Optical System Structure (e.g., Lens) Patents (Class 374/130)
-
Patent number: 12025501Abstract: A three-dimensional displacement compensation method is provided. The method includes an obtaining step, a transforming step, a first determining step, a first calculating step and a compensating step. The obtaining step includes obtaining a current image of a measured element captured by a microscopic thermoreflectance thermography device. The transforming step includes two sub-steps. One sub-step uses Fourier transform to calculate a reference image to obtain a first result, and the other sub-step uses Fourier transform to calculate the current image to obtain a second result. The first determining step includes determining a peak point coordinate and a fitting diameter of a point spread function of an optical system of the device. The first calculating step includes calculating a three-dimensional displacement of the position to be compensated relative to the reference position. The compensating step compensates the position to be compensated.Type: GrantFiled: July 7, 2022Date of Patent: July 2, 2024Assignee: The 13th Research Institute of China Electronics Technology Group CorporationInventors: Yan Liu, Aihua Wu, Wei Wang, Yuwei Zhai, Hao Li, Chen Ding, Xiaodong Jing, Baicheng Sheng
-
Patent number: 11867638Abstract: A system and method is disclosed for detecting anomalies in an additively manufactured part. An energy source generates a signal forming an optical beam for creating a melt pool in a layer of feedstock material being selectively fused to make a part in an additive manufacturing operation. A sensor is configured to receive a signal reflected from the melt pool. The reflected signal forms a thermal signal indicative of a temperature of the feedstock material at a known location on a layer of the feedstock material while the feedstock material is being fused at the known location. A controller receives and analyzes data relating to the received signal to determine if an anomaly exists at the known location.Type: GrantFiled: October 28, 2020Date of Patent: January 9, 2024Assignee: Lawrence Livermore National Security, LLCInventors: Jean-Baptiste Forien, Nicholas P. Calta, Gabriel Mark Guss, Manyalibo Joseph Matthews
-
Systems and methods for measuring radiated thermal energy during an additive manufacturing operation
Patent number: 11390035Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensor; determining an area of the build plane traversed during the scans; determining a thermal energy density for the area of the build plane traversed by the scans based upon the amount of energy radiated and the area of the build plane traversed by the scans; mapping the thermal energy density to one or more location of the build plane; determining that the thermal energy density is characterized by a density outside a range of density values; and thereafter, adjusting subsequent scans of the energy source across or proximate the one or more locations of the build plane.Type: GrantFiled: September 18, 2019Date of Patent: July 19, 2022Assignee: SIGMA LABS, INC.Inventors: R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Darren Beckett, Alberto M. Castro -
Patent number: 11366016Abstract: A method of measuring temperature based upon a system of equations applying Stefan-Boltzmann's law and using a measurement value for an object to be measured and an ambient temperature value (Ta) comprises: pre-calculating (200, 202) a first vector (LUT1) and a second vector (LUT2). The first vector (LUT1) is a series of values proportional to received power based upon respective temperature values and in respect of a predetermined generic range of temperatures. The second vector (LUT2) is a series of sensitivity characteristic factor values based upon expected measured temperature values and in respect of a predetermined range of expected object measured temperatures. The first vector (LUT1) and the second vector (LUT2) are used (206) to generate a temporary vector (LUTT) of a series of values limited to the ambient temperature value to solve the system of equations in respect of the measurement value for the object, thereby determining (208) a temperature (To) for the object from the measurement value.Type: GrantFiled: May 5, 2020Date of Patent: June 21, 2022Assignee: MELEXIS TECHNOLOGIES NVInventors: Viktor Kassovski, Slaveyko Ivanov Slaveykov, Aleksandar Ivanov Gargavelov, Luc Buydens
-
Patent number: 11359979Abstract: A hybrid temperature sensor for an integrated circuit includes two temperature sensors—an application temperature sensor for measuring temperature during normal use of the integrated circuit, and a calibration temperature sensitive element. By providing two temperature sensitive elements within the integrated circuit, it is possible to take advantage of different characteristics of temperature sensors to achieve high accuracy calibration of the application temperature sensor relatively quickly and at low cost, whilst also maintaining desirable characteristics for the application temperature sensor, such as high speed, low power consumption, high resolution, etc.Type: GrantFiled: May 30, 2019Date of Patent: June 14, 2022Assignee: Analog Devices International Unlimited CompanyInventor: Jonathan Ephraim David Hurwitz
-
