Plural Sources Patents (Class 378/9)
  • Patent number: 10304580
    Abstract: Systems for x-ray microscopy using an array of micro-beams having a micro- or nano-scale beam intensity profile to provide selective illumination of micro- or nano-scale regions of an object. An array detector is positioned such that each pixel of the detector only detects x-rays corresponding to a single micro-or nano-beam. This allows the signal arising from each x-ray detector pixel to be identified with the specific, limited micro- or nano-scale region illuminated, allowing sampled transmission image of the object at a micro- or nano-scale to be generated while using a detector with pixels having a larger size and scale. Detectors with higher quantum efficiency may therefore be used, since the lateral resolution is provided solely by the dimensions of the micro- or nano-beams. The micro- or nano-scale beams may be generated using a arrayed x-ray source and a set of Talbot interference fringes.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: May 28, 2019
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, David Vine, Sylvia Jia Yun Lewis, Janos Kirz, Srivatsan Seshadri
  • Patent number: 10273802
    Abstract: A method according to some embodiments comprises obtaining a formation sample from a borehole, identifying minerals present in a first portion of the formation sample and determining densities of the minerals. The method also comprises determining, using a second portion of the formation sample, material properties associated with the mineral densities. The method further comprises associating the material properties with the identified minerals using the mineral densities, and generating a log comprising the associations.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: April 30, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Dandan Hu
  • Patent number: 10055859
    Abstract: The invention relates to a CT imaging apparatus and a method for generating sectional images of an object such as a patient on a patient table. According to one embodiment, first projections (P) are generated along a first helical scanning path (Tr1) of a first X-ray source according to a sparse angular sampling scheme. Additional projections (Q1, Q2, R1) may dynamically be introduced along said first helical scanning path (Tr1) and/or along a second helical scanning path (Tr2) of an additional X-ray source based on the evaluation of previous projections (P1).
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: August 21, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roland Proksa, Michael Grass, Thomas Koehler
  • Patent number: 9924911
    Abstract: A radiographic imaging apparatus having a detector, a radiation source array, and a control processor is configurable to individually energize the radiation sources. A collimator having a number of apertures is movable to either a first or second position in a path of the radiation source array. In one position, the apertures are aligned with a first subset of the radiation sources. In another position, the apertures are aligned with a second subset of the radiation sources. The second subset of the radiation sources define substantially the same radiation field that is defined by the first subset of the radiation sources. A transport apparatus translates the collimator member between at least the first and second positions according to an electronic instruction.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: March 27, 2018
    Assignee: Carestream Health, Inc.
    Inventors: Michael D. Heath, Xiaohui Wang, Dennis J. O'Dea
  • Patent number: 9895125
    Abstract: A computed tomography scanner has multiple radiation sources or source arrays, in specific geometric dimensions for optimized imaging speed. A CT system with maximum fan-angle ? and K simultaneously active x-ray sources distributed over an angle of ??2? radians, the sources partially overlapping on a detector array, measures summed projection data corresponding to K or less line-integrals at each detector element. When the CT machine's dimensions RM, Rd, and RS, corresponding respectively to the measurement field-of-view, detector distance from iso-center, and source distance from iso-center, are such that projections of the two extreme radiation sources do not overlap on the detector, the individual line-integrals can be recovered by inversion of linear systems comprising K or less rows in fewer unknown than rows; the unknowns given by the exponential of the negative of the line integrals to be recovered. The CT scanner then reconstructs an image from the line-integral estimates.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: February 20, 2018
    Inventor: Guy M. Besson
  • Patent number: 9826612
    Abstract: An X-ray emission device for emitting an integrated X-ray beam toward an object is disclosed. The X-ray emission device includes multiple X-ray emission tubes for respectively generating multiple X-rays, and a lens module for guiding the multiple X-rays toward the object to form the integrated X-ray beam.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: November 21, 2017
    Assignee: Wistron Corporation
    Inventor: Chun-Chih Lai
  • Patent number: 9761019
    Abstract: A method and apparatus is provided to reconstruct a collective image of a multiple method/geometry imaging system (e.g., a hybrid computed tomography system having energy-integrating detectors arranged in a third-generation geometry and photon-counting detectors arranged in a fourth generation geometry), wherein a splitting-based iterative algorithm using modified dual variables is used in the image reconstruction. Whereas a separate image for each method/geometry of the multiple method/geometry imaging system can be obtained by solving the distinct system-matrix equation corresponding to each respective method/geometry, the collective image is obtained by simultaneously solving a collective optimization problem including all respective system-matrix. The collective image is obtained more efficiently using variable splitting to subdivide the optimization into subproblems that are solved in an iterative fashion.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: September 12, 2017
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Zhou Yu, Yu Zou, Adam Petschke
  • Patent number: 9726619
    Abstract: The present application discloses a computed tomography system having non-rotating X-ray sources that are programmed to optimize the source firing pattern. In one embodiment, the CT system is a fast cone-beam CT scanner which uses a fixed ring of multiple sources and fixed rings of detectors in an offset geometry. It should be appreciated that the source firing pattern is effectuated by a controller, which implements methods to determine a source firing pattern that are adapted to geometries where the X-ray sources and detector geometry are offset.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: August 8, 2017
    Assignee: Rapiscan Systems, Inc.
