Particular Beam Control Device Patents (Class 372/9)
  • Patent number: 6876679
    Abstract: In embodiments, the present invention is directed to systems and methods for operating an incoherently beam combined (IBC) laser. The IBC laser may comprise an integrated set of emitters or a set of discrete emitters. Each emitter is associated with a high-pass, low-pass, or bandpass optical filter. The emitters and filters are disposed in an ordered arrangement thereby defining a common optical path. Near the end of the common optical path, a focusing lens may be utilized to focus the output beams from each of the emitters into a fiber. A partially reflective component may be embedded in the fiber to provide feedback to each of the emitters. By selecting the optical characteristics of the filters, light originating from a specific emitter is fed back to the same emitter and to no other emitter. Accordingly, multiple external laser cavities are created on the same optical path.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: April 5, 2005
    Inventors: Dennis Bowler, Jorah Wyer
  • Patent number: 6876680
    Abstract: A compressive strain GRIN-SCH-MQW active layer and a tensile strain GRIN-SCH-MQW active layer are laminated, and there are provided a diffraction grating formed in the vicinity of the compressive strain GRIN-SCH-MQW active layer and a diffraction grating formed in the vicinity of the tensile strain GRIN-SCH-MQW active layer, between the radiation end face and the reflection end face of the laser beam. A laser beam obtained by polarization-multiplexing a laser beam in the TE mode generated in the compressive strain GRIN-SCH-MQW active layer and a laser beam in the TE mode generated in the tensile strain GRIN-SCH-MQW active layer, and having a plurality of oscillation longitudinal modes of not larger than a predetermined output value is output by the wavelength selection characteristic of the diffraction gratings.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: April 5, 2005
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Junji Yoshida, Naoki Tsukiji
  • Patent number: 6868107
    Abstract: A method for calculating the beam quality and output wavelength spectrum of a photonic crystal distributed feedback laser includes the steps of calculating at least two coupling coefficients and forming a characteristic matrix; repeating the following steps at spaced increments of time until a steady state solution is reached: repeating the following steps for one of the incremental cavity lengths: calculating a gain change and a modal refractive index change for the laser waveguide structure for one incremental stripe width; calculating a spontaneous emission term for the gain change; calculating a gain roll-off term for the gain change; applying the gain change, the modal refractive index change, the spontaneous emission term, and the gain roll-off term to at least two forward-propagating beams and at least two backward-propagating beams for the one incremental stripe width; performing a Fourier transformation with respect to the one incremental stripe width to yield a plurality of diffraction terms; adding
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: March 15, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Igor Vurgaftman, Jerry Meyer
  • Patent number: 6862300
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular consisting in a way of suppressing the undesired first and higher order modes of the laser which consume energy and do not contribute to the optical output of the laser, thus reducing it's efficiency. Essentially, the novel effect is provided by a structure comprising CIG—for Complex Index Guiding—elements on top of the laser diode. These CIG elements consist of one or a plurality of layers and must contain at least one layer which provides the optical absorption of undesired modes of the lasing wavelength and preferably contains an insulating layer as a first contact layer to the semiconductor.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: March 1, 2005
    Assignee: Bookham Technology plc
    Inventors: Silke Traut, Berthold Schmidt, Boris Sverdlov, Achim Thies
  • Patent number: 6856630
    Abstract: An optical system (in FIGS. 1A and 1B) wherein a rectilinear laser beam of homogeneous energy distribution is defined for annealing a non-single crystalline semiconductor film (a surface to-be-irradiated 1108), is constructed of reflectors (1106, 1107 etc.) easily and inexpensively without including lenses of transmission type. The rectilinear laser beam can be defined having a length of at least 600 (mm) which corresponds to the shorter latus of a large-sized substrate for mass production.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: February 15, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Tanaka
  • Patent number: 6853652
    Abstract: An optical servo writer system including a laser subsystem to generate a multiplicity of light beams, a lens positioned to receive and focus the light beams and a spatial filter positioned in the system so as to allow a subset of the light beams to pass through the filter. The multiplicity of light beams includes the subset that contains the desired beams, or the servo beams, and also the undesired beams, called the ghost beams. The system further includes a digital linear tape positioned adjacent the spatial filter with the spatial filter allowing the subset of light beams to hit the digital linear tape and produce servo marks. The spatial filter includes openings positioned to allow the subset of light beams to pass through the filter. The openings may be staggered relative to the digital linear tape to prevent debris generated by the marking process from clogging the openings.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: February 8, 2005
    Assignee: Quantum Corporation
    Inventors: Tzuo-Chang Lee, Arkady Feldman
  • Patent number: 6853655
    Abstract: A laser system includes a pump source that produces a first output. The pump source has a feedback loop with a first summing junction and a first command that has step quantization or digitized set point. An output device is coupled to the pump source to receive the first output and produce a second output. A feedback loop is coupled to the first summing junction. The feedback loop includes a second summing junction coupled to at least a portion of the second output. The second summing junction receives a second command and provides an input to the first summing junction. The feedback loop reduces the step quantization from the first output to provide finer control step of a property of the second output.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: February 8, 2005
    Assignee: Spectra Physics, Inc.
