only the lowest order mode to transmit without loss. When the gain guiding fiber length is selected so the loss for a particular cavity mode is greater than the gain, the cavity mode does not lase. Since the gain guiding fiber induces loss for all laser modes other than the lowest order mode it makes sure that the mode one higher than the lowest order mode does not lase and as a result, no other cavity modes lase.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: February 1, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Timothy McComb, Martin Richardson, Vikas Sudesh
  • Patent number: 7881348
    Abstract: A mode-locked laser device includes a Fabry-Perot resonator, a mode-locking element disposed within the resonator, a solid-state laser medium disposed within the resonator, and exciting means for applying excitation light to the solid-state laser medium. The opposite ends of the resonator, the mode-locking element and the solid-state laser medium are disposed to provide an average beam diameter of lasing light of not more than 150 ?m on the mode-locking element and an average beam diameter of the lasing light of not more than 200 ?m within the solid-state laser medium.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: February 1, 2011
    Assignee: FUJIFILM Corporation
    Inventors: Takashi Adachi, Shogo Yamazoe
  • Publication number: 20100316085
    Abstract: A high power solid-state non-regenerative optical amplification system (100) for amplifying a pulsed optical beam, includes a first optical amplification crystal (C1) and a second optical amplification crystal (C2) for amplifying the optical beam; optical pumping elements for longitudinal pumping amplification crystals (C1, C2); reflective optical elements (M?1, M?2, . . . , M?17) suitable for reflecting the optical beam so that the optical beam makes a total number of N sequential passes through the amplification crystals (C1, C2), wherein N is an integer and N>4. The reflective optical elements (M?1, M?2, . . . , M?17) are placed in a configuration suitable for alternatively interleaving the sequential optical beam passes through the 1st crystal (C1) and through the 2nd crystal (C2). A solid-state laser including the amplification system, and a method for amplifying a pulsed optical beam in a two-crystal multi-pass non-regenerative amplification system are also disclosed.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Applicant: AMPLITUDE TECHNOLOGIES
    Inventors: Luc VIGROUX, Pierre-Mary PAUL, Fabien PLE
  • Publication number: 20100309946
    Abstract: To constitute an optical module comprising a mount and a board that supports the mount, wherein a solid-state laser device that oscillates fundamental laser light, a pump light source that pumps the solid-state laser device, and a wavelength converting device that converts a wavelength of the fundamental laser light oscillated by the solid-state laser device are mounted on the mount, the mount is divided into three blocks, that is, a first block on which a laser medium is mounted, a second block on which the pump light source is mounted, and a third block on which the wavelength converting device is mounted. A side surface or a bottom surface of only the second block is fixed to the board, the first block is fixed to the other side surface of the second block, and the third block is fixed to a side surface of the first block.
    Type: Application
    Filed: March 18, 2008
    Publication date: December 9, 2010
    Applicant: Mitsubishi Electric Corporation
    Inventors: Akira Nakamura, Masamitsu Okamura, Keiichi Fukuda, Chise Nanba, Kazutaka Ikeda
  • Patent number: 7848379
    Abstract: Laser light generating solutions are provided that use one or more light emitting diodes to optically pump a laser light generating structure. The laser light generating structure can include organic or inorganic laser material. The light emitting diodes can be located on the same substrate as the laser light generating structure or on a separate substrate that is connected to the substrate with the laser light generating structure. Various other features can be included to enhance the optical pumping and/or enable electrical pumping of the active structure when it includes an inorganic laser material.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: December 7, 2010
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Remigijus Gaska
  • Patent number: 7826511
    Abstract: An apparatus and method for building an optically pumped laser integrated with an electrically driven pump laser is disclosed. The apparatus disclosed comprises an optically pumped laser containing an active layer and an optical pump laser containing an optical mode at least partially overlapping and propagating substantially parallel to optically pumped laser's active layer. The method discloses forming an optically pumped gain element containing an active layer, forming a pump laser containing an optical mode at least partially overlapping and propagating substantially parallel to optically pumped gain element's active layer.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 2, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel Yap, David Persechini, Authi Narayanan