    Inventors: William Thompson, William Robert Breckon Lionheart, Edward James Morton
  • Patent number: 9633814
    Abstract: X-ray CT apparatus is provided in which the photon energy distribution of X-rays to be radiated is flattened. X-ray CT apparatus includes an X-ray tube, a detector, a data acquisition system, a tube voltage generator, and a grid controller. The X-ray tube radiates X-rays onto a subject. The detector includes multiple detection elements for detecting photons forming the X-rays. The data acquisition system counts the number of the detected photons to acquire projection data based on the counted photons. The tube voltage generator applies the tube voltage to the X-ray tube while changing the tube voltage of the X-ray tube in a predetermined cycle. A tube current controller decreases the tube current upon an increase in the tube voltage, and increases the tube current upon a decrease in the tube voltage. Thus, the photon energy distribution of the X-rays radiated from the X-ray tube is flattened.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: April 25, 2017
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Daizo Oikawa, Fumio Ishiyama
  • Patent number: 9618633
    Abstract: A computed tomography (CT) detector apparatus includes a plurality of detectors arranged in a ring, each detector being arranged inside a Faraday cage having a plurality of voltage-biased side-electrodes arranged on a side surface of the Faraday cage. The detectors include photon-counting detectors (PCDs). A voltage applied to the voltage-biased side-electrodes decreases from the anode side of the PCD to the cathode side of the PCD.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: April 11, 2017
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Miesher Lage Rodrigues, Gin Chung Wang, Hao Yang, Liang Cai, Alan Karr
  • Patent number: 9349197
    Abstract: The left ventricle epicardium is estimated in medical diagnostic imaging. C-arm x-ray data is used to detect an endocardium at different phases. The detected endocardium at the different phases is compared to sample endocardiums at different phases. The sample endocardiums have corresponding sample epicardiums. The transformation between the most similar sample endocardium or endocardiums over time and the detected endocardium over time is applied to the corresponding sample epicardium or epicardiums. The transformed sample epicardium over time is the estimated epicardium over time for the C-arm x-ray data.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: May 24, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Mingqing Chen, Yefeng Zheng, Kerstin Mueller, Christopher Rohkohl, Günter Lauritsch, Jan Boese, Gareth Funka-Lea, Dorin Comaniciu
  • Patent number: 9274066
    Abstract: A method for performing reconstruction for a region of interest (ROI) of an object is provided. The method includes designating the ROI within the object, the ROI being located within a scan field of view (FOV) of a combined third- and fourth-generation CT scanner, the CT scanner including fixed photon-counting detectors (PCDs), and an X-ray source that rotates about the object in synchronization with a rotating detector. Further, the method includes determining, for each PCD, as a function of view angle, an on/off timing schedule, based on a size and location of the designated ROI, and performing a scan to obtain a first data set from the rotating detector and a second data set from the plurality of PCDs, while turning each PCD on and off according to the determined schedule. Finally, the method includes performing reconstruction using the first and second data sets to obtain ROI spectral images.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: March 1, 2016
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Changguo Ji, Yuexing Zhang, Xiaolan Wang, Daniel Gagnon
  • Patent number: 9247920
    Abstract: A method includes, in a bi-plane interventional imaging system, moving a first C-arm supporting a first X-ray source and a first X-ray detector about first and second axes while obtaining a plurality of first X-ray attenuation data sets relating to a subject of interest; moving a second C-arm, positioned crosswise with respect to the first C-arm and supporting a second X-ray source and a second X-ray detector, about the first axis while obtaining a plurality of second X-ray attenuation data sets relating to the subject of interest; and synchronizing the movement of the first and second C-arms to avoid collision therebetween.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: February 2, 2016
    Assignee: General Electric Company
    Inventors: Omar Al Assad, David Allen Langan, Bernhard Erich Hermann Claus, Jeffrey Wayne Eberhard, Michel Francois Grimaud
  • Patent number: 9183647
    Abstract: The present invention is an X-ray system having a source-detector module, which includes X-ray sources and detectors, for scanning an object being inspected, a scan engine coupled to the source-detector module for collecting scan data from the source detector module, an image reconstruction engine coupled to the scan engine for converting the collected scan data into one or more X-ray images, and a scan controller coupled with at least one of the source detector module, the scan engine, and the image reconstruction engine optimize operations of the X-ray system.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: November 10, 2015
    Assignee: Rapiscan Systems, Inc.
