Plural Sources Patents (Class 378/9)
  • Patent number: 7949101
    Abstract: The present invention is directed toward an X-ray scanner that has an electron source and an anode. The anode has a target surface with a series of material areas spaced along it in a scanning direction. The material areas are formed from different materials. The electron source is arranged to direct electrons at a series of target areas of the target surface, in a predetermined order, so as to generate X-ray beams having different energy spectra.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: May 24, 2011
    Assignee: Rapiscan Systems, Inc.
    Inventor: Edward James Morton
  • Patent number: 7949089
    Abstract: A CT scanner for scanning a subject is provided, the scanner comprising: a gantry capable of rotating about a scanned subject; at least two cone beam X-Ray sources displaced from each other mounted on said gantry; at least one 2D detector array mounted on said gantry, said detector is capable of receiving radiation emitted by said at least two X-Ray sources and attenuated by the subject to be scanned; a first image processor capable of generating and displaying CT images of a volume within the subject; a second image processor capable of generating projection X-Ray images of said volume, wherein the images are responsive to X-Ray separately emitted by each of said at least two cone beam X-Ray sources; and a third image processor capable of generating and displaying fluoroscopic images composed of said projection X-Ray images, wherein said fluoroscopic images are spatially registered to said CT images.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: May 24, 2011
    Assignee: Arineta Ltd.
    Inventors: Ehud Dafni, Rafael Shmeul Brada
  • Patent number: 7940888
    Abstract: An X-ray imaging apparatus includes an X-ray source including a plurality of X-ray focuses, an X-ray detector which detects X-rays emitted from the X-ray focuses and transmitted through an object, and a control unit which controls the X-ray source and the X-ray detector. The X-ray imaging apparatus selects a pair of X-ray focuses, of X-ray focuses of the plurality of X-ray focuses which project images on the X-ray detector through a region of interest which is an imaging region of the object, from which emitted X-rays define an intersecting angle coinciding with a predetermined angle in the region of interest, and decides an X-ray focus to be used for imaging from X-ray focuses between the selected pair of X-ray focuses. An X-ray image is captured by emitting X-rays from the decided X-ray focus and causing the X-ray detector to detect the X-rays.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 10, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Osamu Tsujii
  • Patent number: 7933378
    Abstract: A computed tomography system (100) includes a first (1081) and a second source (108N) disposed at different z-axis locations at about a same angular position around an examination region (112) that alternately emit radiation beams (114) that traverse the examination region (112). The first source (1081) emits a first radiation beam (1141) having a first outer projection (204) and the second source (108N) emits a second radiation beam (114N) having a first outer projection (216). Both of the first outer projections (204, 216) traverse plane perpendicular to the axis of rotation, and the first outer projections (204, 216) define a width of a volume (400) within which the emitted radiation beams (114) are confined. A common detector (124) detects radiation from the x-ray beams (114) that traverses the volume (400) and generates data indicative thereof, and a reconstructor (132) reconstructs the data to generate an image of the volume (400).
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: April 26, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Roand Proksa
  • Patent number: 7929659
    Abstract: A computed tomographic imaging system is provided for generating computed tomography images. The computed tomographic system includes a processor configured to access image data encoding X-ray projections at a detector position and a plurality of X-ray source beam focal spot positions and to align pixel values for the projections in a direction of deviation of the positions. The processor is also configured to determine a correction factor for at least one of the projections based upon the aligned pixel values and upon a sum of the projections and to correct the pixel values for the at least one of the projections based upon the correction factor.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: April 19, 2011
    Assignee: General Electric Company
    Inventors: Xiaoye Wu, Fang Frank Dong, James Walter Leblanc
  • Patent number: 7929663
    Abstract: Apparatus for monitoring in real time the movement of a plurality of substances in a mixture, such as oil water and air flowing through a pipe comprises an X-ray scanner arranged to make a plurality of scans of the mixture over a monitoring period to produce a plurality of scan data sets, and control means arranged to analyze the data sets to identify volumes of each of the substances and to measure their movement. By identifying volumes of each of the substances in each of a number of layers and for each of a number of scans, real time analysis and imaging of the substance can be achieved.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: April 19, 2011
    Assignee: Rapiscan Systems, Inc.