    Inventor: Kevin Holsinger
  • Patent number: 6853656
    Abstract: The present invention relates to a laser apparatus comprising a laser light emitting optical system for emitting laser light to a surface, a power stabilizing system for stabilizing the laser light power with a predetermined power interval, and a deflection system for deflecting light reflected from the surface away from the power stabilizing system. Thereby, the power stabilizing system will not erroneously regulate the power due to reflections from the surface to be treated. Furthermore, the invention relates to a method for treating an animal, including a human being, for a laser light treatable disease using the laser apparatus on the skin or the mucosa of the animal and allowing laser light to be emitted from the laser light emitting optical system to the skin or mucosa.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: February 8, 2005
    Assignee: Laser Medical Systems ApS
    Inventors: Jørn Rønvig, Kaj Glud Vonsild
  • Publication number: 20040258106
    Abstract: A laser system based on a common platform capable of being tailored to meet specific application requirements through simple and flexible means is disclosed. The output beam characteristics of the laser source are fully determined by a plug-in module that can be easily replaced on demand to modify one or more of those output beam characteristics. A connection module provides a robust, flexible and detachable connection between the common laser platform and the plug-in module, thus ensuring stable and well defined laser output beam without precluding on demand adjustment of its characteristics. Several embodiments are disclosed for a laser system with single or multiple output beams both with similar or dissimilar characteristics.
    Type: Application
    Filed: June 19, 2003
    Publication date: December 23, 2004
    Inventors: Francisco M. Araujo, Joao M. Sousa, Jose R. Salcedo
  • Patent number: 6834062
    Abstract: The present invention provides a method and apparatus for controlling laser power, using at least two Brewster windows which are aligned along an axis which is parallel to the direction of the laser beam and which are rotatable around said axis, wherein the first Brewster window is rotated in one direction and the second Brewster window is rotated in the opposite direction. Preferably, both Brewster windows only have to rotate each through +/−45° to control transmission of the laser beam from maximum to minimum.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: December 21, 2004
    Assignee: Raylase AG
    Inventors: Stephen Hastings, Peter Dullin, Alistair Gill, Erwin Wagner, Peter von Jan, Wolfgang Hauck
  • Publication number: 20040252731
    Abstract: An infra-red measurement device is disclosed having at least two laser emitters (2) which between them define a sighting area (7,7′,7″). In one embodiment of the invention, two lasers are provided and these are each preferably split into a number of beams by means of, for example, a diffraction grating lens (4). The fact that there are two laser emitting devices, means that effectively twice the power can be utilised since the limit is per laser emitting device, and thus twice the brightness of a conventional device attained. In another embodiment of the invention, four laser emitters (2) are employed and the beams (6) can be split by a diffraction grating as before. The laser emitters in the device can be operated simultaneously, sequentially, or can be pulsed. Having greater brightness than conventional devices, the detectors of the invention are excellent for use in dark or smoky conditions, for example for obtaining the temperatures of car engines, furnaces and the like.
    Type: Application
    Filed: June 9, 2004
    Publication date: December 16, 2004
    Inventors: Milton Bernard Hollander, Shahin Baghai
  • Patent number: 6831935
    Abstract: Accurate and efficient synchronization of two pulsed radiation sources (e.g. iwo mode locked lasers) is accomplished in stages. Rough synchronization is accomplished by synchronizing (for example) the fundamental repetition rate of the two lasers. Fine synchronization is accomplished by synchronizing high harmonics of the two lasers. More accurate synchronization may be accomplished by adding more stages, by utilizing light out of a nonlinear laser in which the two beams are crossed, or by utilizing heterodyne beats of the two laser beams. A dc offset signal may added to the control signal generated by the synchronization stages.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: December 14, 2004
    Assignee: The Regents of the University of Colorado
    Inventors: Jun Ye, Henry C. Kapteyn, John L. Hall, Robert K. Shelton, Margaret Murnane, Long-Sheng Ma
  • Publication number: 20040240487
    Abstract: A method for adjusting the relative output power of individual output wavelengths of a multi-output-wavelength Raman laser (10) is disclosed. The method is characterized by the steps of suppressing the relative output power of a potentially most powerful output wavelength (98) in a first step (108), adjusting the relative output power of the shortest output wavelength (94) in a second step (110), adjusting the relative output power of further output wavelengths (96, 100, 102, 104) in a third step (112), and adjusting the relative output power of the potentially most powerful output wavelength (98) in a fourth step (114). Further, a device (68) that performs such a method is disclosed, i.e. a device for adjusting the relative output power of individual output wavelengths (94, 96, 98, 100, 102, 104) of such a laser (10).