Patent number: 11041617Abstract: A luminaire includes a terminal block that receives power from a power source, a light source power supply electrically coupled to the terminal block and to a light source, a power converter electrically coupled to the terminal block and to a power over Ethernet injector, a camera coupled to the power over Ethernet injector, and a transceiver electrically coupled to the power converter. The power over Ethernet injector can supply power to and receive data from the camera. The transceiver is also coupled to the power over Ethernet injector and can communicate data to and receive data from the camera.Type: GrantFiled: April 22, 2019Date of Patent: June 22, 2021Assignee: SIGNIFY HOLDING B.V.Inventors: Tunji Adejumo, Nam Chin Cho, Chris Lu, Jay Michael Sachetti
-
Patent number: 11029452Abstract: A 3D object information capturing system is provided, including a camera module, a distance measuring module, and a processing module. The camera module captures image information of an object, and the distance measuring module captures distance information of the object. The processing module receives the image information and the distance information respectively from the camera module and the distance measuring module, and constructs a 3D model of the object according to the image information and the distance information.Type: GrantFiled: January 25, 2019Date of Patent: June 8, 2021Assignee: TDK TAIWAN CORP.Inventor: Sin-Jhong Song
-
Patent number: 10739202Abstract: The present application discloses a smart device comprising a temperature sensor, and a method for controlling the same. The present application relates to a smart device comprising a temperature sensor for measuring the temperature of a certain object at a position spaced a certain distance from the object and having a measurement range varying according to the distance from the object. The present application provides a method for controlling a smart device comprising the steps of: measuring a distance from the smart device to the object for measuring the temperature of the object; if the measurement range of the temperature sensor at the measured position is not placed within the object, notifying a user that the temperature of the object cannot be measured; and directing the user to place the measurement range within the object.Type: GrantFiled: November 19, 2015Date of Patent: August 11, 2020Assignee: LG ELECTRONICS INC.Inventors: Hongjo Shim, Hyunok Lee, Youngho Sohn, Seonghyok Kim, Mihyun Park, Jisoo Park, Hyunwoo Kim
-
Patent number: 10591148Abstract: A lighting device that stores a rotation angle of a head unit, on which a user's intention is properly reflected. The lighting device includes a main unit, a head unit that includes a light emission section and is rotatable with respect to the main unit, a bounce angle storage circuit that stores a rotation angle of the head unit with respect to the main unit, a bounce angle detection circuit that detects whether or not the head unit is rotated with respect to the main unit, and a rotation angle of the head unit, and a storage button. When rotation of the head unit is detected, rotation angles detected by the bounce angle detection circuit last time are stored in the bounce angle storage circuit in response to a predetermined operation for releasing the storage button from a depressed state.Type: GrantFiled: October 19, 2017Date of Patent: March 17, 2020Assignee: CANON KABUSHIKI KAISHAInventor: Yutaka Yamamoto
-
Patent number: 10362244Abstract: A multi-sensor camera system includes a first optical sensor having a focus mechanism. The focus of the first optical sensor is adjusted using the focus mechanism. The multi-sensor camera system also includes a second optical sensor mounted inside the focus mechanism of the first optical sensor. The radial distance between optical axes of the first and second optical sensors is not limited by the focus mechanism.Type: GrantFiled: July 11, 2017Date of Patent: July 23, 2019Assignee: DRS Network & Imaging Systems, LLCInventors: Henry W. Neal, Richard L. Southerland, Samuel E. Ivey, Rachel Laird
-
Patent number: 9986175Abstract: Various techniques are disclosed for providing a device attachment configured to releasably attach to and provide infrared imaging functionality to mobile phones or other portable electronic devices. For example, a device attachment may include a housing with a tub on a rear surface thereof shaped to at least partially receive a user device, an infrared sensor assembly disposed within the housing and configured to capture thermal infrared image data, and a processing module communicatively coupled to the infrared sensor assembly and configured to transmit the thermal infrared image data to the user device. Thermal infrared image data may be captured by the infrared sensor assembly and transmitted to the user device by the processing module in response to a request transmitted by an application program or other software/hardware routines running on the user device.Type: GrantFiled: June 23, 2015Date of Patent: May 29, 2018Assignee: FLIR SYSTEMS, INC.Inventors: Jeffrey D. Frank, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Andrew C. Teich, Dwight Dumpert, Mark Nussmeier, Eric A. Kurth
-
Patent number: 9617636Abstract: A vapor deposition system and its wafer and thin-film temperature control method are disclosed. A susceptor carries a plurality of wafer holders with each bearing a wafer. The susceptor makes revolution around a center axle and each wafer holder rotates around its own axis. A carrier gas approaches a first surface of the wafer and is heated to form a thin film to be deposited on the first surface. An isothermal plate is placed at a second surface of the wafer and the second surface is opposite to the first surface. One or more remote temperature-measuring elements measure a temperature of a rear surface of the isothermal plate and the rear surface is opposite to the wafer, and a wafer-side temperature is calculated by the measured rear surface temperature of the isothermal plate.Type: GrantFiled: August 31, 2015Date of Patent: April 11, 2017Assignee: HERMES-EPITEK CORPORATIONInventors: Chung-Yuan Wu, Bu-Chin Chung