    Inventor: Edward James Morton
  • Patent number: 9144411
    Abstract: Methods and systems for controlling movement of detectors having multiple detector heads are provided. One system includes a gantry, a patient support structure supporting a patient table thereon, and a plurality of detector units. At least some of the detector units are rotatable to position the detector units at different angles relative to the patient table. The imaging system further includes a detector position controller configured to control the position of the rotatable detector units, wherein at least some of the rotatable detector units positioned adjacent to each other have an angle of rotation to allow movement of the rotatable detector units a distance greater than a gap between adjacent rotatable detector units The detector position controller is configured to calculate at least one of field of view avoidance information or collision avoidance information to determine an amount of movement for one or more of the rotatable detector units.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: September 29, 2015
    Assignee: General Electric Company
    Inventors: Leonid Tsukerman, Jean-Paul Bouhnik, Yaron Hefetz
  • Patent number: 9107632
    Abstract: A system and a method for acquiring image data of a subject with an imaging system is provided. The system can include a gantry that completely annularly encompasses at least a portion of the subject, which can be positioned along at an isocenter of the imaging system. The system can include a source and a detector positioned within and movable relative to the gantry on a rotor. The system can include a move control module that sets move data for each of the source, detector and rotor that causes the source, detector and rotor to move in a desired motion profile to acquire image data of a portion of the subject off the isocenter of the imaging system.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: August 18, 2015
    Assignee: Medtronic Navigation, Inc.
    Inventors: Patrick A. Helm, Michael Connor, Russell Stanton, Norbert Johnson, Eugene A. Gregerson
  • Patent number: 9107642
    Abstract: The present invention pertains to an apparatus and method for inverse geometry volume computed tomography medical imaging of a human patient. A plurality of stationary x-ray sources for producing x-ray radiation are used. A rotating collimator located between the plurality of x-ray sources and the human patient is also used. A rotating detector can also be used.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: August 18, 2015
    Assignee: Triple Ring Technologies, Inc.
    Inventors: Tobias Funk, Joseph Anthony Heanue, Waldo Stephen Hinshaw, Edward Gerald Solomon, Brian Patrick Wilfley
  • Patent number: 9075153
    Abstract: A method, a circuit arrangement and an X-ray system, in particular a CT system, are disclosed wherein, in order to correct the count rate drift of a detector for ionizing radiation having quantum-counting detector elements which include a combination of at least two counters with significantly different energy thresholds, and on the basis of previously determined functional dependencies of count rates on one another and using at least one of the counters per detector element as the reference, the count rates of the respective other counters with different energy thresholds are corrected.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: July 7, 2015
    Assignee: SIEMENS AKTIENGSELLSCHAFT
    Inventor: Steffen Kappler
  • Patent number: 9069092
    Abstract: A system and method for imaging objects with a sparse detector array that includes fewer detectors than conventional x-ray scanning systems. The sparse detector array is positioned to receive x-ray radiation from the at least one x-ray source after passing through an inspection area. The sparse detector array includes a plurality of rows of detector elements, wherein at least some of the plurality of rows are separated by gaps such that the at least some of the plurality of rows are non-contiguous. An iterative reconstruction process is used to determine a volumetric image of the object from the radiation measurements recorded by the detectors in the sparse detector array.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: June 30, 2015
    Assignee: L-3 Communication Security and Detection Systems Corp.
    Inventors: Boris Oreper, Andrew D. Foland
  • Patent number: 9046465
    Abstract: The present application discloses a computed tomography system having non-rotating X-ray sources that are programmed to optimize the source firing pattern. In one embodiment, the CT system is a fast cone-beam CT scanner which uses a fixed ring of multiple sources and fixed rings of detectors in an offset geometry. It should be appreciated that the source firing pattern is effectuated by a controller, which implements methods to determine a source firing pattern that are adapted to geometries where the X-ray sources and detector geometry are offset.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: June 2, 2015
    Assignee: Rapiscan Systems, Inc.
