Detail Of Resistive Sensor Patents (Class 374/185)
  • Publication number: 20150063423
    Abstract: A surface temperature sensor, including: an NTC or PTC thermistor; and a flexible printed circuit (FPC) or flexible flat cable (FFC) or conducting wire including at least two rows of single calendaring copper wires. The NTC or PTC thermistor and the FPC or FFC or conducting wire are welded together to form welding points. The thermistor and the welding points are packed inside a thin film by hot pressing. The thin film is a polyimide, a polyethylene terephthalate (PET) plastic, an aramid fiber, an aromatic polyamide, a polyether ether ketone, or a silicone rubber.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventor: Guoliang HUA
  • Publication number: 20150063421
    Abstract: A temperature measurement apparatus using a negative temperature coefficient (NTC) thermister is provided. A temperature sensor includes the NTC thermister and a variable resistor part, in which a resistance value of the variable resistor part varies between a first resistance value for a first output voltage value and a second resistance value for a second output voltage value to allow a voltage value corresponding to a present temperature to be outputted. A voltage temperature matching unit outputs the present temperature based on the first output voltage value and the second output voltage value.
    Type: Application
    Filed: August 25, 2014
    Publication date: March 5, 2015
    Applicant: LSIS CO., LTD.
    Inventors: Ho Sang JIN, Chun Suk YANG, Jae Ho LEE, Chan Gi PARK
  • Publication number: 20150063422
    Abstract: A sensor assembly including a sensing element, a conductor connected to the sensing element, and an elongated shaft. The elongated shaft includes a proximal end, a distal end, an inner surface, an outer surface, and a plurality of spaced apart vibration dampers. The inner surface defines a throughbore extending from the proximal end to the distal end. The throughbore is configured to receive the conductor therethrough. The vibration dampers protrude from the outer surface and extend from the proximal end towards the distal end.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 5, 2015
    Applicant: DENSO International America, Inc.
    Inventors: Paul Cloutier, Daniel Frederick Sweeney, Edward Szczepanski
  • Publication number: 20150055682
    Abstract: Provided is a film-type thermistor sensor which can be surface-mounted and can be directly deposited on a film or the like without baking. The film-type thermistor sensor includes an insulating film; a thin-film thermistor part formed on the front side of the insulating film; the pair of front side pattern electrodes in which a pair of counter electrode parts facing each other is disposed above or below the thin-film thermistor part and is formed on the front side of the insulating film; and a pair of back side pattern electrodes formed on the back side of the insulating film in such a manner as to face a part of the pair of front side pattern electrodes, wherein the front side pattern electrodes and the back side pattern electrodes are electrically connected via via-holes formed so as to penetrate the insulating film.
    Type: Application
    Filed: March 25, 2013
    Publication date: February 26, 2015
    Inventors: Noriaki Nagatomo, Hiroshi Tanaka, Hitoshi Inaba, Kenji Kubota
  • Publication number: 20150049788
    Abstract: Provided are a metal nitride material for a thermistor, which has a high reliability and high heat resistance and can be directly deposited on a film or the like without firing, a method for producing the same, and a film type thermistor sensor. The metal nitride material for a thermistor consists of a metal nitride represented by the general formula: (M1-vAv)xAly (N1-wOw)z (where “M” represents at least one of Ti, V, Cr, Mn, Fe, and Co, “A” represents at least one of Sc, Zr, Mo, Nb, and W, 0.0<v<1.0, 0.70?y/(x+y)?0.98, 0.45?z?0.55, 0<w?0.35, and x+y+z=1), wherein the crystal structure thereof is a hexagonal wurtzite-type single phase.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 19, 2015
    Inventors: Toshiaki Fujita, Hiroshi Tanaka, Noriaki Nagatomo
  • Publication number: 20150036723
    Abstract: Provided are a metal nitride material for a thermistor, which exhibits high reliability and high heat resistance and can be directly deposited on a film or the like without firing, a method for producing the metal nitride material for a thermistor, and a film type thermistor sensor. The metal nitride material for a thermistor consists of a metal nitride represented by the general formula: TixAlyNz (where 0.70?y/(x+y)?0.95, 0.4?z?0.5, and x+y+z=1), and the crystal structure thereof is a hexagonal wurtzite-type single phase.