    Inventor: Edward James Morton
  • Publication number: 20110080992
    Abstract: An X-ray source system for a CT scanner includes a plurality of X-ray sources, wherein each X-ray source of the plurality is provided with a cathode from which an electron beam is emitted, an anode to receive the electron beam and at least one grid electrode, wherein the grid electrodes are configured to selectably block radiation from said X-ray sources; a high voltage generator for applying voltage to the plurality of X-ray sources, wherein each of the plurality of X-ray sources are configured to present substantially the same load to the high voltage generator; a grid modulator configured to apply voltage to grid electrodes of each of the plurality of X-ray sources in turn; and a controller for controlling the grid modulator so that only one of the plurality of X-ray sources emits radiation at any one time.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 7, 2011
    Applicant: Arineta Ltd.
    Inventor: Ehud DAFNI
  • Publication number: 20110075794
    Abstract: A method is provided for quickly and simply generating a three-dimensional tomographic x-ray imaging. Tomosynthetic projection images are recorded from different recording angles along a tomosynthetic scanning path and three-dimensional image data is reconstructed from the tomosynthetic projection images. The tomosynthetic projection images are recorded by a tomosynthetic x-ray device with a plurality of x-ray sources arranged on a holder at a distance from one another. Each projection image is recorded by a different x-ray source being fixed in one place during recording the tomosynthetic projection images.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 31, 2011
    Inventors: Jan Boese, Frank Dennerlein, Benno Heigl, Holger Kunze, Michael Maschke
  • Patent number: 7899151
    Abstract: An operating method for a polyplanar imaging system for time-resolved imaging of an object is provided. First and second data records are recorded at a fan angle ? from different angular positions by a first and second imaging planes arranged at an offset angle ? relative to each other and swiveled through an angle of at least ?=180°+?. A third data record is created by selecting projection images from the first data record beginning from a starting angle ? and from the second data record so that the third data record covers an angular range of at least ?. Three-dimensional images are reconstructed based on the third data record. The starting angle ? is varied for continuously creating the third data record until ? has attained its final value. The contrast of projection images in the third data record or of three-dimensional images is evaluated.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: March 1, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Boese, Norbert Rahn
  • Patent number: 7894572
    Abstract: A tomographic apparatus (10) includes at least two x-ray sources (14) that rotate about and alternately emit radiation into an imaging region (22). The at least two x-ray sources (14) emit radiation from a first set of angular positions during a first data acquisition cycle and from a different set of angular positions during a subsequent data acquisition cycle. At least two sets of detectors (24) detect primary radiation emitted by a corresponding one of the at least two x-ray sources (14) and produce data representative of the detected radiation. An interleaver (32) interleaves the data associated with the first and the subsequent data acquisition cycles for each of the at least two x-ray sources (14).
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: February 22, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Andy Ziegler
  • Patent number: 7889835
    Abstract: A system and method for ascertaining the identity of an object within an enclosed article. The system includes an acquisition subsystem, a reconstruction subsystem, a computer-aided detection (CAD) subsystem, and an alarm resolution subsystem. The acquisition subsystem communicates view data to the reconstruction subsystem, which reconstructs it into image data and communicates it to the CAD subsystem. The CAD subsystem analyzes the image data to ascertain whether it contains any area of interest. A feedback loop between the reconstruction and CAD subsystems allows for continued, more extensive analysis of the object. Other information, such as risk variables or trace chemical detection information may be communicated to the CAD subsystem to dynamically adjust the computational load of the analysis.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: February 15, 2011
    Assignee: Morpho Detection, Inc.