    Type: Application
    Filed: April 20, 2004
    Publication date: December 2, 2004
    Applicant: ALCATEL
    Inventors: Sophie Borne, Florence Leplingard
  • Patent number: 6826203
    Abstract: The present invention relates to a high yield DFB laser with an effective reject selection using criteria on threshold current. The demand for high output power often will require use of lasers with asymmetric power distributions with most of the light power coming out from the front mirror. The laser according to the invention preferably has an as-cleaved back mirror, an AR-coated front mirror and a 90- degree phase shift (wavelength/4) positioned at 43% of the laser length counted from the rear mirror. This type of laser gives a good SM-yield, an advantageous power asymmetry and a possibility to select good lasers using the threshold current as selection parameter.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: November 30, 2004
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Per Olov Granestrand
  • Patent number: 6822981
    Abstract: A wavelength-tunable laser consists of a resonant semiconductor cavity coupled to a sampled Bragg reflector grating having reflectivity peaks for N optical frequencies. The resonant cavity is formed of two opposite reflector members that are not wavelength selective and delimit an amplifier section coupled to a phase tuning section. The optical length of the cavity is adjustable electro-optically as a function of a control voltage applied to it. The laser can be tuned quickly over a wide band.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: November 23, 2004
    Assignee: Avanex Corporation
    Inventor: Joël Jacquet
  • Patent number: 6822977
    Abstract: A lithography laser system for incorporating with a semiconductor processing system includes a discharge chamber filled with a laser gas including molecular fluorine and a buffer gas, multiple electrodes within the discharge chamber and connected with a discharge circuit for energizing the laser gas, a resonator including the discharge chamber for generating a laser beam, and a processor. The processor runs an energy control algorithm and sends a signal to the discharge circuit based on said algorithm to apply electrical pulses to the electrodes so that the laser beam exiting the laser system has a specified first energy distribution over a group of pulses. The energy control algorithm is based upon a second energy distribution previously determined of a substantially same pattern of pulses as the group of pulses having the first energy distribution.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: November 23, 2004
    Assignee: Lambda Physik AG
    Inventors: Uwe Stamm, Hans-Stephan Albrecht, Günter Nowinski
  • Patent number: 6819690
    Abstract: A laser with a decoupling device for emitting a laser output depending on at least one influenceable parameter and a mode-coupling device for coupling a plurality of the laserable modes of the resonator. A detector is provided for detecting a value related to the emitted laser output and a parameter varying means for varying the at least one parameter in response to the detected value.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: November 16, 2004
    Assignees: Universität Karlsruhe
    Inventors: Franz Xaver Kärtner, Uwe Morgner, Thomas Richard Schibli
  • Publication number: 20040218636
    Abstract: A laser apparatus comprises a semiconductor laser element which emits a light beam with a spread in a slow-axis direction and a fast-axis direction, a fast-axis collimating lens which controls the spread in the fast-axis direction of the light beam emitted from the semiconductor laser element, a reflector which returns the light beam emitted in the slow-axis direction in a specific angle range to the semiconductor laser element, a reflector supporting member which supports the reflector, and a side support member which supports the fast-axis collimating lens and the reflector supporting member in the slow-axis direction with respect to the semiconductor laser element.
