Input/output Coupler Patents (Class 385/31)
  • Patent number: 8064745
    Abstract: An apparatus for optically coupling light between optical transmission components is provided. The apparatus includes first and second optical transmission components wherein the first optical transmission component includes a planar optical waveguide, a grating coupler, and a transparent substrate and the second optical transmission component includes an optical fiber. Preferably, the planar optical waveguide includes silicon and the transparent substrate includes glass. Methods for coupling light between optical transmission components are also provided.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventors: Davide Domenico Fortusini, Vitor Marino Schneider, James Scott Sutherland
  • Patent number: 8064744
    Abstract: This invention relates to an improved design for the transmit and receive optical elements of a waveguide-based optical touch screen sensor, where at least one converging lens is incorporated within the body of each transmit and receive element. The optical elements of the improved design are more mechanically robust, easier to incorporate into the touch screen assembly, and are less susceptible to stray light and the ingress of foreign matter. In one embodiment the converging lens collimates the light into a plane wave. In another embodiment the converging lens focuses the light to an external point. In yet another embodiment, each transmit and receive element also includes at least one diverging lens. The transmit and receive elements and associated waveguides preferably comprise photo-patternable polymers.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: November 22, 2011
    Assignee: RPO Pty Limited
    Inventors: Graham Roy Atkins, Dax Kukulj, Robert Bruce Charters
  • Patent number: 8064742
    Abstract: A light input/output terminal module 100 comprises a jacket tube 110 and a flange 120. A glass portion 20 of the optical fiber is inserted in the center portion thereof. To efficiently remove the leaked light in a cladding 22 to the jacket tube 110, the jacket tube 110 is made of silica glass or the same material as that of the cladding 22. The jacket tube 110 is fixed by fusion splicing or adhesion to the cladding so as to integrally unify the jacket tube 110 and the cladding 22. The beam diameter at the fiber end portion is enlarged by an optical component which fusion bonds the tip end of the optical fiber to the coreless fiber so that the optical power density at the light input/output terminal module is reduced.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: November 22, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Shingo Watanabe, Mieko Yamagaki, Tatsuya Hatano, Kazuyou Mizuno, Kanji Tanaka, Akira Fujisaki
  • Publication number: 20110280515
    Abstract: An apparatus and corresponding method in which the apparatus includes a dielectric waveguide and a metallic waveguide. The dielectric waveguide has an effective mode index and a longitudinal dimension. The metallic waveguide has a longitudinal dimension and supports a surface plasmonic mode of propagation for a wavelength lambda. The metallic waveguide and the dielectric waveguide are adjacent to each other and overlap each other by a length along the longitudinal dimensions of both the dielectric waveguide and the metallic waveguide, wherein the length is greater than the wavelength lambda in the metallic waveguide. The metallic waveguide is coupled to the dielectric waveguide where the metallic waveguide and the dielectric waveguide overlap each other.
    Type: Application
    Filed: May 14, 2010
    Publication date: November 17, 2011
    Applicant: Carnegie Mellon University
    Inventors: Eric J. Black, James A. Bain, Stephen P. Powell, Tuviah E. Schlesinger
  • Patent number: 8059928
    Abstract: A decohered laser light production system is provided. The decohered laser light system comprises a laser source. The system further comprises a multi-mode fiber having an input face, an output face and a body for propagating light from the input face to the output face, the input face arranged to accept laser light from the laser source, the body comprising a length such that laser light is generally decohered when exiting the output face.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: November 15, 2011
    Assignee: Christie Digital Systems USA, Inc.
    Inventor: John Domm
  • Patent number: 8057106
    Abstract: A fiber optical connector microlens is provided with a focal plane aligning fiber trap. The microlens is made from a convex first lens surface, a second lens surface (planar or convex), and a fiber trap integrally formed with the second lens surface for aligning a face of an optical fiber core in a microlens focal plane. In one aspect, the fiber trap includes a barrel attached to the second lens surface and a clamping mechanism to prevent an inserted fiber core, with a diameter about equal to a barrel interior surface diameter, from being withdrawn from the barrel. The fiber trap clamping mechanism can be an irregular barrel interior surface to frictionally engage a fiber core exterior surface, a constricted region of the barrel interior surface, having a diameter smaller than an uncompressed fiber core diameter, or a corkscrew region of the barrel interior surface.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: November 15, 2011
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy, Reid Greenberg
  • Patent number: 8045831
    Abstract: A lens system includes a body member holding at least one micro lens array. The micro lens array has a first surface with a plurality of micro lenses arranged in a row and a second surface opposing the first surface. The second surface is under an angle towards the first surface. Furthermore the lens system comprises either: (i) a plurality of ferrules enclosing end-portions of light waveguides, or (ii) a plurality of light waveguides without ferrules, wherein the ferrules or light waveguides are adhesively fastened in a spaced relationship from each other to the second surface of the micro lens array preferably by means of an adhesive, by bonding or by welding.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: October 25, 2011
    Assignee: Schleifring und Apparatebau GmbH
    Inventor: Gregor Popp
  • Publication number: 20110255828
    Abstract: An article of manufacture is provided that includes an optic fiber comprising a core and a cladding surrounding the core and a sapphire tube bonded to the optic fiber. A total internal reflection surface is positioned such that light guided within the core of the optic fiber reflects off the total internal reflection surface and through the sapphire tube. In other embodiments, a sapphire rod having a total internal reflection surface is fused to an optic fiber comprising a core and a cladding surrounding the core. A glass coating is present on the exterior surface of portions of the sapphire rod such that the glass coating defines an opening that exposes portions of the sapphire rod where light exits the sapphire rod after reflecting off the total internal reflection surface.