    Inventors: Robert August Kaucic, Ricardo Scott Avila, Samit Kumar Basu, Forrest Frank Hopkins
  • Patent number: 7889834
    Abstract: A method and CT system are disclosed for preparing reconstructed CT image data records. In at least one embodiment of the method, an initial material distribution of an examination object is determined from CT data records determined from among at least two different spectral weightings with local energy-determined attenuation values, and local measurement-spectrum-dependent weighting functions are determined using this material distribution, enabling local measurement-spectrum-dependent attenuation functions to be calculated, and the distribution of local reference materials to be determined, with the help of plausibility considerations, from a list of reference materials over at least one specified region of interest in the examination object on the basis of previously calculated local measurement-spectrum-dependent attenuation functions.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: February 15, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventor: Björn Heismann
  • Patent number: 7885378
    Abstract: An imaging method and apparatus is described in which distances between a source and an object are changed and projection images are generated at each of the different distances.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: February 8, 2011
    Assignee: The General Hospital Corporation
    Inventors: Daniel B. Kopans, Richard H. Moore
  • Patent number: 7885375
    Abstract: A technique is provided for imaging a field of view using an X-ray source comprising two or more emission points. The two or more emission points may be independently operated. Independent operation of the two or more emission points in performed in accordance with a list of commands that specifies the operation of the emission points. The list of commands, in one embodiment, is stored in a sequence buffer. In other embodiments, the list of commands is generated for a given usage, without being stored in a sequence buffer.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: February 8, 2011
    Assignee: General Electric Company
    Inventors: Bruno Kristiaan Bernard De Man, Daniel David Harrison, Maria Iatrou, Brian Patrick Smyth, Zhye Yin, Samit Kumar Basu, Souma Sengupta, Peter Claudius Sanza
  • Patent number: 7876881
    Abstract: A system according to some embodiments may include a treatment head to emit a megavoltage radiation beam toward a volume, a plurality of X-ray sources to emit a respective kilovoltage radiation beam toward the volume while the plurality of X-ray sources are substantially stationary with respect to the volume, a detector to receive the plurality of kilovoltage radiation beams after having passed through the volume, and a processor to generate a three-dimensional image of the volume based only on the plurality of kilovoltage radiation beams received by the detector while the plurality of X-ray sources were substantially stationary with respect to the volume.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: January 25, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Andrew Jeffery
  • Patent number: 7869561
    Abstract: Apparatus for CT cone beam scanning, comprising: a table for holding a subject; a gantry; a first detector array, having a given number of rows of detector elements spaced along an rotation axis of the gantry, mounted on the gantry; a first plurality of x-ray sources mounted on the gantry for rotation about the patient table on a rotation axis, the number of rows being at least twice the number of sources; and a controller that acquires data responsive to radiation from the sources from the detector array attenuated by at least part of the common volume of the subject irradiated by the plurality of radiation sources.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: January 11, 2011
    Assignee: Arineta Ltd.
    Inventor: Ehud Dafni
  • Patent number: 7864917
    Abstract: An imaging apparatus includes a multi-dimensional assembly supporting a plurality of x-ray sources that are individually addressable. The plurality of x-ray sources is further configurable to simultaneously emit x-ray spectra at different mean energies. Furthermore, the multi-dimensional assembly includes a plurality of x-ray detectors that are arranged to detect at least a part of the x-rays that are emitted from at least one of the x-ray sources.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: January 4, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Carolina Ribbing, Peter Klaus Bachmann, Matthijs Adriaansz, Han Kroon, Herman Stegehuis, Hans Nikol
  • Patent number: 7860210
    Abstract: A method for imaging an object in a computed tomography (CT) system with a plurality of sources comprising a first source and a second source, wherein the plurality of sources together with a detector array are mounted on a rotatable gantry, and wherein an intensity of the second source has unknown fluctuations is provided. Projection data is collected using the first source in a first gantry position. Projection data is collected using the second source in a second gantry position, wherein projection data from the first source in the first gantry position substantially overlaps projection data from the second source in the second gantry position. Data from the first source at the first gantry position is used to correct for source fluctuations of the second source at the second gantry position.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: December 28, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Norbert J. Pelc, Jongduk Baek
  • Patent number: 7856078
    Abstract: A method is disclosed for generating computed tomography displays, in which with the aid of at least one X-ray source, an examination object is scanned in a rotationally circulating fashion with a measured dose rate dependent on the circulation angle, projection data are collected from a multiplicity of viewing angles, and at least similarly redundant projection data from angularly identical or angularly complementary projection angles with a different measured dose are interpolated with distance weighted relative to a projection value and are used for reconstruction. According to at least one embodiment of the invention, during the distance weighted interpolation of the at least similarly redundant projection data an additional noise optimizing weighting is carried out as a function of the noise present per projection value.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: December 21, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Herbert Bruder, Rainer Raupach, Bernhard Schmidt
  • Patent number: 7856077
    Abstract: At least one embodiment of the present invention relates to a CT scanner and/or a method for helical scanning of an examination object which has at least one portion undergoing periodic motion.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: December 21, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Herbert Bruder, Thomas Flohr
  • Patent number: 7852984
    Abstract: The invention relates to a method and a device for the separate three-dimensional representation of arteries and/or veins in a vascular system of the body by means of a C-arm biplanar system having two C-arms, which can each record a sequence of x-ray images from different projection angles during a mask or filler pass. With the filler pass, both C-arms record x-ray images, so that the x-ray images of the filler pass can be combined to form a first data record, which contains x-ray images from the arterial phase of the vascular contrasting and/or to form a second data record, which contains x-ray images from the venous phase of the vascular contrasting. This enables the arterial and venous phases to be reconstructed separately.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: December 14, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Zellerhoff
  • Publication number: 20100310038
    Abstract: The invention relates to a computer tomography system comprising a support structure, more than one source of radiation, a detector array, and a grid, wherein the support structure defines a space to accommodate an object of interest which can be moved through the ring. The object of interest is radiographed by means of the sources of radiation which are located at the perimeter of the support structure and are movable along said perimeter. The sources are arranged displaced behind each other. The detector array is located at the perimeter of the support structure opposite the sources of radiation, and is movable simultaneously with the sources along the perimeter of the ring. The grid is arranged on the side of the detector array, orientated to the sources, to focus detector modules arranged on the detector array. By means of said CT system, improved radiographic images can be achieved from the object of interest.