    Type: Application
    Filed: March 4, 2004
    Publication date: November 4, 2004
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Noriyasu Kashima, Akira Ushijima, Kazuhito Higuchi, Takashi Togasaki, Tooru Sugiyama
  • Patent number: 6813286
    Abstract: A discontinuous phase element (86, 204) is disposed between the reflector (20, 23) elements of an optical resonator in order to suppress unwanted modes propagating within the cavity, and to preferentially allow the existence of preferred modes within the cavity. The discontinuous phase element (204) operates by producing sharp changes in the phase distribution of the undesirable modes, so that their propagation losses are sufficiently high prevent their build-up. This is achieved by introducing a discontinuous phase change to these modes at locations where they have high intensity. At the same time, the desired modes suffer 0 or 2&pgr; phase change, or have low intensity at the discontinuity, and so are unaffected by the discontinuous phase element. Such elements can be used in a single element or a double element configuration, and can be used in passive cavities or active cavities, such as lasers.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: November 2, 2004
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Yochay Danziger, Asher A. Friesem, Ram Oron
  • Patent number: 6807202
    Abstract: The invention relates to a method that can be used to compensate the influence of the temperature on the optical output power (light power) of light emitting diodes and laser diodes without the need to measure the temperature or light power. The method is based on the fact that the current flowing through a light emitting or laser diode and the forward voltage drop on the diode are at a constant light power independent of the temperature in a functional correlation that is often linear and can be obtained. If it is known, it must only be achieved during operation that the current and the forward voltage exhibit this correlation in order to eliminate the temperature effect on the light power.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: October 19, 2004
    Assignee: Sensor Line-Gesellschaft fuer Optoelektronische Sensoren mbH
    Inventors: Joerg Plamper, Josef Engl
  • Patent number: 6804269
    Abstract: A laser beam delivery system for supplying a laser beam to a computer generated hologram which shapes and divides the supplied laser beam into a plurality of pseudo flat top laser beams. The plurality of pseudo flat top laser beams are then passed through collimated optics which alter the beams so that the beams are conveyed along the optical axis in a parallel manner. The plurality of collimated laser beams then passes through a converging mechanism which facilitates converging of the plurality of separated collimated laser beams through a clear aperture of a mirror of a first repeat positioning device so that all of the light is received by the repeat positioning device and appropriately reflected thereby to a second mirror of a second repeat positioning device and then to a rear surface of an F-Theta lens. The F-Theta lens focuses the plurality of separated collimated laser beams at the object to be processed.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: October 12, 2004
    Assignee: Hitachi Via Mechanics, Ltd.
    Inventors: Todd E. Lizotte, Orest Ohar
  • Patent number: 6798947
    Abstract: At technique for holding a resonator relative to an optical fiber at a specified distance. Structures including a rectangular indentation may be formed in the end of the optical fiber. The resonator may be placed against edges of the structures, to hold a different portion of the resonator spaced from an area where the waveguide modes will emanate.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: September 28, 2004
    Assignee: California Institute of Technology
    Inventor: Vladimir Iltchenko
  • Patent number: 6798794
    Abstract: Provided are a semiconductor laser device capable of increasing an emission angle of a laser beam, an astigmatic correction plate used therefor and a method of arranging the astigmatic correction plate. In order to correct the astigmatism of a laser beam emitted from a first laser light source or a second laser light source, the astigmatic correction plate is arranged so as to intersect diagonally an optical center line (an optical axis) of the laser beam, and the astigmatic correction plate, the first light source and the second light source are arranged so that an optical axis of the first laser light source coincides with a center line (CL) of an effective diameter of an aperture and a distance from the second laser light source to the astigmatic correction plate in a direction parallel to the optical axis is shorter than a distance from the first laser light source to the astigmatic correction plate.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: September 28, 2004
    Assignee: Sony Corporation
    Inventor: Hiroyuki Miyahara
  • Patent number: 6795475
    Abstract: A semiconductor-laser-excited solid-state laser apparatus includes a solid-state laser element and a semiconductor laser unit including a resonator. The solid-state laser element is excited by light emitted from the semiconductor laser unit, and emits laser light. The resonator length in the semiconductor laser unit is arranged to be at least 0.8 mm, so as to reduce an amount of wavelength shift in light emitted from the semiconductor laser unit, and achieve a stable, high-power laser output from the semiconductor-laser-excited solid-state laser apparatus.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: September 21, 2004
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hisashi Ohtsuka, Yoji Okazaki
  • Patent number: 6792014
    Abstract: One optical base is provided on each side of a housing that houses a laser oscillator. Optical parts of an optical resonator are fixed to the optical bases. The optical bases are fixed to each other, independently from the housing, by supporting rods. A plate spring and two dampers fix the respective optical base to respective end of the housing. The plate spring bends in the direction of the laser beam when the housing deforms. The damper attenuates oscillation generated due to the displacement of the housing.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: September 14, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Shoichiro Hara, Koji Funaoka, Takao Ohara, Satoshi Nishida
  • Patent number: 6788714