-
Patent number: 9236552Abstract: A thermoelectric micro-platform includes a suspended micro-platform, the suspended micro-platform being configured as a support layer with a device layer disposed thereon. Two arrays of series-connected thermoelectric devices are disposed partially on the micro-platform. One array is operated as Peltier coolers and the other array is operated as Seebeck sensors.Type: GrantFiled: April 2, 2015Date of Patent: January 12, 2016Inventor: William N. Carr
-
System and method for online inspection of turbines using an optical tube with broadspectrum mirrors
Patent number: 9217852Abstract: An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 ?m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 ?m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 ?m wavelength).Type: GrantFiled: August 29, 2012Date of Patent: December 22, 2015Assignee: Siemens Energy, Inc.Inventor: Erwan Baleine -
Patent number: 9151152Abstract: A fiber optic sensing tool assembly is deployed in a wellbore that penetrates a hydrocarbon-bearing formation of interest to measure fluid composition and other fluid characteristics. This measurement is implemented by deploying the tool in a region in which there is substantially no fluid flow and by heating the tool through an optical delivery system. Parameters of the fluid are monitored as a function of the heating of the tool to derive information that is indicative of fluid composition and other fluid characteristics.Type: GrantFiled: June 20, 2012Date of Patent: October 6, 2015Assignee: Schlumberger Technology CorporationInventors: Dominic Brady, Arthur H. Hartog
-
Patent number: 9039276Abstract: A control unit sets a time interval for measuring a temperature of a liquid crystal panel as a first time interval (1 second), and thereafter measures the temperature of the liquid crystal panel each time the first time interval elapses. When the temperature of the liquid crystal panel is stabilized, the control unit sets a time interval for measuring the temperature of the liquid crystal panel as a second time interval (5 seconds). The control unit measures the temperature of the liquid crystal panel each time the second time interval elapses. Moreover, if an operation to change the amount of light reaching the liquid crystal panel is performed, the control unit restores the time interval for measuring the temperature of the liquid crystal panel to the first time interval.Type: GrantFiled: January 5, 2012Date of Patent: May 26, 2015Assignee: SEIKO EPSON CORPORATIONInventor: Shinsuke Fujikawa
-
Publication number: 20150131698Abstract: Embodiments of the present invention generally relate to methods and apparatus for monitoring substrate temperature uniformity in a processing chamber, such as an RTP chamber. Substrate temperature is monitored using an infrared camera coupled to a probe having a wide-angle lens. The wide-angle lens is positioned within the probe and secured using a spring, and is capable of withstanding high temperature processing. The wide angle lens facilities viewing of substantially the entire surface of the substrate in a single image. The image of the substrate can be compared to a reference image to facilitate lamp adjustments, if necessary, to effect uniform heating of the substrate.Type: ApplicationFiled: October 17, 2014Publication date: May 14, 2015Inventors: Kim VELLORE, Dinesh KANAWADE, Leonid M. TERTITSKI, Norman L. TAM, Aaron Muir HUNTER
-
Publication number: 20150130119Abstract: A device to measure a temperature of molten metal may include an infrared sensor effective to measure the temperature of the molten metal, a sheath having an open end, a sealed end, and a channel extending from the open end to the sealed end, and an infrared-transparent window disposed between the infrared sensor and the channel of the sheath. The open end of the sheath is disposed near the infrared sensor and the sealed end of the sheath extends into the molten metal. The infrared-transparent window or rod is disposed between the infrared sensor and the channel of the sheath such that the infrared sensor can measure the temperature through the infrared-transparent window or rod, the channel, and the sealed end. The infrared-transparent window or rod seals the infrared sensor from the channel in the sheath.Type: ApplicationFiled: November 6, 2014Publication date: May 14, 2015Applicant: CCPI INC.Inventor: Gary W. Hallum
-
Patent number: 9028136Abstract: A method for determining a blackbody temperature of an electrical discharge may include providing a radiometer with a sensor aperture, positioning a viewing aperture sheet between the sensor aperture and the electrical discharge, and providing the viewing aperture sheet with a viewing aperture therethrough, determining an area of the viewing aperture, determining a distance of the sensor aperture from the viewing aperture, observing the electrical discharge with the sensor aperture through the viewing aperture to obtain radiometer data, and calculating the blackbody temperature based at least on the radiometer data, the area of the viewing aperture and the distance of the sensor aperture from the viewing aperture.Type: GrantFiled: May 3, 2013Date of Patent: May 12, 2015Assignee: The Boeing CompanyInventor: Michael M. Ladd
-
Method of measuring temperature of component in processing chamber of substrate processing apparatus