    Type: Application
    Filed: February 26, 2013
    Publication date: February 5, 2015
    Inventors: Toshiaki Fujita, Hiroshi Tanaka, Hitoshi Inaba, Kazutaka Fujiwara, Noriaki Nagatomo
  • Publication number: 20150030054
    Abstract: A Constant Volume Gas Thermometer (CVTG) device for measuring the temperature with high precision over a wide temperature range comprises a pressure measurement device, which comprises a mechanical assembly forming a membrane. The capillary tube communicates with the bottom side of the membrane and a first pressure measurement element on the membrane generates a signal in dependence of a deformation of the membrane. Further, the CVTG comprises electronic means for reading and correlating the signal of said first pressure measurement element to the temperature of the gas cartridge. The gas volume inside the pressure measurement device is minimized by careful design and tight tolerances. To measure pressures below 0.1 MPa inside the CVGT with sufficient accuracy, the CVGT include a second pressure measurement device which is based on the Pirani measurement principle. A Pirani measurement device measures the thermal conductivity of the surrounding gas.
    Type: Application
    Filed: July 29, 2014
    Publication date: January 29, 2015
    Inventor: Bert WILLING
  • Publication number: 20150023392
    Abstract: A battery pack including at least one battery cell, and a thermistor configured to detect temperature information of the at least one battery cell, the thermistor including: a thermistor body; a fixation portion united with the thermistor body at a first side of the thermistor body and including a ring terminal; and a temperature measurement wire electrically connected to the thermistor body and extending from a second side of the thermistor body.
    Type: Application
    Filed: January 10, 2014
    Publication date: January 22, 2015
    Applicant: SAMSUNG SDI CO., LTD.
    Inventor: Kyoung-Hwan NOH
  • Publication number: 20150023394
    Abstract: Provided are a metal nitride material for a thermistor, which exhibits high reliability and high heat resistance and can be directly deposited on a film or the like without firing, a method for producing the metal nitride material for a thermistor, and a film type thermistor sensor. The metal nitride material for a thermistor consists of a metal nitride represented by the general formula: TixAly(N1-wOw)z (where 0.70?y/(x+y)?0.95, 0.45?z?0.55, 0<w?0.35, and x+y+z=1), and the crystal structure thereof is a hexagonal wurtzite-type single phase.
    Type: Application
    Filed: February 21, 2013
    Publication date: January 22, 2015
    Inventors: Toshiaki Fujita, Hiroshi Tanaka, Hitoshi Inaba, Kazutaka Fujiwara, Noriaki Nagatomo
  • Publication number: 20150023393
    Abstract: A sensing device is made up of a network of nominally identical temperature dependent resistors which is topologically equivalent to a square resistor network. The device has terminals at which an average resistance value thereof can be measured. The resistors are supported on a substrate which can be reduced in size from an initial size without substantially changing the average resistance value. In preferred embodiments, a pattern of contacts and conductive tracks joining the contacts are printed on a substrate, and a material having a temperature dependent resistance is applied over the contacts to define a network of interconnected thermistors. Alternatively, the material can be applied to the substrate first and the contacts and tracks printed on it.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 22, 2015
    Applicant: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Patent number: 8935843
    Abstract: A thermal, flow measuring device for determining and/or monitoring the flow of a measured medium through a measuring tube. The thermal, flow measuring device includes: a first pin-shaped shell and at least a second pin-shaped shell; a first resistance thermometer and at least a second resistance thermometer. At least the first resistance thermometer is embodied so as to be heatable, wherein the resistance thermometers, in each case, have a first surface, and at least a second surface, which lies opposite the first surface. The first pin-shaped shell surrounds the first resistance thermometer, and the second pin-shaped shell surrounds the second resistance thermometer. The pin-shaped shells are fillable with a fill material. In each case, at least one spacer is placeable between the pin-shaped shell and the first surface of the resistance thermometer, and the second surface of the resistance thermometer is at least partially covered with fill material.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: January 20, 2015
    Assignee: Endress + Hauser FLowtec AG
    Inventors: Dirk Boguhn, Jiri Holoubek, Axel Pfau, Oliver Popp, Jiri Polak
  • Publication number: 20150016487
    Abstract: A strain compensated temperature sensor includes a first, temperature dependent resistor, and a second, substantially temperature independent resistor connected in series with the temperature dependent resistor. At least one electrical contact allows an electrical potential difference to be applied across both resistors simultaneously. Both the temperature dependent resistor and the substantially temperature independent resistor are sensitive to mechanical strain. This permits temperature readings from the sensor to be corrected automatically for mechanical distortion of the sensor. The temperature dependent resistor and the substantially temperature independent resistor are of substantially similar construction, preferably being located adjacent one another in or on a common substrate, and hence have a similar response to a mechanical force applied to them.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 15, 2015
    Applicant: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Publication number: 20150013957
    Abstract: A temperature probe having a terminal attachment arrangement for securing and selectively releasing an electrical connection is disclosed. The temperature probe further includes a housing for sealing the temperature probe to a structure, such as a HVAC duct.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 15, 2015
    Applicant: Tasseron Sensors, Inc.