    Abstract: Diamonds are marked by a laser beam having a characteristic that is changeable by positioning a selected aperture in the beam within a resonant cavity of a laser source. Guidelines are positioned in advance on the diamonds, and the marking is subsequently performed between the guidelines.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: September 7, 2004
    Inventor: David Benderly
  • Patent number: 6782017
    Abstract: An object of the invention is to provide a wavelength locker which has a wider locking range than that of the wavelength locker in the prior art and which can cope with a plurality of wavelengths. The aforementioned objects are achieved by a wavelength locker, which comprises a periodic filter, a detecting part for detecting the intensity of a laser beam through the periodic filter, and a controlling part for controlling the wavelength of the laser beam to a desired wavelength in accordance with the output of the detecting part. In this wavelength locker, the FSR of the periodical filter is controlled according to space between the wavelengths, and refers to the number of wavelength to be locked, so that the characteristics corresponding to output wavelengths that vary in every period twice the space of wavelengths and are complementary to each other, can be obtained, and the locking range will become wider.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: August 24, 2004
    Assignee: Fujitsu Limited
    Inventors: Yutaka Kai, Hideyuki Miyata, Hiroshi Onaka
  • Patent number: 6782015
    Abstract: A laser survey instrument includes a laser source; a beam waist position varying optical system having a movable lens group through which a laser beam emitted from the laser source passes, so that the movement of the movable lens group in an optical axis direction causes the beam waist position of the laser beam to vary; a rotatable head portion from which the laser beam transmitted through the beam waist position varying optical system is emitted; a reciprocating-scan angle setting device for setting a reciprocating-scan angle of the rotatable head portion in accordance with position data of the movable lens group of the beam waist position varying optical system; and a head portion controller for reciprocally moving the head portion by the reciprocating-scan angle.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: August 24, 2004
    Assignees: PENTAX Corporation, Pentax Precision Co., Ltd
    Inventors: Nobuaki Kawatani, Sadao Murano, Mitsuhiro Matsumoto
  • Patent number: 6782016
    Abstract: Systems and methods are described for laser array synchronization using master laser injection of broad area lasers. A method, includes: master laser injecting a plurality of broad area lasers; and externally cavity coupling the plurality of broad area lasers. A method, includes: master laser injecting a plurality of broad area lasers; and externally Q switch coupling the plurality of broad area lasers. A method, includes: injection synchronizing a plurality of pulsed broad area lasers using a signal source; modulating the plurality of pulsed broad area lasers using the signal source; and externally coupling the plurality of pulsed broad area lasers.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: August 24, 2004
    Assignee: UT-Battelle, L.L.C.
    Inventors: Yehuda Y. Braiman, Yun Liu
  • Patent number: 6765733
    Abstract: Disclosed are systems and methods providing adjustable mounting with multiple degrees of freedom, such as three degrees of freedom allowing controlled adjustment of pitch, roll, and/or yaw. In providing such degrees of freedom, a ball member of a ball and socket mounting apparatus may preferably be disposed upon a surface and a mount, having a socket portion sized and shaped to correspond to a mating surface of the ball member, may be placed in communication therewith. The mount may have a component to be mounted placed thereon after the mount is placed in communication with the ball member. Preferably as part of the system manufacturing process, an adjustment mechanism is placed in communication with the mount and provides manipulating forces thereto, preferably causing the socket portion of the mount to slidably engage the mating surface of the ball member, in order to precisely position a component mounted thereon.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: July 20, 2004
    Assignee: Nlight Photonics Corporation
    Inventors: Scott A. Igl, Roger F. Johnson, David W. Rook, Derek E. Schulte
  • Patent number: 6765947
    Abstract: In order to improve a laser amplifying system comprising a solid-state member having a laser-active medium, a radiation field system determined by an optical guide means for the radiation field and an actively switchable, optical switching element arranged in the radiation field system for influencing the losses in the radiation field system in such a manner that this is suitable for low-amplification laser-active media, it is suggested that the solid-state member be designed like a thin plate, the radiation field system comprise an incoming branch and an outgoing branch which are coupled to one another, on the one hand, and between which, on the other hand, an amplifying radiation field is provided which is formed from a plurality of intermediate branches which extend between two optical beam reversing elements and, for their part, all penetrate the solid-state member in a direction transverse to its flat sides and within an active volume area, and that the active volume area have in directions transverse to
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: July 20, 2004
    Assignee: TRUMPF Laser GmbH + Co. KG
    Inventor: Malte Kumkar
  • Publication number: 20040120363
    Abstract: Continuous wave laser diodes are able to be operated so as to achieve a high power pulsed output by operationally exercising them using a subnanosecond input pulse having an IV (power) amplitude characteristic at or exceeding a particular derived power (IV) threshold. Injection current on the order of 1 Amp and an operational voltage in the range of 4 Volts causes a CW laser to define a pulsed output in the 200 mV to 500 mV range. CW lasers having these output characteristics are coupled to mathematically defined branched pathways in order to construct an optical timing device relying on optical pulses traversing optical pathways at the speed of light. Pathway length is precisely controlled in order to define timing intervals relying solely on an optical path length and a known traversal speed.