    Type: Application
    Filed: September 25, 2008
    Publication date: December 9, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Rolf Karl Otto Behling
  • Patent number: 7848480
    Abstract: An X-ray CT scanner includes X-ray tubes including a first X-ray tube and a second X-ray tube having fan angles different from each other, X-ray detectors including a first X-ray detector and a second X-ray detector which are respectively arranged to face the first X-ray tube and the second X-ray tube, collection data processing means for executing weighting processing to each of pieces of collection data including first collection data obtained by the first X-ray detector and second collection data obtained by the second X-ray detector to generate image data combined to be smooth in a direction corresponding to a channel direction of detection elements provided in the X-ray detectors, and image generating section for performing processing including image reconstruction processing with respect to pieces of collection data weighted by the collection data processing section to generate image data.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: December 7, 2010
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Satoru Nakanishi, Naruomi Akino, Yasuo Saito
  • Patent number: 7844032
    Abstract: A collimator includes a first plate having an aperture therein, the aperture configured to allow passage of a beam of x-rays from a source of a multi-spot source therethrough, and a second plate parallelly positioned with respect to the first plate and configured to receive and attenuate a first portion of the beam of x-rays passing through the aperture in the first plate, the second plate having an aperture therein configured to non-concentrically overlap the aperture in the first plate, to receive a second portion of the beam of x-rays passing through the aperture in the first plate, and to allow passage of the second portion of the beam of x-rays therethrough. A portion of the aperture in the first plate and a portion of the aperture in the second plate form a composite aperture parallel to the beam of x-rays, the composite aperture configured to allow passage of the second portion of the beam of x-rays through the first and second plates.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: November 30, 2010
    Assignee: General Electric Company
    Inventors: Mark E. Vermilyea, Colin R. Wilson, Yun Zou
  • Patent number: 7844027
    Abstract: System and method for XRD-based false alarm resolution in computed tomography (“CT”) threat detection systems. Following a scan of an object with a megavoltage CT-based threat detection system, a suspicious area in the object is identified. The three dimensional position of the suspicious area is used to determine a ray path for the XRD-based threat detection system that provides minimal X-ray attenuation. The object is then positioned for XRD scanning of the suspicious area along this determined ray path. The XRD-based threat detection system is configured to detect high density metals (“HDMs) as well as shielded Special Nuclear Materials (“SNMs”) based on cubic or non-cubic diffraction profiles.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 30, 2010
    Assignee: Morpho Detection, Inc.
    Inventors: Geoffrey Harding, Joseph Bendahan
  • Publication number: 20100290584
    Abstract: When performing nuclear (e.g., SPECT or PET) and CT scans on a patient, a volume cone-beam CT scan is performed using a cone-beam CT X-ray source (20) and an offset flat panel X-ray detector (22). A field of view of the X-ray source overlaps a field of view of two nuclear detector heads (18), and the offset of the X-ray detector (22) minimizes interference with nuclear detector head movement about a rotatable gantry (16). Additionally, a locking mechanism (80) provides automatically locking of the X-ray detector (22) in each of a stowed and operation position, improving safety and CT image quality.