    Inventor: Thomas J. Van Dijk
  • Patent number: 8935117
    Abstract: A testing circuit in an integrated circuit indirectly measures a voltage at a node of other circuitry in the integrated circuit. The testing circuit includes a transistor having a control electrode, a first conducting electrode coupled to a first pad, a second conducting electrode coupled to a terminal of a power supply, and one or more switches for selectively coupling the control electrode to one of the node and a second pad. A method includes determining a relationship between drain current and gate voltage of the transistor when the control electrode is coupled to the second pad. A voltage at the node is determined by relating the current through the first conducting electrode of the transistor when control electrode is coupled to the node.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 13, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Walter Luis Tercariol, Richard T. L. Saez, Fernando Zampronho Neto, Ivan Carlos Ribeiro Nascimento
  • Publication number: 20150009600
    Abstract: A power cord apparatus for remotely detecting excessive operational parameters in an alternating current (AC) powered machine (e.g., dehumidifiers, air conditioners, refrigerators, and Computer Numerically Controlled (CNC) machines) is provided. The power cord apparatus includes a cooperative remote parametric sensing device (e.g., heat sensing, vibration transducer) in the vicinity of the electrically powered machine.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 8, 2015
    Inventors: Victor V. Aromin, Paul M. Piekarski
  • Publication number: 20150007665
    Abstract: A sensor device comprises an array of spaced apart sensor elements disposed in a pattern on a substrate. Each sensor element is connected electrically so that a physical variable measured by each sensor element independently can be recorded and/or displayed by an external instrument. The sensing device may be a temperature sensing device, in which case the sensor elements are temperature sensing elements such as negative temperature coefficient (NTC) thermistors. Alternatively the sensing device may be a strain or pressure sensing device, or an optical imaging device, in which case the sensor elements include piezoresistors or photoresistors.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 8, 2015
    Applicant: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Publication number: 20140376595
    Abstract: A first pair of resistors formed in a first layer of material, and a second pair of resistors formed in the first layer or in a second layer can be wired into a Wheatstone bridge to form a temperature sensor. Either layer can include a semiconductor or a dielectric. In a semiconductor layer, a pair of resistors can be doped areas of the layer, while in a dielectric, a pair of resistors can be material deposited in cavities in the layer, such as material from an added “middle-of-line” (MOL) metallization layer.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: Douglas M. Daley, Hung H. Tran, Wayne H. Woods, JR., Ze Zhang
  • Patent number: 8911148
    Abstract: A temperature detector for a contact thermometer of process measurement technology having a thermowell, at least one thermal sensor element arranged in a process-side end of the thermowell, and at least one electrical connecting means connected to the thermal sensor element with a first connection side and extending in the thermowell at least up to an evaluation-side end of the thermowell, so that the thermal sensor element can be electrically contacted via a second connection side of the electrical connecting means, and in which the electrical connecting means is formed by a connection printed circuit board with conducting paths.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: December 16, 2014
    Assignee: INOR Process AB
    Inventor: Hans-Owe Mårtensson
  • Patent number: 8905634
    Abstract: A temperature detection apparatus includes a transformer, a thermostat attached directly to an electrically conductive site of the heating element and has contacts that become short-circuited or come into an open-circuit condition depending on whether or not the temperature of the heating element is equal to or higher than a predetermined value, the contacts being connected to a secondary coil in the transformer, a DC voltage source and a transistor configured to supply required AC power to a primary coil in the transformer, a current detection resistor configured to detect a current flowing through the primary coil in the transformer, and a comparison circuit detecting a voltage generated across the current detection resistor when a current flows through the current detection resistor, the comparison circuit outputting an alarm signal when the current flowing through the primary coil in the transformer exceeds a preset threshold current.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: December 9, 2014
    Assignee: Netcomsec Co. Ltd
    Inventors: Yukihira Nakazato, Junichi Matsuoka
  • Patent number: 8882346
    Abstract: The present invention relates to a washing machine (2), in particular a laundry washing or washing/drying machine or a dishwasher, comprising: a tub (3) adapted to contain a wash liquid (4), an electric resistance (1) for heating the wash liquid (4), a temperature sensor (5) for detecting the temperature of the wash liquid (4), wherein the resistance (1) and the temperature sensor (5) are put in a condition of thermal exchange by conduction. The invention also relates to a method for evaluating whether the resistance is emerged from or submerged in the wash liquid and to a method for removing calcareous deposits (17) from an electric resistance (1) adapted to heat a wash liquid (4) in a washing machine (2), in particular a laundry washing or washing/drying machine or a dishwasher, characterized in that the resistance (1) is subjected to at least one heating and cooling cycle while the resistance (1) is kept above the wash liquid (4).