    Type: Application
    Filed: October 22, 2003
    Publication date: June 24, 2004
    Inventor: James P. Siepmann
  • Patent number: 6744790
    Abstract: A device for attenuating thermal lensing in an optical resonator is disclosed. The device includes a laser rod having an optical axis, a first high-reflectivity element disposed within a path of the optical axis, an outcoupling element disposed within a path of the optical axis, a second high-reflectivity element disposed within a path of the optical axis, and a potential source coupled to the second high-reflectivity element. Application of a first potential from the potential source onto the second high-reflectivity element causes the second high-reflectivity element to be substantially reflective, and application of a second potential from the potential source onto the second high-reflectivity element causes the second high reflectivity element to be substantially transmissive, to preserve a TEM00 beam quality within the optical resonator under varying thermal conditions.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: June 1, 2004
    Assignee: BioLase Technology, Inc.
    Inventors: Michael M. Tilleman, Dmitri Boutoussov, Ioana M. Rizolu, Andrew I. Kimmel
  • Publication number: 20040100998
    Abstract: A laser is disclosed which includes a gain medium, a switch element, and a pulse controller. In one embodiment laser light of differing polarizations pass along respective paths and a pulsed laser output is generated via an electro-optical element. In another embodiment light of differing polarizations passes in differing directions through a cyclical path. The invention can make use of a prism-shaped polarizer having a polarization selection face and two further faces. Yet further initial pulses can be controlled to reduce energy, for example by progressively increasing the period or amplitude of successive pulses. As a result an efficient and high power laser apparatus is realized.
    Type: Application
    Filed: December 8, 2003
    Publication date: May 27, 2004
    Inventors: Jason Palmer, David R Klug, Ian P Mercer, Daniel A Allwood
  • Patent number: 6724783
    Abstract: An apparatus and method for synthesizing waveforms with arbitrary amplitude, frequency, and phase modulation. Pulses from a broadband (supercontinuum) optical source are filtered into a plurality of wavelength channels, and the intensity of each wavelength channel is adjusted to an appropriate level depending on the desired shape of the envelope of the output pulse. The envelope of the sampling wavelength channels can be stretched, compressed, or inverted in the time domain later using a dispersive medium. After time domain manipulation, the optical pulse train is observed with a combination of high-speed photodetectors and a radio frequency low-pass filter, a low-speed photodetector.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: April 20, 2004
    Assignee: The Regents of the University of California
    Inventors: Bahram Jalali, Parag V. Kelkar
  • Patent number: 6723974
    Abstract: A process for the adaptive beam control of medium-energy laser weapons for fighting electro-optical sensors and windows, wherein the behavior of the laser power reflected from a bright spot of the target and measured by a thermal image apparatus during increasing irradiation intensity is analyzed during a phase of measurement. The laser power to be emitted that will lead to the desired laser beam diameter or to the highest possible laser intensity at the target during the subsequent phase of fighting is then derived by calculation from this as well as other parameters influencing the thermal beam expansion. It is thus made possible that the laser does not always have to be operated with the maximum power, but only with the currently needed power during the phase of fighting, so that a saving is achieved in the consumption of primary laser energy. One example is explained.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: April 20, 2004
    Assignee: LFK Lenkflugkörpersysteme GmbH
    Inventor: Gunther Sepp
  • Patent number: 6714566
    Abstract: A wavelength monitor is provided based on the transmission response of an optical filter. The monitor provides feedback to the laser enabling it to lock to any given wavelength within its tuning range. The invention is also a process for integrating the wavelength monitor directly on chip with a variety of tunable semiconductor lasers. The invention also comprises a method for controlling the wavelength of a tunable laser by using a wavelength monitor to measure the output light and provide feedback to a control system. The laser and wavelength monitor are integrated together on a single indium phosphide chip. The wavelength monitor comprises a filter with a wavelength dependent transmission function and a pair of detectors. One detector is illuminated with light that has passed through the filter and the other provides a reference to measure the input intensity. Taking the ratio of the filtered light level to the unfiltered light provides a wavelength dependent wavelength.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: March 30, 2004
    Assignee: The Regents of the University of California
    Inventors: Larry A. Coldren, Thomas Gordon Beck Mason, Gregory Fish
  • Patent number: 6714564
    Abstract: The invention is a dual function laser device for use in night vision systems. The invention uses lenses to cause one portion of a laser beam to converge to a target point and another portion of the beam to diverge. The divergent portion is variable in size and illuminates a viewable area around the target point. Rather than use two lasers to create an illuminated view area around an illuminated target point, the invention uses a combination of a lens and a sub-aperture lens arrangement to create two illuminations from a single laser.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: March 30, 2004
    Assignee: B. E. Meyers & Co., Inc.