Patent number: 9028139Abstract: A component in a processing chamber of a substrate processing apparatus, where a temperature may be accurately measured by using a temperature measuring apparatus using an interference of a low-coherence light, even when a front surface and a rear surface are not parallel due to abrasion, or the like. A focus ring used in a vacuum atmosphere and of which a temperature is measured includes an abrasive surface exposed to an abrasive atmosphere according to plasma, a nonabrasive surface not exposed to the abrasive atmosphere, a thin-walled portion including a top surface and a bottom surface that are parallel to each other, and a coating member coating the top surface of the thin-walled portion, wherein a mirror-like finishing is performed on each of the top and bottom surfaces of the thin-walled portion.Type: GrantFiled: July 30, 2013Date of Patent: May 12, 2015Assignee: Tokyo Electron LimitedInventors: Jun Yamawaku, Chishio Koshimizu, Tatsuo Matsudo -
Patent number: 9022648Abstract: A composite photonic crystal comprising an inverse opal structure defining an ordered array of voids with a filler composition received within the voids. A property of the filler composition changes in response to a stimulus, such as a temperature change, thereby changing the band gap of radiation that is reflected by the composite photonic crystal.Type: GrantFiled: November 11, 2010Date of Patent: May 5, 2015Assignee: PRC-DeSoto International, Inc.Inventors: Noel R. Vanier, Eldon L. Decker, Stuart D. Hellring, Xiangling Xu, Sean Purdy, Gregory J. McCollum
-
Patent number: 9006857Abstract: An IR sensor includes a suspended micro-platform having a support layer and a device layer disposed thereon. IR absorbers are disposed in or on the device layer. IR radiation received by the IR absorbers heats an on-platform junction of each of a plurality of series-connected thermoelectric devices operating in a Seebeck mode, the devices producing a voltage indicative of the received IR. Other thermoelectric devices are used to cool the platform, and a pressure sensing arrangement is used to detect loss of vacuum or pressure leaks.Type: GrantFiled: April 4, 2014Date of Patent: April 14, 2015Inventor: William N. Carr
-
Patent number: 8998485Abstract: The laser anemometry probe (LAP) system with continuous coherent detection, with single-particle mode, comprises means (AN) for analyzing the measurement signals of the said probe (LAP) and means (MES_T) for measuring the temperature (T). The system comprises, furthermore, means (DET_CG) for determining icing conditions when means (DET_GEL) for detecting the presence of a liquid water drop detect the presence of a liquid water drop, and when the said temperature (T) is below the said third threshold (S3).Type: GrantFiled: November 27, 2012Date of Patent: April 7, 2015Assignee: ThalesInventors: Jean-Pierre Schlotterbeck, Xavier LaCondemine
-
Patent number: 8986494Abstract: A plasma processing apparatus includes a temperature measuring unit; airtightly sealed temperature measuring windows provided in a mounting table, for optically communicating to transmit a measurement beam through a top surface and a bottom surface of the mounting table; and one or more connection members for connecting the mounting table and a base plate, which is provided in a space between the mounting table and the base plate. In the plasma processing apparatus, a space above the mounting table is set to be maintained under a vacuum atmosphere, and a space between the mounting table and the base plate is set to be maintained under a normal pressure atmosphere, and each collimator is fixed to the base plate at a position corresponding to each temperature measuring window, thereby measuring a temperature of the substrate via the temperature measuring windows by the temperature measuring unit.Type: GrantFiled: February 2, 2010Date of Patent: March 24, 2015Assignee: Tokyo Electron LimitedInventors: Tatsuo Matsudo, Chishlo Koshimizu, Jun Abe
-
Publication number: 20150043614Abstract: Provided are an infrared sensor and an infrared sensor device that are less susceptible to effects from the casing and lead wires, can be surface-mounted, and can measure the temperature of the object to be measured in a more accurate manner. This invention has: an insulating film; a first and a second heat sensitive element provided on the insulating film; a first and a second wiring film that are respectively connected to the heat sensitive elements; an infrared reflecting film; a terminal support body, arranged on the one face; and a plurality of mounting terminals provided to the terminal support body, wherein the mounting terminals have support convex parts protruding upward, the support convex parts are connected to the corresponding first and second wiring films, and the insulating film is supported such that a gap is provided between the terminal support body and the insulating film.Type: ApplicationFiled: January 1, 2013Publication date: February 12, 2015Inventors: Kazuyoshi Tari, Mototaka Ishikawa, Keiji Shirata, Kenzo Nakamura
-