    Inventors: William Thompson, William Robert Breckon Lionheart, Edward James Morton
  • Patent number: 9042511
    Abstract: This specification is directed towards finding, locating, and confirming threat items and substances. The inspection system is designed to detect objects that are made from, but not limited to, special nuclear materials (“SNM”) and/or high atomic number materials. The system employs a dual energy CT scanning first stage inspection system and advanced image processing techniques to analyze images of an object under inspection (“OUI”), which includes, but is not limited to baggage, parcels, vehicles and cargo.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: May 26, 2015
    Assignee: Rapiscan Systems, Inc.
    Inventor: Kristian R. Peschmann
  • Patent number: 9039282
    Abstract: An imaging apparatus having a ring-shaped gantry is provided. The gantry has a rotor arrangement rotating therein and a radiation source as well as at least one radiation detector. The gantry has at least one gantry segment which can be detached from the ring shape to allow the gantry to be opened laterally. The gantry is arranged on a supporting structure so as to be movable in space. The supporting structure is a ceiling-mounted stand having at least two degrees of freedom of movement. The gantry has at least two radiation sources disposed offset by an angle on the rotor arrangement and associated with each of which is at least one radiation detector.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: May 26, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Michael Maschke
  • Patent number: 9039284
    Abstract: A method is disclosed for energy calibrating quantum-counting x-ray detectors in an x-ray installation including at least two x-ray systems turnable around a center of rotation. A target, for producing x-ray fluorescence radiation, is positioned between the first x-ray source and first x-ray detector and irradiated with x-radiation of the first x-ray source in such a way that x-ray fluorescence radiation which strikes the second x-ray detector from the target is produced by the x-radiation of the first x-ray source. The second x-ray detector is then energy calibrated by way of the x-ray fluorescence radiation of the target. The first x-ray detector can be energy calibrated in the same way with the aid of the x-radiation of the second x-ray source. With the proposed method, the x-ray detectors of a dual-source CT x-ray installation can be calibrated with little expenditure under conditions close to those of the system.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 26, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Mario Eichenseer, Steffen Kappler, Edgar Kraft, Björn Kreisler, Daniel Niederlöhner, Stefan Wirth
  • Patent number: 9042513
    Abstract: A system and a method for acquiring image data of a subject with an imaging system are provided. The system can include a gantry that completely annularly encompasses at least a portion of the subject, and a source positioned within the gantry. The source can be responsive to a signal to output at least one pulse. The system can include a multi-row detector positioned within the gantry. The multi-row detector can be in alignment with the source and sets multi-row detector data based on the detected at least one signal. The system can include a flat panel detector positioned within the gantry. The flat panel detector can in alignment with the source and sets flat panel detector data based on the detected at least one signal. The system can include an image acquisition control module that determines which of the multi-row detector and the flat panel detector to use.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: May 26, 2015
    Assignee: Medtronic Navigation, Inc.
    Inventors: Shuanghe Shi, Jason R. Chandonnet, Matthew G. Mooney
  • Publication number: 20150131774
    Abstract: Systems, methods, and related computer program products for image-guided radiation treatment (IGRT) are described. Provided according to one preferred embodiment is an IGRT apparatus including a barrel-style rotatable gantry structure that provides high mechanical stability, versatility in radiation delivery, and versatility in target tracking. Methods for treatment radiation delivery using the IGRT apparatus include conical non-coplanar rotational arc therapy and cono-helical non-coplanar rotational arc therapy. A radiation treatment head (MV source) and a treatment guidance imaging system including a kV imaging source are mounted to and rotatable with a common barrel-style rotatable gantry structure, or alternatively the MV and kV sources are mounted to separate barrel-style rotatable gantry structures independently rotatable around a common axis of rotation.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 14, 2015
    Inventors: Calvin R. Maurer, Jr., Euan S. Thomson
  • Patent number: 9031201
    Abstract: An X-ray imaging apparatus includes: an X-ray source including an electron source and a target, the target having a plurality of projections, each having an emitting surface; a diffraction grating configured to diffract X rays emitted from the X-ray source; and a detector configured to detect the X rays diffracted by the diffraction grating. Electron beams output from the electron source are incident on the emitting surfaces so that X rays are emitted from the emitting surfaces and are output to the diffraction grating. The X rays emitted from the emitting surfaces are diffracted by the diffraction grating so as to form a plurality of interference patterns. The projections are arranged such that bright portions of the interference patterns overlap each other and such that dark portions thereof overlap each other. Distances from the emitting surfaces to the diffraction grating are equal to each other.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: May 12, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Genta Sato
  • Patent number: 9014328
    Abstract: The present invention pertains to an apparatus and method for X-ray imaging a human patient. A vacuum bell bonded to an X-ray radiation-permeable window that can emit X-ray radiation from a plurality of spots located 1 cm from its edge, a collimator, and a detector are used. A ring of stationary X-ray sources can also be used with a stationary collimator and a rotating slot collimator and detector. An X-ray beam can be aligned in an X-ray system by establishing a position of the beam with respect to a moving collimator at a number of points in time, monitoring the velocity of the collimator, navigating the beam to a calculated position of a hole in the collimator, and correcting the alignment of the beam based on the location of the beam on the detector.