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 11, 2014
    Assignee: Indesit Company S.p.A.
    Inventors: Giovanni Bombardieri, Mariano Funari, Giuseppina Pia Potena, Fernanda Gaggioli, Maria Angela Mariotti, Elisa Mariotti
  • Publication number: 20140321508
    Abstract: A resistance temperature sensor with a first temperature sensor element and a second temperature sensor element, wherein the first temperature sensor element comprises a first measuring path and the second temperature sensor element a second measuring path, wherein the first and the second measuring paths extend on a substrate, wherein the substrate has an anisotropic thermal expansion with at least two mutually differing expansion directions (a, c), and wherein a projection of the first measuring path on the expansion directions (a) differs from a projection of the second measuring path on the expansion directions (c).
    Type: Application
    Filed: July 7, 2014
    Publication date: October 30, 2014
    Inventors: Reinhard Buchner, Peter Seefeld
  • Patent number: 8870451
    Abstract: An electrical seat heater of a vehicle has a heating resistor which is connected to a seat ground cable has a temperature-dependent sensor resistor in the vehicle seat. A control unit is outside the vehicle seat is connected to a control unit ground remotely from the vehicle seat. The voltage measurement for determining the temperature is carried out with the seat heater briefly disconnected from the supply voltage. The heating resistor is connected to the supply voltage via a series circuit including the sensor resistor and a further resistor or to the supply voltage via a power path. The control unit measures the voltage drop at the sensor resistor by a measuring signal cable. The control unit measures the potential difference between the seat ground cable and the control unit ground, which is used to correct the seat temperature.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: October 28, 2014
    Assignee: Audi AG
    Inventor: Werner Mayer
  • Patent number: 8864375
    Abstract: The temperature sensor 1 is equipped with a temperature sensitive device 2 to be disposed inside an exhaust pipe of an internal combustion engine, signal lines 31 connected at a top end side to the temperature sensitive device 2 and at a rear end side to leads for connection with an external circuit, an inner member 18 having a sheath pin 3 in which the signal lines 31 are disposed, and an outer member 13 disposed to cover at least a portion of an outer periphery of the inner member 18. The outer member 13 includes a fixed portion (rib 6) to be fixed to an upper wall of the exhaust pipe, a retainer portion 132 retaining the inner member 18, and an extending portion 131 formed closer to a top end side than the retainer portion 132.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: October 21, 2014
    Assignee: Denso Corporation
    Inventors: Nobuo Abe, Tsunenobu Hori, Masatoshi Kuroyanagi
  • Patent number: 8840302
    Abstract: A composite material for a temperature sensor and a method of manufacturing the temperature sensor using the composite material are provided. The composite material contains four or more kinds of metal oxides combined with highly insulating materials to produce a material with semiconductor-like properties to more accurately measure a temperature at high temperature in the range of 500° C. and above. The sensor includes electrode wires having a predetermined diameter inserted into the metal oxide of the temperature sensor when the metal oxide is press-molded to form the temperature sensor. Through the connection of the electrode wires to the temperature sensor device, disconnection of the electrode wires from the device even at a high temperature.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 23, 2014
    Assignees: Hyundai Motor Company, Industry-Academic Cooperation Foundation, Chosun University
    Inventors: Na Yun Ko, Tae Seung Lee, Jin Seong Park
  • Publication number: 20140241400
    Abstract: In a temperature sensing circuit, a method for measuring a resistance of a RTD device to sense temperature includes (a) connecting a first terminal of the RTD device to a first current source and connecting a second terminal of the RTD device to a second current source; (b) measuring a first voltage across the RTD device; (c) connecting the second terminal of the RTD device to the first current source and connecting the first terminal of the RTD device to the second current source; (d) measuring a second voltage across the RTD device; and (e) deriving the resistance of the RTD device based on the first voltage measurement and the second voltage measurement. The RTD device may be connected in series with a sense resistor to ground.