    Inventor: Brad E. Meyers
  • Publication number: 20040052277
    Abstract: A key requirement of a fiber optic communication system is its ability to transmit data from one location to another relatively free of errors in the data stream. The data stream error rate is a function of the error rate of the laser module utilized to transmit the data. A fast and efficient method of testing a laser module, in order to estimate its bit error rate, is to measure side mode suppression ratios of the laser module output while operating the laser module at each of a first and second bias setting, and to generate a test result for the laser module in accordance with the difference between the first and second side mode suppression ratio measurements. Furthermore, a system is provided for performing this laser module testing method.
    Type: Application
    Filed: September 18, 2002
    Publication date: March 18, 2004
    Inventor: Charles W. Miller
  • Patent number: 6697683
    Abstract: A positioning system including a sensor, a drive sequencer and an actuator. The sensor senses the actuator position and provides position signals to drive the sequencer which responsively computes and drives the actuator in open loop moves containing dwell intervals of position. The actuator positions a mirror or other load means to reflect an optical beam as desired. Either preprogrammed or non-repeating sequences of actuator stopping positions can be synchronized with a laser. During dwell times, mirror position accuracy better than 10 microradians is suitable for tuning CO2 pulse burst or CW lasers.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: February 24, 2004
    Inventor: J. Gilbert Tisue
  • Patent number: 6693272
    Abstract: A light path deviation detecting apparatus has a diverging element for diverging a detection target light path into two light paths, and detects light receiving position on light receiving surfaces disposed spaced light path lengths different from each other in the diverged light paths. A tilt of the detection target light path is detected from the light receiving positions detected respectively.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: February 17, 2004
    Assignee: Nikon Corporation
    Inventors: Akira Adachi, Tadashi Uchida, Mikio Aoshima
  • Patent number: 6672739
    Abstract: An apparatus, system, and method for illuminating a lithographic mask or an object in a microscope is presented, whereby the output of a laser beam homogenizer is imaged on to a field such as the object plane for lithographic application or on to the rear focal plane of an epi illuminating objective lens as a source for wide field illumination at an object plane in a microscope (for application to magnified imaging of weak phase objects).
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: January 6, 2004
    Assignee: International Business Machines Corp.
    Inventors: Bernell Edwin Argyle, Jeffery Gregory McCord
  • Patent number: 6671298
    Abstract: Photonic arbitrary waveform methods and generation by manipulating the phase-locked longitudinal modes of an approximately 12.4 GHz fundamentally modelocked external-cavity semiconductor laser are demonstrated. Photonically synthesized sine waves (center frequency of approximately 37.2 GHz, linewidth less than approximately 100 Hz, dynamic range approximately 50 dB at approximately 100 Hz resolution bandwidth) and complex, arbitrarily shaped optical/microwave frequency waveforms with instantaneous bandwidths up to approximately 75 GHz are shown. A WDM filter can be used to separate individual longitudinal modes of a modelocked laser. Photonic arbitrary generation occurs through the modulation of individual channels before recombining the channels, followed by amplifying the output.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: December 30, 2003
    Assignee: University of Central Florida
    Inventors: Peter J. Delfyett, Tolga Yilmaz, Christopher M. Depriest
  • Patent number: 6661814
    Abstract: Method and apparatus for producing a laser output having stimulated Brillouin scattering (SBS) suppression characteristics. An excitation signal is provided to an optical path length adjustment element in an external cavity laser to modulate the optical path length of the cavity. This produces a laser output having a wavelength modulation frequency and line width that are a function of the frequency and amplitude of the excitation signal. Under appropriate modulation frequency and line width combinations, the laser output comprises an optical signal with SBS suppression characteristics, thus enabling a higher power signal to be launched into a fiber link since the SBS suppression characteristics raise the SBS threshold of the link. The optical path length modulation also produces an intensity (amplitude) modulation in the laser output. A detector is employed to produce a feedback signal indicative of the intensity modulation that is used for tuning the laser in accordance with a wavelength locking servo loop.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: December 9, 2003
    Assignee: Intel Corporation
    Inventors: William B. Chapman, Andrew Daiber, Hua Li, Mark McDonald
  • Patent number: 6654401
    Abstract: A chirp signal source includes first and second lasers formed on a solid-state chip or substrate. Each of the lasers has a resonator or cavity which incorporates or includes electrooptic material which changes refractive index in response to an electric field. The lasers are pumped, and the resulting laser beams are coupled to a light-to-electric converter which combines the light beams to generate an electrical difference frequency. The change in refractive index allows the lasers to be swept or chin,ed at a much higher rate than thermal or piezoelectrically operated lasers. This structure has the advantages of tending to reduce temperature effects on the difference frequency. It has the further advantage of a high sweep rate, which can be used to improve the signal-to-noise ratio. A radar or lidar ranging system according to an aspect of the invention uses multiple solid-state lasers, which are thermally coupled together.