    Type: Grant
    Filed: July 4, 2014
    Date of Patent: April 21, 2015
    Assignee: Triple Ring Technologies, Inc.
    Inventor: Tobias Funk
  • Patent number: 9008268
    Abstract: An X-ray imaging apparatus includes a multi X-ray source which includes a plurality of X-ray focuses to generate X-rays by irradiating X-ray targets with electron beams, a detector which detects X-rays which have been emitted from the multi X-ray source and have reached a detection surface, and a moving mechanism for moving the multi X-ray source within a plane facing the detection surface. The X-ray imaging apparatus acquires a plurality of X-ray detection signals from the detector by causing the multi X-ray source to perform X-ray irradiation while shifting the positions of a plurality of X-ray focuses which the detector has relative to the detection surface by moving the multi X-ray source using the moving mechanism. The apparatus then generates an X-ray projection image based on the plurality of X-ray detection signals acquired by the detector.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: April 14, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masahiko Okunuki, Makoto Sato, Osamu Tsujii, Takashi Ogura, Hisashi Namba
  • Patent number: 9008269
    Abstract: A method for adjusting a field of view for exposure of an X-ray system is provided. The method comprises: capturing an image of a patient on an examining table of the system by an image sensor, wherein the image sensor is placed at a predetermined position in the system; displaying the captured image on a display for selection of a region of interest or a point of interest by a user on the image; automatically determining a target position of an X-ray source in response to the selection of the region of interest or the point of interest on the image, wherein a desired field of view for exposure covering the region of interest or the point of interest is obtained when the X-ray source is located at the target position; and automatically locating the X-ray source at the target position in response to the determination of the target position.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 14, 2015
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Jian Wang, Bin Ye, Yannan Huang, Yonghui Han
  • Patent number: 9001962
    Abstract: The present invention pertains to an apparatus and method for medical imaging comprising rotating two X-ray source-detector pairs around an axis of rotation simultaneously to quickly acquire image data and form a computed tomography (CT) dataset. The sources can be configured to emit radiation from a plurality of discrete locations. The CT dataset can be utilized as a prior to reconstruct a three-dimensional image from subsequent bi-planar imaging with these source-detector pairs.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: April 7, 2015
    Assignee: Triple Ring Technologies, Inc.