    Type: Application
    Filed: October 29, 2008
    Publication date: November 18, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: John F. Vesel, Michael J. Petrillo, Ian Farmer, Mahmoud Janbakhsh, Rizwan Hassan, Paul Hug, Joseph J. Stefan, Marc A. Huber
  • Patent number: 7835486
    Abstract: Systems and methods are provided for acquiring and reconstructing projection data that is mathematically complete or sufficient using a computed tomography (CT) system having stationary distributed X-ray sources and detector arrays. In one embodiment, a distributed source is provided as arcuate segments offset in the X-Y plane and along the Z-axis.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: November 16, 2010
    Assignee: General Electric Company
    Inventors: Samit Kumar Basu, Bruno De Man, Jed Douglas Pack, Xiaoye Wu, Zhye Yin, Peter Michael Edic
  • Patent number: 7831012
    Abstract: An apparatus may comprise a frame supporting at least first and second skewed radiation sources and at least first and second radiation detectors. The first and second radiation detectors may be substantially non-contiguous such that a substantial gap exists between the first and second radiation detectors that is free of any radiation detectors. Each of the first and second radiation detectors may also configured and arranged to detect radiation emitted by each of the first and second skewed radiation sources.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: November 9, 2010
    Assignee: L-3 Communications Security and Detection Systems Inc.
    Inventors: Andrew D. Foland, Richard Franklin Eilbert, Michael R. Gambini, Boris Oreper, Nikolay Rolshud
  • Publication number: 20100278298
    Abstract: A CT system is disclosed for phase-contrast and absorption imaging with a plurality of emitter-detector systems. In at least one embodiment, there are at least two emitter-detector systems and the at least two emitter-detector systems have a different distance between radiation focus and detector and there is a computational element for calculating phase-contrast images on the basis of the solution to the intensity transport equation. Moreover, at least one embodiment of the invention relates to a method for phase-contrast and absorption imaging using such a CT system by comparing attenuation images recorded at different distances of a detector from a multiplicity of projection angles by solving the intensity transport equation and reconstruction or comparison of two tomographic and three-dimensional image data records, reconstructed from projections, which were recorded at different distances.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 4, 2010
    Inventor: Eckhard Hempel
  • Patent number: 7826585
    Abstract: A computed tomography system includes at least two x-ray sources (108), a at least one common detector (124), and a reconstruction system (136). The at least two x-ray sources (108) are aligned at different z-axis locations at about a same angular position and concurrently emit radiation that traverses an imaging region (116). The at least one detector (124) detects radiation emitted by the at least two x-ray source (108) and generates composite data indicative of the detected radiation. The reconstruction system (136) reconstructs the composite data to generate one or more images.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: November 2, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roland Proksa, Andy Ziegler
  • Patent number: 7826594
    Abstract: A system and method for addressing individual electron emitters in an emitter array is disclosed. The system includes an emitter array comprising a plurality of emitter elements arranged in a non-rectangular layout and configured to generate at least one electron beam and a plurality of extraction grids positioned adjacent to the emitter array, each extraction grid being associated with at least one emitter element to extract the at least one electron beam therefrom. The field emitter array system also includes a plurality of voltage control channels connected to the plurality of emitter elements and the plurality of extraction grids such that each of the emitter elements and each of the extraction grids is individually addressable. In the field emitter array system, the number of voltage control channels is equal to the sum of a pair of integers closest in value whose product equals the number of emitter elements.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 2, 2010
    Assignee: General Electric Company
    Inventors: Yun Zou, Mark E. Vermilyea, Louis Paul Inzinna, Antonio Caiafa
  • Publication number: 20100266097
    Abstract: An X-ray imaging apparatus includes a multi X-ray source which includes a plurality of X-ray focuses to generate X-rays by irradiating X-ray targets with electron beams, a detector which detects X-rays which have been emitted from the multi X-ray source and have reached a detection surface, and a moving mechanism for moving the multi X-ray source within a plane facing the detection surface. The X-ray imaging apparatus acquires a plurality of X-ray detection signals from the detector by causing the multi X-ray source to perform X-ray irradiation while shifting the positions of a plurality of X-ray focuses which the detector has relative to the detection surface by moving the multi X-ray source using the moving mechanism. The apparatus then generates an X-ray projection image based on the plurality of X-ray detection signals acquired by the detector.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 21, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Masahiko Okunuki, Makoto Sato, Osamu Tsujii, Takashi Ogura, Hisashi Namba
  • Patent number: 7813473
    Abstract: A technique is provided for the temporal interpolation of a projection data set acquired of a dynamic object, such as a heart. The projection data set is acquired using a slowly rotating gantry and a distributed X-ray source. The projection data may be interpolated at each view position to a selected instant of time, such as relative to a cardiac phase. The resulting interpolated projection data characterize the projection data at each view location at any instant in time. The set of interpolated projection data may then be reconstructed to generate images and/or volume with improved temporal resolution.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: October 12, 2010
    Assignee: General Electric Company
    Inventors: Peter Michael Edic, Bruno De Man, Samit Basu
  • Publication number: 20100254508
    Abstract: In a radioscopic method and device to generate projections of the inside of an examination subject that is located in an examination space of a data acquisition unit, a number of ray beams are generated that are directed toward the examination space and that each exhibit a fan angle in a rotation plane. The number of ray beams are rotated in the rotation plane in a rotation direction the examination space, while the fan angle is varied during the rotation.