    Type: Application
    Filed: January 30, 2014
    Publication date: August 28, 2014
    Applicant: Linear Technology Corporation
    Inventors: Michael Keith Mayes, Todd Stuart Kaplan, David Edward Bliss
  • Patent number: 8814426
    Abstract: An infrared sensor comprises: an electrical insulating film sheet; first and second temperature sensor devices which are provided on one side of the electrical insulating film sheet, and are located at a distance from each other; a pair of contact electrodes, with which the first and second temperature sensor devices are attached respectively, formed on one side of the electrical insulating film sheet; an infrared absorbing film provided on the other side of the electrical insulating film sheet opposite the first temperature sensor device; and an infrared reflector film provided on the same side as the infrared absorbing film opposite the second temperature sensor device. The first and second temperature sensor devices respectively comprise: a thermistor element; and a pair of electrode layers, in which one of them is in contact with the contact electrode, formed both on the upper and lower surfaces of the thermistor element.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: August 26, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kenzo Nakamura, Sei Kitaguchi, Mototaka Ishikawa
  • Publication number: 20140230545
    Abstract: A sensor having a metal housing that encloses a sensing device. An end of the housing is crimped, and an overmolding covers the crimped edge and extends from the crimped edge away from the housing.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Inventors: David John Geer, Karen Marie Pistner
  • Publication number: 20140219316
    Abstract: A temperature detection device is connected to a temperature sensor, and includes two resistors, a transistor and a microcomputer. The temperature sensor is connected to ground. The resistors are connected in series between the temperature sensor and a power supply line. The transistor is connected to the resistor, which is at the power supply line side. The microcomputer switches over a characteristic of a sensor voltage, which is developed at a junction between the resistor and the temperature sensor, to a first characteristic and a second characteristic by switching over the transistor to an on-state and an off-state. The microcomputer calculates a temperature based on the sensor voltage. When the transistor is in the on-state, the microcomputer detects a voltage developed at a low-potential side output terminal of the transistor and calculates the temperature based on the transistor output voltage and the sensor voltage.
    Type: Application
    Filed: November 27, 2013
    Publication date: August 7, 2014
    Applicant: DENSO CORPORATION
    Inventors: Makoto TASHIRO, Hiroki MARUBAYASHI
  • Patent number: 8794831
    Abstract: The invention relates to systems and methods for calibrating and using resistance temperature detectors. In one embodiment, the system includes a calibration circuit comprising a resistance temperature detector in a bridge circuit with at least one potentiometer, and a programmable gain amplifier coupled to the bridge circuit. Embodiments of the invention further comprise methods for calibrating the bridge circuit and the programmable gain amplifier for use with the resistance temperature detector and methods for determining the self heating voltage of the bridge circuit.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: August 5, 2014
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Johnathan S. Coursey, Kenton C. Hasson, Gregory H. Owen
  • Patent number: 8790008
    Abstract: A device for measuring the temperature of a substrate comprising a thermocouple comprising electric wires joined to each other at least one junction; a fixing element suitable for fixing said junction to said substrate in order to measure its temperature; characterized in that the fixing element comprises a thermally conductive element suitable for bearing a portion of electric wires adjacent to said junction; said thermally conductive element being capable of thermally coupling said portion of electric wires to said substrate.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: July 29, 2014
    Assignee: Astrium SAS
    Inventor: Christian Flemin
  • Publication number: 20140198827
    Abstract: A temperature sensor comprises a body of polycrystalline superhard material comprising a plurality of intergrown grains and a binder phase, the polycrystalline material defining a plurality of interstices between the grains, the binder phase being distributed in a plurality of the interstices; and two or more electrodes attached to or embedded in the body of polycrystalline material arranged to measure bulk resistance of the polycrystalline superhard material between the electrodes, the measured resistance being indicative of the temperature of the body of polycrystalline material.
    Type: Application
    Filed: August 10, 2012
    Publication date: July 17, 2014
    Applicant: Element Six Abrasives S.A.