    Inventor: Tobias Funk
  • Patent number: 8995610
    Abstract: A CT scanning system may include a multi-pixel x-ray source, and a detector array. The multi-pixel x-ray source may have a plurality of pixels that are disposed along a z-axis, and that are sequentially activated so as to controllably emit x-rays in response to incident electrons. The detector array may have one or more rows of x-ray detectors that detect the x-rays that are emitted from the pixels and have traversed an object, and generate data for CT image reconstruction system. In third generation CT scanning systems, the number of detector rows may be reduced. Multi-pixel x-ray source implementation of saddle curve geometry may render a single rotation single organ scan feasible. Using a multi-pixel x-ray source in stationary CT scanning systems may allow x-ray beam design with a minimal coverage to satisfy mathematical requirements for reconstruction.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: March 31, 2015
    Assignee: Analogic Corporation
    Inventors: Zhengrong Ying, Sergey Simanovsky, Ram Naidu, Sorin Marcovici
  • Publication number: 20150078510
    Abstract: The present application provides a curved surface array distributed x-ray apparatus, characterized in that, it comprises: a vacuum box which is sealed at its periphery, and the interior thereof is high vacuum; a plurality of electron transmitting units arranged on the wall of the vacuum box in multiple rows along the direction of the axis of the curved surface in the curved surface facing the axis; an anode made of metal and arranged in the axis in the vacuum box which comprises an anode pipe and an anode target surface; a power supply and control system having a high voltage power supply connected to the anode, a filament power supply connected to each of the plurality of the electron transmitting units, a grid-controlled apparatus connected to each of the plurality of electron transmitting units, a control system for controlling each power supply.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Inventors: Huaping TANG, Chuanxiang TANG, Huaibi CHEN, Wenhui HUANG, Shuxin ZHENG, Huayi ZHANG, Yaohong LIU
  • Patent number: 8983024
    Abstract: A tetrahedron beam computed tomography system including an x ray source array that sequentially emits a plurality of x ray beams at different positions along a scanning direction and a collimator that intercepts the plurality of x-ray beams so that a plurality of fan-shaped x-ray beams emanate from the collimator towards an object. The system includes a first detector receiving a first set of fan-shaped x ray beams after they pass through the object, the first detector generating a first imaging signal for each of the received first set of fan-shaped x-ray beams and a second detector receiving a second set of fan-shaped x ray beams after they pass through the object, the second detector generating a second imaging signal for each of the received second set of fan-shaped x-ray beams. Each detector and source pair form a tetrahedral volume. In other embodiments, the system may also have more than two detectors arrays and/or more than one source array.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: March 17, 2015
    Assignee: William Beaumont Hospital
    Inventors: Tiezhi Zhang, Xiaochao Xu, Joshua Kim, Di Yan, Alvaro Martinez
  • Patent number: 8964942
    Abstract: Disclosed is a collimator assembly for a multi-radiation-source medical imaging system (e.g. CT) and a medical imaging system utilizing the collimator. According to some embodiments of the present invention, there is provided a collimator assembly including at least two apertures, which apertures are adjustable substantially synchronously by one or more actuators.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: February 24, 2015
    Assignee: Arineta Ltd.
    Inventors: Ehud Dafni, David Ruimi
  • Patent number: 8965092
    Abstract: In a control method and a control unit to control a high-energy, tomosynthesis scan in a contrast agent-assisted dual-energy tomosynthesis, image data of a first tomosynthesis scan are evaluated in order to determine the respective greyscale values for all volume segments. A tube current-time product value for every greyscale value is stored in a memory. For every projection angle, a calculation unit can thereupon calculate a tube current-time product value and acquisition parameters and result with which the second high-energy tomosynthesis scan is controlled.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 24, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Mathias Hoernig
  • Publication number: 20150049855
    Abstract: The present invention pertains to an apparatus and method for inverse geometry volume computed tomography medical imaging of a human patient. A plurality of stationary x-ray sources for producing x-ray radiation are used. A rotating collimator located between the plurality of x-ray sources and the human patient is also used. A rotating detector can also be used.
    Type: Application
    Filed: September 26, 2014
    Publication date: February 19, 2015
    Applicant: TRIPLE RING TECHNOLOGIES, INC.
    Inventors: Tobias Funk, Joseph Anthony Heanue, Waldo Stephen Hinshaw, Edward Gerald Solomon, Brian Patrick Wilfley
  • Publication number: 20150030119
    Abstract: A multi-source radiation generator in which plural radiation sources are arranged in series includes a control unit that controls a dose of radiation emitted from each of the radiation sources depending on positions of the radiation sources, and reduces variation in a radiation dose resulting from differences in positions of the radiation sources by changing an irradiation time, an anodic current value of each of the radiation sources depending on a distance from each of the radiation sources to a subject.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 29, 2015
    Inventors: Miki Tamura, Kazuyuki Ueda
  • Patent number: 8942782