    Type: Application
    Filed: April 7, 2010
    Publication date: October 7, 2010
    Inventor: Thomas Von Der Haar
  • Patent number: 7809101
    Abstract: A modular x-ray source for an imaging system includes an electron source mounting plate, two or more electron sources each mounted on and electrically coupled to the electron source mounting plate, and a target block positioned proximately to the two or more electron sources. The source includes two or more targets mounted on and electrically coupled to the target block, each target positioned opposite a respective one of the two or more electron sources to receive a respective beam of electrons therefrom.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: October 5, 2010
    Assignee: General Electric Company
    Inventors: Kristopher John Frutschy, Yang Cao, Dennis M. Jacobs, Mark E. Vermilyea, Xi Zhang, Yun Zou, Louis Paul Inzinna, Michael Hebert
  • Patent number: 7806589
    Abstract: A high-speed biplane radiography system for in-vivo assessment of joint function is provided. The system can acquire stereo-pair radiographic images at rates from 30-4000 frames per second of nearly any motion or joint. The radiographic equipment can be mounted in a gantry system that provides sufficient positioning flexibility for imaging different joints of a subject's body, along with an imaging area large enough for a variety of dynamic activities (e.g., walking, running, jumping, throwing, etc.). Three-dimensional (3D) bone positions can be determined using software for matching the bones in each X-ray image with 3D models developed from subject-specific CT (computed tomography) scans. This system can provide accurate (e.g., ±0.1 mm) assessment and direct 3D visualization of dynamic joint function, and can overcome limitations of conventional gate or motion analysis.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: October 5, 2010
    Assignee: University of Pittsburgh
    Inventors: Scott Tashman, Jim Princehorn, Samson Pennatto, William Anderst
  • Publication number: 20100246754
    Abstract: The present application discloses an X-ray scanner having an X-ray source arranged to emit X-rays from source points through an imaging volume. The scanner may further include an array of X-ray detectors which may be arranged around the imaging volume and may be arranged to output detector signals in response to the detection of X-rays. The scanner may further include a conveyor arranged to convey an object through the imaging volume in a scan direction, and may also include at least one processor arranged to process the detector signals to produce an image data set defining an image of the object. The image may have a resolution in the scan direction that is at least 90% as high as in one direction, and in some cases two directions, orthogonal to the scan direction.
    Type: Application
    Filed: February 25, 2010
    Publication date: September 30, 2010
    Inventor: Edward James Morton
  • Publication number: 20100246753
    Abstract: A computed tomography apparatus includes a gantry having a rotary portion and a stationary portion. At least one radiation source and at least one anti-scatter grid are mounted on the rotary portion of the gantry and positioned opposite each other. A detector device is mounted on the stationary portion of the gantry. The detector device may include a plurality of detector sensors arranged in the form of a generally circular ring surrounding the periphery of the rotary portion. Alternatively, the detector device may include a plurality of flat panel detectors arranged in a generally circular geometry.
    Type: Application
    Filed: March 25, 2009
    Publication date: September 30, 2010
    Applicant: Varian Medical Systems, Inc.
    Inventor: Ivan P. Mollov
  • Publication number: 20100239064
    Abstract: Methods, systems, and computer program products for multiplexing computed tomography are disclosed. According to one aspect, the subject matter described herein can include illuminating an object with a plurality of x-ray beams from a plurality of viewing angles, wherein each x-ray beam has a distinct waveform; detecting the x-ray intensities of the plurality of pulsed x-ray beams as a function of time, and extracting individual projection image data from the detected x-ray intensities based on the distinct waveforms of the x-ray beams for combining the projection image data to generate three-dimensional tomographic image data of the object.