Publication number: 20150037056Abstract: An electronic apparatus includes a thermopile array sensor, a reflector, and a temperature detection unit. The thermopile array sensor includes a plurality of thermopile elements arranged in a two-dimensional array pattern and a temperature detection surface divided into a plurality of predetermined regions aligned in vertical and horizontal directions, and the thermopile elements output a temperature detection signal corresponding to a temperature of the respective predetermined regions. The reflector is set at an angle to reflect infrared light emitted from a measurement point located outside of a viewing angle of the thermopile array sensor, so as to allow the infrared light to be incident on the temperature detection surface. The temperature detection unit detects the temperature on the basis of the temperature detection signal outputted from each of the thermopile elements. The thermopile array sensor and the reflector are located inside the electronic apparatus.Type: ApplicationFiled: July 11, 2014Publication date: February 5, 2015Inventors: Kentaro Naruse, Rie Tezuka
-
Patent number: 8926173Abstract: A distributed optical fiber sensor system is provided. In this system, backward-scattered light generated in a test optical fiber is filtered to separate the backward-scattered light into Raman scattered light and Brillouin scattered light. The separated Raman scattered light and Brillouin scattered light are each converted into digital data. A change in temperature with respect to the distance of the test optical fiber is measured from the digital data of the Raman scattered light. A change in temperature and a change in the degree of deformation with respect to the distance of the test optical fiber are measured from the digital data of the Brillouin scattered light. The change in temperature and the change in the degree of deformation with respect to the distance of the test optical fiber are separately output using the measured data.Type: GrantFiled: June 27, 2008Date of Patent: January 6, 2015Assignee: UTO International CorporationInventor: Michael Lee
-
Patent number: 8920024Abstract: The present invention provides a steel plate quality assurance system and facilities thereof, wherein the steel plate quality assurance system measures, with a steel plate manufacturing line including a finishing mill of a steel plate manufacturing line, and accelerated cooling equipment disposed on the downstream side of the finishing mill in the advancing direction of the steel plate manufacturing line, temperature of at least the whole area of the upper surface of a steel plate, or the whole area of the lower surface of a steel plate to perform quality assurance, and includes temperature measurement means; temperature analysis means; and mechanical property determining means.Type: GrantFiled: March 26, 2009Date of Patent: December 30, 2014Assignee: JFE Steel CorporationInventors: Koji Narihara, Toshikazu Akita, Yukihiro Okada, Yutaka Wada, Kouhei Obara, Toru Takahashi
-
Publication number: 20140376589Abstract: A system for optically monitoring a gas turbine engine includes a viewport into the gas turbine engine, and an optical connection having a first axial end and a second axial end. The first axial end is optically coupled to the viewport and configured to receive an image from the viewport, the optical connection includes a substrate having multiple hollow passages each extending from the first axial end to the second axial end, and each hollow passage includes a reflective coating disposed on an inner surface of the hollow passage to facilitate transmission of a respective portion of the image from the first axial end to the second axial end. In addition, the system includes a detector array in optical communication with the second axial end of the optical connection. The detector array includes multiple detection elements configured to receive multiple respective portions of the image from the hollow passages.Type: ApplicationFiled: June 24, 2013Publication date: December 25, 2014Inventors: Jason Harris Karp, Wontae Hwang
-
Publication number: 20140376590Abstract: A system for optically monitoring a gas turbine engine includes a viewport having an opening disposed within a casing of the gas turbine engine. The opening extends from an interior side of the casing to an exterior side of the casing, and the viewport is configured to receive an image from inside the casing. The system also includes an optical connection positioned outside the casing and optically coupled to the viewport. The optical connection is configured to convey the image from the viewport to a detector array, and the optical connection includes multiple optical fibers fused to one another to form a unitary substantially rigid fiber bundle.Type: ApplicationFiled: June 24, 2013Publication date: December 25, 2014Inventors: Wontae Hwang, William Albert Challener, Jason Harris Karp
-
Publication number: 20140321502Abstract: A thermometer includes a substrate; an optical resonator disposed on the substrate and including an optical resonance, the optical resonator being configured to receive a resonant frequency corresponding to the optical resonance; and a waveguide disposed on the substrate proximate to the optical resonator to receive input light, to communicate the resonant frequency to the optical resonator, and to transmit output light; wherein an aperture is interposed between: the substrate and the optical resonator, the substrate and the waveguide, or a combination comprising at least one of the foregoing, and the thermometer is configured to change the optical resonance in response to a change in temperature of the optical resonator.Type: ApplicationFiled: June 11, 2014Publication date: October 30, 2014Applicant: NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGYInventors: ZEESHAN AHMED, STEVE SEMANCIK, JACOB M. TAYLOR, JINGYUN FAN, MOHAMMAD HAFEZI, HAITAN XU, GREGORY STROUSE
-