    Abstract: An image display apparatus includes a first radiographic image acquirer for acquiring a first radiographic image captured in the scout image capturing process, a second radiographic image acquirer for acquiring a plurality of second radiographic images captured in the stereographic image capturing process, a first display controller for displaying the first radiographic image on a display unit, and a second display controller for displaying the second radiographic images on the display unit and, in case that the biopsy region is selected in the displayed first radiographic image, displaying, in the second radiographic images, respective guide lines passing through positions in the second radiographic images which correspond to the position of the biopsy region selected in the first radiographic image and extending parallel to or substantially parallel to a prescribed direction.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: January 27, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Yuuichi Sakaguchi, Naoyuki Okada, Masataka Sugahara
  • Patent number: 8942340
    Abstract: A tetrahedron beam computed tomography system including an x ray source array that sequentially emits a plurality of x ray beams at different positions along a scanning direction and a collimator that intercepts the plurality of x-ray beams so that a plurality of fan-shaped x-ray beams emanate from the collimator towards an object. The system includes a first detector receiving a first set of fan-shaped x ray beams after they pass through the object, the first detector generating a first imaging signal for each of the received first set of fan-shaped x-ray beams and a second detector receiving a second set of fan-shaped x ray beams after they pass through the object, the second detector generating a second imaging signal for each of the received second set of fan-shaped x-ray beams. Each detector and source pair form a tetrahedral volume. In other embodiments, the system may also have more than two detectors arrays and/or more than one source array.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: January 27, 2015
    Assignee: William Beaumont Hospital
    Inventors: Tiezhi Zhang, Xiaochao Xu, Joshua Kim, Di Yan, Alvaro Martinez
  • Patent number: 8938045
    Abstract: A method of evaluating a reservoir includes a multi-energy X-ray CT scan of a sample, obtaining bulk density and photoelectric effect index effect for the sample, estimation of at least mineral property using data obtained from at least one of a core gamma scan, a spectral gamma ray scan, an X-ray fluorescence (XRF) analysis, or an X-ray diffraction (XRD) analysis of the sample, and determination of at least one sample property by combining the bulk density, photoelectric effect index, and the at least one mineral property (e.g., total clay content). Reservoir properties, such as one or more of formation brittleness, porosity, organic material content, and permeability, can be determined by the method without need of detailed lab physical measurements or destruction of the sample. A system for evaluating a reservoir also is provided.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: January 20, 2015
    Assignee: Ingrain, Inc.
    Inventors: Jack Dvorkin, Naum Derzhi, Elizabeth Diaz, Joel Walls
  • Publication number: 20150016586
    Abstract: An IGRT system and methods are described embodiments of which perform selectively integration of x-ray source arrays, dual-energy imaging, stereoscopic imaging, static and source collimation, or inverse geometry tomosynthesis imaging to acquire or track a target during radiation treatment.
    Type: Application
    Filed: July 29, 2014
    Publication date: January 15, 2015
    Inventors: Calvin R. Maurer, Jr., Mu Young Lee, Gopinath Kuduvalli, Petr Jordan, Prashant Chopra
  • Publication number: 20150003577
    Abstract: A method is disclosed for positioning a body region of interest of a patient in the isocentre of the imaging system of a computer tomograph or C-arm device. The method involves using the computer tomograph or C-arm device to record a topogram of the patient, determining a distance between the body region of interest and the isocentre from the topogram, and shifting a patient positioning device or the imaging system by this distance in order to move the body part into the isocentre. In the proposed method, the topogram is recorded in sections from various directions that are perpendicular to one another. The method enables the body region of interest to be positioned without the use of any external aids.
    Type: Application
    Filed: January 22, 2013
    Publication date: January 1, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Peter Aulbach, Ute Feuerlein
  • Publication number: 20140369459
    Abstract: A mobile radiography apparatus has a moveable (e.g., wheeled) transport frame and an adjustable column mounted at the frame. A boom apparatus supported by the adjustable column can support an x-ray source assembly. Radiation or X-ray source assembly methods and/or apparatus embodiments can provide mobile radiography carts a capability to direct x-ray radiation towards a subject from one or a plurality of different source positions, where the X-ray source assembly includes a first x-ray power source and a second plurality of distributed x-ray sources disposed in a prescribed spatial relationship.
    Type: Application
    Filed: February 21, 2013
    Publication date: December 18, 2014
    Inventors: David H. Foos, John Yorkston, Xiaohui Wang
  • Patent number: 8891726
    Abstract: When performing nuclear (e.g., SPECT or PET) and CT scans on a patient, an imaging system (10) includes three or more carbon nanotube x-ray sources (20) are circumferentially spaced along an arc of a rotatable gantry (16) that spans a distance larger than a maximum cross-sectional dimension of a section of a patient (14) to be imaged. The x-ray sources are sequentially pulsed to emit x-rays for scanning a section of a patient (14) including a volume of interest (VOI) (13). Only one source (20) is in an ON state at a time to create a duty cycle, which reduces cooling time for the respective sources as well as radiation dose to the subject. X-rays traversing the patient (14) are received at a flat panel x-ray detector (22) that has a width smaller than the maximum cross-sectional dimension, which further reduces the weight and size of the system (10).