    Type: Application
    Filed: September 22, 2006
    Publication date: September 23, 2010
    Inventors: Otto Z. Zhou, Jianping Lu, Jian Zhang, Guang Yang, Yueh Lee, Qi Qiu, Yuan Cheng
  • Patent number: 7801265
    Abstract: A system and method for creating a combined or mixed-energy image using both low- and high-energy CT data sets acquired using a dual-energy CT system. The low- and high-energy datasets are mixed using desired weighting factors to mimic a “single-energy” image. The low-energy dataset provides data with improved contrast enhancement, but with increased noise level. The high-energy dataset provides data with lower contrast enhancement, but with better noise properties. By combining the low- and high-energy datasets in accordance with the present method, the resulting mixed-energy images utilize the information of full dose of radiation used in the dual-energy scan. A plurality of weighting metrics can be selected, including patient size, dose partitioning, or image quality, to determine the desired weighting factors based on the weighting metrics. By selecting the proper weight factors, image noise can be reduced and/or the contrast to noise ratio can be increased in the mixed-energy image.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: September 21, 2010
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Lifeng Yu, Cynthia H. McCollough
  • Patent number: 7778454
    Abstract: At least one embodiment of the present application relates to a method and/or an apparatus for determining the concentration of a substance in a body material that is composed of two different material components in an unknown ratio. In an embodiment of the method, two computed tomography pictures from which two image data records are reconstructed are recorded in conjunction with two different spectral distributions of the x-radiation. The x-ray attenuation values for each voxel of the two image data records are decomposed into three material components. The decomposition is performed on the assumption that the x-ray attenuation value xM of the body material without the substance is composed of the x-ray attenuation values xM1, xM2 of the first and second material component in accordance with the following equation: xM=f*xM1+(1-f)*XM2, f being a volume fraction of the first material component in the body material.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: August 17, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Grasruck, Bernhard Krauss
  • Patent number: 7778386
    Abstract: Disclosed are embodiments of methods for reconstructing x-ray projection data (e.g., one or more sinograms) acquired using a multi-source, inverse-geometry computed tomography (“IGCT”) scanner. One embodiment of a first method processes an IGCT sinogram by rebinning first in “z” and then in “xy,” with feathering applied during the “xy” rebinning. This produces an equivalent of a multi-axial 3rd generation sinogram, which may be further processed using a parallel derivative and/or Hilbert transform. A TOM-window (with feathering) technique and a combines backprojection technique may also be applied to produce a reconstructed volume. An embodiment of a second method processes an IGCT sinogram using a parallel derivative and/or redundancy weighting. The second method may also use signum weighting, TOM-windowing (with feathering), backprojection, and a Hilbert Inversion to produce another reconstructed volume.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: August 17, 2010
    Assignees: General Electric Company, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Zhye Yin, Jed Douglas Pack, Bruno K. B. De Man, Norbert J. Pelc
  • Publication number: 20100202583
    Abstract: A computed tomography (CT) system has a composite scanning mode in which the x-ray focal spot undergoes a circular or more general motion in the vertical plane facing an object to be reconstructed. The x-ray source also rotates along a circular trajectory along a gantry encircling the object. In this way, a series of composite scanning modes are implemented, including a composite-circling scanning (CCS) mode in which the x-ray focal spot undergoes two circular motions: while the x-ray focal spot is rotated on a plane facing a short object to be reconstructed, the x-ray source is also rotated around the object on the gantry plane. In contrast to the saddle curve cone-beam scanning, the CCS mode requires that the x-ray focal spot undergo a circular motion in a plane facing the short object to be reconstructed, while the x-ray source is rotated in the gantry plane.
    Type: Application
    Filed: January 8, 2010
    Publication date: August 12, 2010
    Inventors: Ge Wang, Hengyong Yu
  • Publication number: 20100195787
    Abstract: A method and a device are disclosed for generating a CT image with a high time resolution using a computed tomography scanner which has at least two recording systems which are operated at different X-ray energy spectra. In at least one embodiment of the process, CT images are firstly reconstructed in each case from a semi-rotation with the two recording systems, with irradiated lengths of the contrast agent-enriched structures and the soft tissue being calculated therefrom. Subsequently, a common X-ray energy is assumed and artificial measurement data records are calculated therefor, using the knowledge of the irradiated lengths for both recording systems at the same common X-ray energy. The artificial measurement data of respectively a quarter-rotation per recording system is then used to calculate the final CT image with a high time resolution. The method affords the use of dual-energy scans without losing the high time resolution available in dual-source systems.