Patent number: 8870452Abstract: An optical system and a focusing structure for an infrared thermometer are provided. The optical system includes a focusing ocular barrel (100) and an objective focusing ring (300), provided at the rear end of an optical probe. The shift of the ocular (101) and the objective (201) can be controlled. The rear end of the probe includes a cap (507), which can be used for locking the detective image distance of the objective (201) and sealing and protecting the portion of the focusing operation.Type: GrantFiled: April 15, 2011Date of Patent: October 28, 2014Inventor: Guobing Yuan
-
Publication number: 20140314121Abstract: There are provided an optical non-destructive inspection apparatus that can inspect a measurement object such as a wire bonding portion. The apparatus includes a focusing-collimating unit, a heating laser beam source, a heating laser beam guide unit, a first infrared detector, a second infrared detector, an emitted-infrared selective guide unit, and a control unit. The control unit controls the heating laser beam source, measures a temperature rise characteristic that is a temperature rise state of a measurement spot based on a heating time, on the basis of a ratio between a detected value from the first infrared detector and a detected value from the second infrared detector, determines a state of a measurement object based on the temperature rise characteristic, and changes at least one of wavelengths of infrared light beams guided to the first infrared detector and the second infrared detector based on a measured temperature during measurement.Type: ApplicationFiled: April 10, 2014Publication date: October 23, 2014Applicant: JTEKT CORPORATIONInventors: Naoki MATSUMOTO, Kouya YOSHIDA, Jun MATSUMOTO
-
Patent number: 8853632Abstract: An IR sensor comprises a heat sink substrate (10) having portions (12) of relatively high thermal conductivity and portions (14) of relatively low thermal conductivity and a planar thermocouple layer (16) having a hot junction (18) and a cold junction (20), with the hot junction (18) located on a portion (14) of the heat sink substrate with relatively low thermal conductivity. A low thermal conductivity dielectric layer (22) is provided over the thermocouple layer (16), and has a via (24) leading to the hot junction (18). An IR reflector layer (26) covers the low thermal conductivity dielectric layer (22) and the side walls of the via (24). An IR absorber (30; 30?) is within the via. This structure forms a planar IR microsensor which uses a structured substrate and a dielectric layer to avoid the need for any specific packaging. This design provides a higher sensitivity by providing a focus on the thermocouple, and also gives better immunity to gas conduction and convection.Type: GrantFiled: September 7, 2009Date of Patent: October 7, 2014Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Mohamed Boutchich, Benoit Bataillou
-
Publication number: 20140286376Abstract: A thermometer comprises an emitting unit, a light receiving unit, a lens unit, and a calculation unit. The emitting unit is configured to emit a measurement light into a flue, wherethrough a gas that contains light dispersing particles flows. The light receiving unit is configured to receive, of the measurement light, dispersed measurement light dispersed by the light dispersing particles. The lens unit is configured to set its focal point at a prescribed position inside the flue and along the light receiving axis. The calculation unit is configured to calculate the temperature inside the flue based on an intensity ratio of absorption spectra at a plurality of wavelengths.Type: ApplicationFiled: March 20, 2014Publication date: September 25, 2014Applicant: HORIBA, Ltd.Inventors: Takuya Ido, Tetsuya Mori
-
Patent number: 8821010Abstract: A temperature measuring method comprises a step of detecting, by an infrared thermometer, the intensity of an infrared radiation coming from a region of interest of a patient for determining the patient's temperature, and a step of pointing a target area that is coincident with the region of interest and is the even and smooth surface of a body having a homogeneous underlying vascularization, and being preferably devoid of hair or chitinous or keratinous skin formations.Type: GrantFiled: June 4, 2010Date of Patent: September 2, 2014Assignee: Tecnimed S.R.L.Inventor: Francesco Bellifemine
-
Patent number: 8817843Abstract: A method for receiving a chirp signal at a receiver, the chirp signal communicated over a link from a transmitter, the chirp signal comprising at least one symbol, each symbol comprising a plurality of identical chirps, each chirp encoding a symbol value, the method comprising: determining a measure indicative of error in the received chirp signal; determining the number of coherent integrations and non-coherent integrations to apply per symbol in dependence on the indicated error; for each symbol, coherently and non-coherently integrating the plurality of chirps in accordance with the determined numbers so as to form an integrated symbol; and for each symbol, decoding the symbol value from the integrated symbol.Type: GrantFiled: June 15, 2012Date of Patent: August 26, 2014Assignee: Cambridge Silicon Radio LimitedInventor: Paul Dominic Hiscock
-
Patent number: 8807832Abstract: Apparatus for a spatially resolved temperature measurement, with at least one optical fiber (6) for the spatially resolved temperature measurement, and at least one laser light source (2) producing light (3, 23) which can be coupled into the optical fiber (6), wherein the portions of the light (3, 23) backscattered in the optical fiber (6) can be coupled out of the optical fiber (6) and evaluated. The apparatus further includes means for reducing polarization-induced effects, wherein the means may be, for example, a polarization modifier (4) capable of at least partially depolarizing the light (3).Type: GrantFiled: November 12, 2010Date of Patent: August 19, 2014Assignee: Lios Technology, GmbHInventor: Wieland Hill