    Inventor: John Hewitt Liversage
  • Patent number: 8777484
    Abstract: A resistance temperature sensor with a first temperature sensor element and a second temperature sensor element, wherein the first temperature sensor element comprises a first measuring path and the second temperature sensor element a second measuring path, wherein the first and the second measuring paths extend on a substrate, wherein the substrate has an anisotropic thermal expansion with at least two mutually differing expansion directions (a, c), and wherein a projection of the first measuring path on the expansion directions (a) differs from a projection of the second measuring path on the expansion directions (c).
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 15, 2014
    Assignee: Endress + Hauser Wetzer GmbH + Co. KG
    Inventors: Peter Seefeld, Reinhard Buchner
  • Patent number: 8771559
    Abstract: A conductive sintered oxide which includes: a conductive crystal phase having a perovskite structure represented by (RE1-cSrc)MdO3, in which RE is a group of elements consisting of Yb and/or Lu and at least one element selected from Group IIIA elements excluding Yb, Lu and La, and M is a group of elements consisting of Al and at least one element selected from Groups IVA, VA, VIA, VIIA and VIII, a first insulating crystal phase represented by RE2O3, and a second insulating crystal phase represented by SrAl2O4. The conductive crystal phase has a coefficient c satisfying 0.18<c<0.50 and has a coefficient d satisfying 0.67?d?0.93. A content of a third insulating crystal phase represented by RE4Al2O9, the content of which may be zero, is smaller than the content of each of the first and second insulating crystal phases.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: July 8, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiroshi Watanabe, Yasuyuki Okimura, Shinji Ban, Takeshi Mitsuoka
  • Patent number: 8757874
    Abstract: Provided in some embodiment is a thermocouple system that includes a printed circuit board having a terminal component connection to couple to a connector of a terminal component, a temperature sensing component connection to couple to a connector of a temperature sensing component, a signal plane thermally coupled to the terminal component connection, and a thermal plane thermally coupled to the temperature sensing component connection and electrically isolated from the terminal component connection and the signal plane. The surface area of the thermal plane overlaps a substantial portion of a surface area of the signal plane.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: June 24, 2014
    Assignee: National Instruments Corporation
    Inventors: Alvin G. Becker, Daniel H. Ousley
  • Publication number: 20140169405
    Abstract: A resistive temperature sensor (thermistor) for a microelectromechanical system (MEMS) device provides local temperatures of MEMS sensors and other MEMS devices for temperature compensation. Local accurate temperatures of the sensors and other devices provide for temperature compensation of such sensors or devices. By incorporating the thermistor structure into a MEMS device, an accurate temperature is sensed and measured adjacent to or within the structural layers of the device. In one embodiment, the thermistor is located within a few micrometers of the primary device.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 19, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Andrew Graham, Ando Feyh, Gary O'Brien
  • Publication number: 20140153613
    Abstract: A high temperature sensor includes a substrate, at least two terminal contacts and at least one resistive structure, wherein the terminal contacts and the at least one resistive structure are disposed on a first side of the substrate, and at least one of the resistive structures is electrically contacted by the terminal contacts, wherein at least one electrode is disposed on each of the two terminal contacts next to the resistive structure on the first side of the substrate. The electrodes are electrically connected to the terminal contacts, respectively, or at least one electrode is disposed on at least one terminal contact next to the resistive structure on the first side of the substrate, wherein the electrode is designed in one piece with the resistive structure. The invention also relates to a high temperature sensor and a method for producing such a sensor.
    Type: Application
    Filed: June 27, 2012
    Publication date: June 5, 2014
    Applicant: HERAEUS SENSOR TECHNOLOGY GMBH
    Inventors: Karlheinz Wienand, Margit Sander
  • Publication number: 20140146856
    Abstract: An apparatus comprises a head transducer and a resistive temperature sensor provided on the head transducer. The resistive temperature sensor comprises a first layer comprising a conductive material and having a temperature coefficient of resistance (TCR) and a second layer comprising at least one of a specular layer and a seed layer. A method is disclosed to fabricate such sensor with a laminated thin film structure to achieve a large TCR. The thicknesses of various layers in the laminated thin film are in the range of few to a few tens of nanometers. The combinations of the deliberately optimized multilayer thin film structures and the fabrication of such films at the elevated temperatures are disclosed to obtain the large TCR.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Wei Tian, Declan Macken, Huaqing Yin, Venkateswara Rao Inturi, Eric Walter Singleton
  • Patent number: 8714816
    Abstract: Thermometric apparatus includes at least one body-surface sensor, which is configured to be placed at a location on a body surface of a patient and generates a sensor output that varies according to a body-surface temperature at the location. Analog conversion circuitry is coupled between the at least one body-surface sensor and a connector for coupling to a patient monitor. The circuitry is configured to convert the sensor output into an output resistance across the connector that is indicative of a corrected temperature of the patient.