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: November 18, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Herfried Wieczorek, Gereon Vogtmeier
  • Publication number: 20140321605
    Abstract: A CBCT system is described that includes a radiation source for emitting a cone beam of radiation in a beam direction towards an object, a detector for detecting the cone beam of radiation, and a positioner for moving the radiation source and the object according to a scanning trajectory. The system is operated according to a sampling pattern that includes intersections of the scanning trajectory and a reconstruction trajectory, wherein motion of the radiation source is substantially confined to a spherical shell. The positioner moves the radiation source at a speed higher than a highest speed of the object by a factor of at least 10. The largest angular discrepancy between any vector in a range of the scanning trajectory and the nearest sample of the scanning trajectory does not exceed 10°, preferably 6° and more preferably 3°.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 30, 2014
    Inventor: Moshe Ein-Gal
  • Publication number: 20140321606
    Abstract: The present invention pertains to an apparatus and method for X-ray imaging a human patient. A vacuum bell bonded to an X-ray radiation-permeable window that can emit X-ray radiation from a plurality of spots located 1 cm from its edge, a collimator, and a detector are used. A ring of stationary X-ray sources can also be used with a stationary collimator and a rotating slot collimator and detector. An X-ray beam can be aligned in an X-ray system by establishing a position of the beam with respect to a moving collimator at a number of points in time, monitoring the velocity of the collimator, navigating the beam to a calculated position of a hole in the collimator, and correcting the alignment of the beam based on the location of the beam on the detector.
    Type: Application
    Filed: July 4, 2014
    Publication date: October 30, 2014
    Inventor: Tobias Funk
  • Patent number: 8873703
    Abstract: A CT scanner with scatter correction device and a method for scatter correction are provided. The method comprises positioning shields for shielding some of the CT detector elements from direct X ray radiation, while allowing scattered radiation to arrive at said shielded elements; measuring scatter signals from said shielded elements, indicative of scattered radiation intensity; and correcting for scatter by subtracting scatter intensity values estimated from said measured scatter signals from signals measured by unshielded detector elements.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 28, 2014
    Assignee: Arineta Ltd.
    Inventors: David Ruimi, Olga Shapiro, Ehud Dafni
  • Publication number: 20140314199
    Abstract: A system and a method for acquiring image data of a subject with an imaging system are provided. The system can include a gantry that completely annularly encompasses at least a portion of the subject, and a source positioned within the gantry. The source can be responsive to a signal to output at least one pulse. The system can include a multi-row detector positioned within the gantry. The multi-row detector can be in alignment with the source and sets multi-row detector data based on the detected at least one signal. The system can include a flat panel detector positioned within the gantry. The flat panel detector can in alignment with the source and sets flat panel detector data based on the detected at least one signal. The system can include an image acquisition control module that determines which of the multi-row detector and the flat panel detector to use.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Shuanghe SHI, Jason R. CHANDONNET, Matthew G. MOONEY
  • Publication number: 20140307846
    Abstract: A method of estimating chordal holdup values of gas, oil, and water (?G, ?O, ?W) for tomographic imaging of a three-phase flow through a volume, including: providing an X-ray source for irradiating through said volume and X-ray sensors for discriminating between a first and a second radiation bands, conducting first calibration measurements (IGS, IOS, IWS) of said first radiation band, conducting second calibration measurements (IGH, IOH, IWH) of said second radiation band, arranging a mixture of two or more fluids, irradiating said volume and conducting X-ray measurements (IS, IH) in said radiation bands, establishing a relationship between a function of holdup values f(?G, ?W) of at least gas and water and said X-ray measurements (IS, IH), searching holdup values (?G, ?W) that minimise said function of holdup values f(?G, ?W) under the constraints of the sum of said holdup values is more than or equal to zero and less than or equal to one, i.e. that 0??G+?W?1.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 16, 2014
    Applicant: Institute of Energy Technology
    Inventors: Bin Hu, Christopher John Lawrence
  • Patent number: 8848862
    Abstract: The present invention pertains to an apparatus and method for inverse geometry volume computed tomography medical imaging of a human patient. A plurality of stationary x-ray sources for producing x-ray radiation are used. A rotating collimator located between the plurality of x-ray sources and the human patient is also used. A rotating detector can also be used.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: September 30, 2014
    Assignee: Triple Ring Technologies, Inc.
    Inventors: Tobias Funk, Joseph Anthony Heanue, Waldo Stephen Hinshaw, Edward Gerald Solomon, Brian Patrick Wilfley