-
Patent number: 8794828Abstract: A method for measuring temperature of an object using the longitudinal mode output by a short cavity fiber laser, includes steps of: a) arranging the short cavity fiber laser, which laser comprises sequentially coupled laser diode pumping source, a wavelength division multiplexer, a fiber bragg grating, an active optical fiber and a loop mirror which are; b) contacting the short cavity fiber laser with the object whose temperature will be measured; c) measuring the drift amount of longitudinal mode output by the short cavity fiber laser; and d) calculating the temperature of the object to be measured. According to the present invention, the temperature can be measured accurately utilizing the features of the short cavity fiber laser. The arranged fiber laser has a small and simple structure, high measuring accuracy, good portability, and can be used in a variety of occasions.Type: GrantFiled: October 9, 2013Date of Patent: August 5, 2014Assignee: Beijing Information Science & Technology UniversityInventors: Lianqing Zhu, Fei Luo, Mingli Dong, Yinmin Zhang, Wei He, Xiaoping Lou
-
Patent number: 8790006Abstract: A thermal measurement system that includes a light collection device and a detection system in communication with the device. The detection system includes two detection subsystems, wherein one subsystem is configured to detect light from a surface of an object, while the other subsystem is configured to detect light from the surface and a gas. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.Type: GrantFiled: November 30, 2009Date of Patent: July 29, 2014Assignee: General Electric CompanyInventors: Hejie Li, Samhita Dasgupta, Edward Randall Furlong, Nirm Velumylum Nirmalan, Anquan Wang, Guanghua Wang, Stephen Thomas Walls, Lesley Ellen Brown
-
Patent number: 8777483Abstract: The temperature measuring apparatus includes: a light source; a first wavelength-dividing unit which wavelength-divides a light from the light source into m lights whose wavelength bands are different from one another; m first dividing units which divides each of the m lights from the first wavelength-dividing unit into n lights; a transmitting unit which transmits lights from the m first dividing unit to measurement points of an object to be measured; a light receiving unit which receives a light reflected by each of the measurement points; and a temperature calculating unit which calculates a temperature of each of the measurement points based on a waveform of the light received by the light receiving unit.Type: GrantFiled: September 13, 2011Date of Patent: July 15, 2014Assignee: Tokyo Electron LimitedInventors: Jun Yamawaku, Chishio Koshimizu, Tatsuo Matsudo, Kenji Nagai
-
Patent number: 8753007Abstract: A system includes a sensing cell having a walled structure configured to receive a fuel sample within an interior space of the walled structure. The sensing cell also has at least one cooling surface located on at least a portion of the walled structure and configured to cool the fuel sample. The sensing cell further has an optical port configured to couple to one or more optical fibers and to provide first radiation to the fuel sample. In addition, the sensing cell has a mirror configured to reflect the first radiation in order to provide second radiation to the optical port. The optical port defines a collinear optical geometry for providing the first radiation to the fuel sample and receiving the second radiation through the fuel sample. The system also includes at least one cooler configured to cool the fuel sample in the sensing cell by cooling the at least one cooling surface.Type: GrantFiled: August 17, 2010Date of Patent: June 17, 2014Assignee: Honeywell ASCa Inc.Inventors: Frank M. Haran, Sebastien Tixier, Stuart J. Heath
-
Publication number: 20140153611Abstract: A temperature distribution measurement system includes an optical fiber, a laser light source optically connected to the optical fiber, a photodetector configured to detect light backscattered in the optical fiber, and a temperature distribution measurement unit configured to perform correction calculation using a transfer function on a measured temperature distribution obtained from an output from the photodetector. The temperature distribution measurement unit acquires an actual temperature distribution in a location where the optical fiber is laid and determines appropriateness of the transfer function by computing a difference between the measured temperature distribution after the correction and the actual temperature distribution.Type: ApplicationFiled: February 5, 2014Publication date: June 5, 2014Applicant: FUJITSU LIMITEDInventors: Takeo Kasajima, Kazushi Uno, Minoru Ishinabe, Kyoko Tadaki, Fumio Takei
-
Patent number: 8740455Abstract: An apparatus for measuring environmental parameters includes: an optical fiber sensor configured to be disposed along a path in an environment to be measured, the path of the optical fiber sensor defining a longitudinal axis; and at least one section of the optical fiber sensor configured so that an entire length of the at least one section is exposed to an at least substantially homogeneous environmental parameter, at least part of the at least one section extending in a direction having a radial component relative to the longitudinal axis.Type: GrantFiled: December 8, 2010Date of Patent: June 3, 2014Assignee: Baker Hughes IncorporatedInventor: Travis S. Hall