    Type: Grant
    Filed: September 12, 2010
    Date of Patent: May 6, 2014
    Assignee: Medisim Ltd.
    Inventors: Moshe Yarden, David Sergio Matusevich
  • Patent number: 8708242
    Abstract: An auxiliary hardware box is described that can be installed at or near the HVAC system. The auxiliary box includes a large number of wiring terminals, for example 16 or more, for connecting to a relatively large number of HVAC control wires. The auxiliary box can include a “train map” type graphic display that is visible to the installer and provides a graphical indication as to which relays or switches are currently open and which are currently closed. A small sleek visually pleasing thermostat is also described that can be connected either directly to an HVAC system or to the auxiliary box, and can automatically detect an purpose the connected wires according to which it is connected to.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: April 29, 2014
    Assignee: Nest Labs, Inc.
    Inventors: Brian J. Conner, Joseph E. Palmer, David Sloo
  • Patent number: 8702305
    Abstract: In a temperature sensor (1), a pair of electrode wires (25) of a thermistor element (21) are formed of a material prepared by adding strontium to platinum or a platinum alloy and without addition of zirconia or a like oxide. Rear end portions of the electrode wires (25) formed of the above-mentioned material and front end portions of sheath core wires (3) are laser-welded to one another in an overlapping condition.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: April 22, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hitoshi Yokoi, Masamichi Ito, Takaaki Chosokabe, Masahiko Nishi
  • Publication number: 20140105242
    Abstract: Devices and methods are provided for a nanocomposite having a phase change polymer matrix and conductive nanoparticles to provide greatly enhanced responsivity to temperature and/or humidity. A sensing film includes carbon nanotubes (CNTs) and the polymer. Operation near the transition temperature increases the TCR by over an order of magnitude, thus providing a new platform for devices such as IR sensors, bolometers and imaging elements, MEMS devices, compensating or uncompensated circuit elements and other electronic devices. Nanocomposite films may be under about one micron thick, and coatings, constant environment chambers or mounts, and other engineered improvements and variations may be provided to further enhance the response, range, response times or sensitivity of the film-based devices. One embodiment employs a nanocomposite film under one micron in thickness to operate as an uncooled but highly sensitive infrared bolometer under ambient conditions.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 17, 2014
    Applicant: Brown University
    Inventors: Gustavo E. Fernandes, Jingming Xu, Jin Ho Kim
  • Patent number: 8696196
    Abstract: A bleed leakage detection system includes an arrangement of thermostats that are capable of detecting the place where the bleed air leakage is occurring (e.g., the failed junction in bleed air duct work). The exemplary illustrative non-limiting implementation provides a bleed leakage detection system with continuous monitoring of thermostat sensor wiring during flight and thermostat self-test function (“Initiated Built In Test”—“IBIT”). The IBIT self-testing can be initiated before the aircraft takes off or optionally, during periodic self testing that may be run during predetermined periods such as overnight when the aircraft is not being flown. By the continuous monitoring the pilot is alerted when a bleed leakage has occurred or when the bleed leakage detection system has failed.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: April 15, 2014
    Assignee: Embraer S.A.
    Inventor: Oswaldo Barthel Monteiro
  • Patent number: 8696198
    Abstract: A temperature recorder mainly includes a micro control unit (MCU), a temperature sensing circuit, a memory with RF transmission function, and at least one antenna unit. The MCU electrically connects to the temperature sensing circuit and the memory, and the antenna unit electrically connects to the memory. The temperature sensing circuit senses external temperature variations surrounding the temperature recorder, and the sensed temperature variations are progressed by the MCU and then stored into the memory in accordance with scheduled parameters. The temperature recorder can be connected externally through wired serial transmitting interface or wireless radio frequency (RF) transmitting interface when internal temperature data needs to be retrieved, or a new parameter needs to be written into the memory. Thus, the memory in the temperature recorder can be retrieved and written via both wired connection and wireless connection, the usage of the temperature recorder is more flexible.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 15, 2014
    Assignee: Jogtek Corp.