    Type: Application
    Filed: January 28, 2010
    Publication date: August 5, 2010
    Inventors: Thomas Flohr, Rainer Raupach, Karl Stierstorfer
  • Publication number: 20100189213
    Abstract: A multi-emitter computed tomography scanner is disclosed, including a plurality of x-ray emitter/detector arrangement pairs arranged offset at an angle to one another. In at least one embodiment, the detector arrangements of the pairs are designed to be energy selective.
    Type: Application
    Filed: April 5, 2010
    Publication date: July 29, 2010
    Inventors: Herbert Bruder, Rainer Raupach, Karl Stierstorfer
  • Publication number: 20100183117
    Abstract: There are provided an X-ray generating apparatus capable of switching X-ray beams of high energy and low energy to each other at high speed, and an X-ray CT apparatus capable of performing high-speed and high-quality multi-energy imaging by using the same. The X-ray generating apparatus is constructed by an X-ray tube 9 having two anodes 200a, 200b, a rotational anode 204 for radiating X-ray from an X-ray focal point by electron beams emitted from filaments of these cathodes, and two grid electrodes 202a and 202b for controlling emission of the electron beams, a tube voltage generator 9a and a tube voltage controller 9d1 for controlling an X-ray condition, a filament heater 9b and a tube current controller 9d2, a grid voltage generator 9c and a grid opening/closing controller 9d3, and a grid switching unit 9e. High energy X-ray and low energy X-ray are switched and emitted to an examinee every adjacent projection angles, thereby collecting projection data.
    Type: Application
    Filed: July 18, 2008
    Publication date: July 22, 2010
    Applicant: HITACHI MEDICAL CORPORATION
    Inventors: Yoshiaki Tsumuraya, Hironori Ueki, Keiji Koyanagi
  • Publication number: 20100183115
    Abstract: A Computer Tomography system for examining an object is disclosed. The system comprises a first X-ray tube, a second X-ray tube, a first X-ray detection unit and a second X-ray detection unit. Preferably, the first X-ray detection unit is adapted to acquire a first data set by detecting radiation emitted by the first X-ray tube after passing through the object under examination, and the second X-ray detection unit is adapted to acquire a second data set by detecting radiation emitted by the second X-ray tube after being scattered by the object under examination. The system has particular application to the field of baggage inspection.
    Type: Application
    Filed: August 7, 2007
    Publication date: July 22, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Udo Van Stevendaal, Jens-Peter Schlomka
  • Publication number: 20100172464
    Abstract: The disclosed CT scanner comprises at least one source of X-rays; a detector array comprising a plurality of detectors; and an X-ray filter mask arrangement disposed between the source of X-rays and detector array so as to modify the spectra of the X-rays transmitted from the source through the mask to at least some of the detectors so that the X-ray spectra detected by at least one set of detectors is different from the X-ray spectra detected by at least one other set of detectors.
    Type: Application
    Filed: January 7, 2009
    Publication date: July 8, 2010
    Applicant: Analogic Corporation
    Inventors: Julia Pavlovich, Aleksander Roshi, Ram Naidu, Sergey Simanovsky, Zhengrong Ying
  • Publication number: 20100166140
    Abstract: A computed tomography system (100) includes a first (1081) and a second source (108N) disposed at different z-axis locations at about a same angular position around an examination region (112) that alternately emit radiation beams (114) that traverse the examination region (112). The first source (1081) emits a first radiation beam (1141) having a first outer projection (204) and the second source (108N) emits a second radiation beam (114N) having a first outer projection (216). Both of the first outer projections (204, 216) traverse plane perpendicular to the axis of rotation, and the first outer projections (204, 216) define a width of a volume (400) within which the emitted radiation beams (114) are confined. A common detector (124) detects radiation from the x-ray beams (114) that traverses the volume (400) and generates data indicative thereof, and a reconstructor (132) reconstructs the data to generate an image of the volume (400).
    Type: Application
    Filed: July 24, 2007
    Publication date: July 1, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventor: Roand Proksa
  • Patent number: 7746974
    Abstract: A system includes emission of first electrons toward a first focal spot using an X-ray tube located at a first position, emission of first radiation from the first focal spot toward an object, acquisition of a first projection of the object based on the emitted first radiation using a computed tomography radiation detector, emission of second electrons toward a second focal spot using the X-ray tube located at the first position, emission of second radiation from the second focal spot toward the object, acquisition of a second projection of the object based on the emitted second radiation using the computed tomography radiation detector, and generation of an image of the object based on the first projection and the second projection.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 29, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Himanshu P. Shukla