-
Patent number: 8734008Abstract: An active sensor apparatus includes an array of sensor elements arranged in a plurality of columns and rows of sensor elements. The sensor apparatus includes a plurality of column and row thin film transistor switches for selectively activating the sensor elements, and a plurality of column and row thin film diodes for selectively accessing the sensor elements to obtain information from the sensor elements. The thin film transistor switches and thin film diodes are formed on a common substrate.Type: GrantFiled: November 3, 2009Date of Patent: May 27, 2014Assignee: Next Biometrics ASInventor: Matias N. Troccoli
-
Publication number: 20140140712Abstract: An infrared temperature sensor including: a sensor case made of metal and including a first airspace (a light guiding region) that guides infrared rays entering from an infrared entrance window, and a second airspace (a light shielding region) that is adjacent to the light guiding region via a partition wall, and where an upper wall that blocks entrance of the infrared rays is formed on an entrance side of the infrared rays; a film that absorbs the infrared rays reaching the film through the light guiding region, and converts the infrared rays to heat; a sensor cover that is made of metal and arranged opposing the sensor case via the film; an infrared detection element and a temperature compensation element arranged on the film, wherein the light guiding region and the light shielding region have substantially symmetrical forms with respect to the partition wall.Type: ApplicationFiled: January 24, 2014Publication date: May 22, 2014Applicant: SHIBAURA ELECTRONICS, CO., LTD.Inventors: Noriyuki Nakayama, Morihisa Hamada, Tatsuya Konno, Shingo Maruyama
-
Publication number: 20140140370Abstract: A medical thermometer including a curved mirror and a radiation sensor is disclosed. The radiation sensor is disposed relative to the mirror in a configuration whereby the mirror reflects away from the sensor radiation that passes through the radiation entrance and that is oriented outside a range of angles relative to the mirror, and reflects toward the sensor radiation that passes through the radiation entrance and that is oriented within a range of angles relative to the mirror.Type: ApplicationFiled: November 18, 2013Publication date: May 22, 2014Applicant: Kaz USA, Inc.Inventors: Aleksan Yildizyan, James Christopher Gorsich
-
Patent number: 8727610Abstract: The object is to provide a laser processing apparatus, a laser processing temperature measuring apparatus, a laser processing method, and a laser processing temperature measuring method which can highly accurately detect the processing temperature when carrying out processing such as welding with laser light. A laser processing apparatus 1A for processing members DR, UR to be processed by irradiating the members with laser light LB comprises a laser (semiconductor laser unit 20A) for generating the laser light LB; optical means for converging the laser light LB generated by the laser onto processing areas DA, UA; and a filter 30, disposed between the members DR, UR to be processed and the optical means, for blocking a wavelength of fluorescence generated by the optical means upon pumping with the laser light LB; wherein light having the wavelength blocked by the filter 30 is used for measuring a temperature of the processing areas DA, UA.Type: GrantFiled: November 24, 2009Date of Patent: May 20, 2014Assignee: Hamamatsu Photonics K.K.Inventors: Satoshi Matsumoto, Tsuyoshi Kosugi
-
Patent number: 8726837Abstract: A system for monitoring a process inside a high temperature semiconductor process chamber by capturing images is disclosed. Images are captured through a borescope by a camera. The borescope is protected from high temperatures by a reflective sheath and an Infrared (IR) cut-off filter. Images can be viewed on a monitor and can be recorded by a video recording device. Images can also be processed by a machine vision system. The system can monitor the susceptor and a substrate on the susceptor and surrounding structures. Deviations from preferred geometries of the substrate and deviations from preferred positions of susceptor and the substrate can be detected. Actions based on the detections of deviations can be taken to improve the performance of the process. Illumination of a substrate by a laser for detecting deviations in substrate geometry and position is also disclosed.Type: GrantFiled: June 23, 2008Date of Patent: May 20, 2014Assignee: Applied Materials, Inc.Inventors: Kailash K. Patalay, Craig Metzner, David K. Carlson
-
Patent number: 8696197Abstract: A method and system are disclosed for determining at least one optical characteristic of a substrate, such as a semiconductor wafer. Once the optical characteristic is determined, at least one parameter in a processing chamber may be controlled for improving the process. For example, in one embodiment, the reflectivity of one surface of the substrate may first be determined at or near ambient temperature. From this information, the reflectance and/or emittance of the wafer during high temperature processing may be accurately estimated. The emittance can be used to correct temperature measurements using a pyrometer during wafer processing. In addition to making more accurate temperature measurements, the optical characteristics of the substrate can also be used to better optimize the heating cycle.Type: GrantFiled: March 9, 2012Date of Patent: April 15, 2014Assignee: Mattson Technology, Inc.Inventor: Paul Janis Timans