    Inventors: Wei-Chun Huang, Tsung-Hsing Hsieh
  • Patent number: 8690423
    Abstract: A sensor configured to detect exhaust gas temperature of an exhaust, the sensor including a housing and a sensing element at least partially disposed within the housing. A filler material, including a first media and at least one additional media, is disposed within the housing and at least partially surrounds the sensing element. The first media is configured to be stable in reducing atmospheres up to 800° C. and in oxidizing atmospheres up to 850° C. and the second media is configured to provide oxygen storage capacity and enhance chemical stability and/or oxygen entrapment.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: April 8, 2014
    Assignee: Stoneridge, Inc.
    Inventors: Zaid Alnaqash, Ken Kubasek, Ronald N. Landis
  • Publication number: 20140092940
    Abstract: A temperature sensor includes a pair of element electrode wires extending rearward from a temperature-sensing portion. A pair of second electrode wires are welded to the element s electrode wires, and made of a kind of metal having a different thermal expansion coefficient than the element electrode wires. Each second electrode wire includes an overlap section overlapping with an overlap section of the corresponding element electrode wire over an overlap region in a longitudinal direction in which the overlap sections of the each second electrode wire and element electrode wire extend longitudinally. The overlap section of each second electrode wire is welded to the overlap section of the corresponding element electrode wire at weld zones arranged in the longitudinal direction, which include: one at a front-side end of the overlap region; and another at a rear-side end of the overlap region.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 3, 2014
    Inventors: Tatsuya SUZUKI, Masamichi ITO
  • Patent number: 8686666
    Abstract: A control system is disclosed for determining an actual temperature of a light emitting diode. The control system uses conductor that supply power to the light emitting diode to supply a pulse to the light emitting diode. The pulse is determined along with a reaction caused by the pulse and the information gained is used in determination of the light emitting diode die temperature which can then be used in controlling current to the light emitting diode to control the temperature of the light emitting diode.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 1, 2014
    Assignee: TerraLUX, Inc.
    Inventors: Anthony Catalano, Daniel Harrison
  • Publication number: 20140079093
    Abstract: A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Applicant: Board of Regents of the Nevada Systems of Higher Education, on behalf of the University of Nevada
    Inventor: Board of Regents of the Nevada Systems of Higher Education, on behalf of the University of Nevada
  • Patent number: 8672542
    Abstract: A thermistor amplifier device comprising a first amplifier and a second amplifier is provided. The first amplifier generates an analog temperature signal output based on a voltage across at least one thermistor. The second amplifier generates an offset voltage input to the first amplifier, wherein the offset voltage is based on maintaining the analog temperature signal within a predefined voltage range. The second amplifier selects the offset voltage corresponding to one of a plurality of range levels, wherein each of the plurality of range levels is associated with a temperature range of the at least one thermistor.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: March 18, 2014
    Assignee: Honeywell International Inc.
    Inventors: Darryl I. Parmet, Michael A. Gilbert, William Joseph Trinkle, Ernest Frank John Graetz
  • Patent number: 8672540
    Abstract: A device for monitoring the temperature surrounding a circuit, including: a charge storage element; a charge evacuation device; and a thermo-mechanical switch connecting the storage element to the evacuation element, the switch being capable of closing without the circuit being electrically powered, when the temperature exceeds a threshold.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: March 18, 2014
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Pascal Fornara, Christian Rivero
  • Publication number: 20140063900
    Abstract: Circuitry and method for detecting occurrence of a reflow process to an embedded storage device are disclosed. A temperature sensing device includes a resistor, a temperature sensor, and a comparator. The first terminal of the resistor is coupled to a voltage source, and the second terminal of the resistor is coupled to both the first terminal of the temperature sensor and the first input of the comparator. The second terminal of the temperature sensor is grounded and the second input of the comparator is coupled to a reference voltage. The resistance state of the temperature sensor changes from a first resistance state to a second resistance state when the temperature surrounding the temperature sensor reaches a threshold. The comparator generates an output based on the resistance changes of the temperature sensor. The generated output may indicate whether a reflow process has occurred to the embedded storage device.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 6, 2014
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventors: Tal Heller, Sukhminder Singh Lobana, Yacov Duzly