    Type: Grant
    Filed: March 17, 2001
    Date of Patent: November 25, 2003
    Assignee: F & H Applied Science Associates, Inc.
    Inventors: Amarildo Jesus Cavalheiro Vieira, Peter Robert Herczfeld, Vincent Michael Contarino, Yifei Li, Linda Jeanne Mullen
  • Patent number: 6625181
    Abstract: An apparatus for laser machining for optically machining a workpiece. The apparatus comprises a plane polarized primary laser beam source adapted to generate a primary plane polarized light beam; a beam splitter, adapted to split the primary light beam into a plurality of secondary light beams; a light modulator array, comprising an array of individually controllable elements that are each adapted to be set to either allow each beam of the plurality of secondary light beams to traverse through, or effectively block it; a microlens array, comprising an array of microlens elements foci of predetermined lengths, said microlens array elements corresponding to the elements of the light modulator array so that light beam passing through an element of the light modulator array is focused by a corresponding element of the microlens array; and control means adapted to independently switch each of the elements of the light modulator between a transparent and opaque modes in a predetermined manner.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: September 23, 2003
    Assignee: U.C. Laser Ltd.
    Inventors: Sergei V. Oshemkov, Vladimir Yu. Dmitriev, Nicolai N Guletsky
  • Patent number: 6625183
    Abstract: Apparatus and methods that provide a tunable laser output wavelength which varies linearly or with high predictability over time, and which can provide tuning speeds of greater than 100 nanometers per second. The apparatus includes a laser resonator cavity having first and second reflective elements, at least one of which is movable to provide a constant change in output wavelength with respect to time. A tuning assembly associated with the movable reflective element is structured, configured, and positioned to adjust the movable reflective elements such that constant changes in output wavelength and high tuning speeds are provided.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: September 23, 2003
    Assignee: New Focus, Inc.
    Inventors: Carter F. Hand, Bruce Jenket, Jan-Willem Pieterse, Mark Wippich, Khiem Do
  • Patent number: 6608847
    Abstract: A laser apparatus and method with compact cavity design that provides suppression of source spontaneous emission (SSE) and amplified spontaneous emission (ASE) light with minimal loss. The laser comprises a gain medium emitting a light beam along an optical path, a tuning element positioned in the optical path and configured feed back light of a selected wavelength to the gain medium and configured to define a first output beam directed along a first output path, a partial reflector located in the optical path and positioned to create a second output beam directed along a second output path substantially parallel to the first output path; and having a spontaneous emission component that is spatially separated from the selected wavelength. The second output beam can be coupled into optical fiber and produce a coherent light source with high spectral purity and tunable wavelengths.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: August 19, 2003
    Assignee: New Focus, Inc.
    Inventors: Guangzhi Z. Zhang, Andrew Davidson, David Robinson, Carter Hand, Mark Wippich, Murray Reed, Weizhi Wang
  • Patent number: 6606332
    Abstract: A color mixing system is proposed for use in an optical-fiber laser-diode assembly comprising at least two semiconductor laser diodes, optical fiber light input and output couples, a system of spatial superposition of laser beams of different wavelength with at least one semi-transparent mirror, and a system for electronic control of light power in monochromatic light components to be mixed. The electronic control system makes it possible to produce a plurality of different colors. The basic colors, i.e., blue, green, and red, are produced by respective laser diode assemblies provided with means for adjusting output light power on each individual assembly. The electronic system contains a microprocessor connected to a pulse width modulation unit capable of modulating the duration and shape of the light pulse emitted from the laser diode. This allows for selecting a required ratio of energetic brightnesses of light beams produced by individual laser diode assemblies.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: August 12, 2003
    Inventor: Bogie Boscha
  • Patent number: 6603780
    Abstract: A laser apparatus for selectively supplying a plurality of laser beams of 30 nm or more in wavelength difference to a measuring apparatus includes optical fibers through which the laser beams pass, and a switching and coupling means connected to the optical fibers for selecting at least one laser beam from a plurality of laser beams. A laser-applied apparatus includes this laser apparatus, and a fluorescent microscope, a DNA sequencer, or an examination apparatus selected from a DNA chip examination apparatus, protein examination apparatus and a DNA probe array examination apparatus.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: August 5, 2003
    Assignee: Hitachi Metals, Ltd.
    Inventor: Tsuyoshi Miyai