    Type: Application
    Filed: December 22, 2009
    Publication date: October 20, 2011
    Applicant: AMS RESEARCH CORPORATION
    Inventor: Venkatapuram S. Sudarshanam
  • Patent number: 8041161
    Abstract: A method to maximize the coupling efficiency between a collimated, free-space optical signal and a fiber optic waveguide using an active optical element to steer and focus the collimated beam driven by an adaptive controller that periodically auto-calibrates the active optical element's parameters to maximize the measured power received by the waveguide using a gradient ascent optimization algorithm.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: October 18, 2011
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Steven A. Lane, Charles Collier
  • Patent number: 8041162
    Abstract: Techniques, apparatus and systems that use an optical probe head to deliver light to a target and to collect light from the target for imaging, monitoring, medical diagnostics and medical treatment applications.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: October 18, 2011
    Assignee: Tomophase Corporation
    Inventors: Feiling Wang, Andrey Vertikov
  • Publication number: 20110249936
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: February 7, 2011
    Publication date: October 13, 2011
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, JR., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Ting-Kuang Chiang, Marco E. Sosa
  • Publication number: 20110249937
    Abstract: An optical waveguide device includes an optical branch device for branching a first input light and outputting the branched first input light to a first and a second optical waveguides, another optical branch device, arranged between the first and the second optical waveguides, for branching a second input light and outputting the branched second input light to a third and a fourth optical waveguides, an optical coupler which couples the lights traveling along the first and the third optical waveguides, then branches the coupled lights, and outputs them; and another optical coupler which couples the lights traveling along the second and the fourth optical waveguides, then branches the coupled lights, and outputs them, wherein optical path lengths of either a pair of the first and the second optical waveguides or a pair of the third and the fourth optical waveguides are set to be equal.
    Type: Application
    Filed: March 15, 2011
    Publication date: October 13, 2011
    Inventor: SHINYA WATANABE
  • Patent number: 8036503
    Abstract: An optical delay line is formed from a coil of optical fiber (in many cases microfiber), where the radius of the optical fiber is greater than the wavelength ? of the propagating signal and the radius R of the coil is selected, in consideration with the optical fiber radius, to limit propagation loss by minimizing coupling between adjacent turns of the coil. The difference in dimension between the fiber diameter and wavelength prevents the mode propagating along one turn from coupling into an adjacent turn. It has been discovered that the modal intensity at the interface between the central rod and the coil will be minimized when the radius of the fiber satisfies the following condition: r >> ( R ? 2 ) 1 / 3 , where ?=(2?n)/?, and n is the refractive index of the fiber.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: October 11, 2011
    Assignee: DFS Fitel LLC
    Inventor: Mikhail Sumetsky
  • Publication number: 20110243500
    Abstract: Lightguides, devices incorporating lightguides, processes for making lightguides, and tools used to make lightguides are described. A lightguide includes light extractors arranged in a plurality of regions on a surface of the lightguide. The orientation of light extractors in each region is arranged to enhance uniformity and brightness across a surface of the lightguide and to provide enhanced defect hiding. The efficiency of the light extractors is controlled by the angle of a given light extractor face with respect to a light source illuminating the light guide.
    Type: Application
    Filed: December 8, 2009
    Publication date: October 6, 2011
    Inventors: Tzu-Chen Lee, David A. Ender, Guoping Mao, Jun-Ying Zhang, James B. Willoughby
  • Publication number: 20110243499
    Abstract: An optical waveguide includes a clad layer, a core layer and a clad layer which are laminated together in this order from a lower side thereof. Within the core layer, a core portion and a side clad portion provided adjacent to the core portion so as to surround side surfaces of the core portion are formed. Further, a part of the side clad portion prevents a left side end of the core portion from being exposed outside. A mirror formation region is constituted from a region consisting of such a part of the side clad portion and a part of each of the clad layers located thereabove and therebelow. This mirror formation region is subjected to digging processing so that a concave portion is formed. An inner surface of this concave portion serves as the mirror. From the mirror, a material other than a material constituting the core portion, that is, a material constituting each of the clad layers and a material constituting the side clad portion are exposed.
    Type: Application
    Filed: December 1, 2009
    Publication date: October 6, 2011
    Applicant: SUMITOMO BAKELITE COMPANY LIMITED
    Inventors: Makoto Fujiwara, Kenji Miyao, Yoji Shirato, Koji Choki, Mutsuhiro Matsuyama
  • Publication number: 20110241564
    Abstract: A surface emitting laser is formed of a composition in which bandgap energy of layers from immediately above a current confinement layer to a second conductivity type contact layer is reduced towards the second conductivity type contact layer in a stacking direction, and a composition in which bandgap energy of layers from immediately below the current confinement layer to a first conductivity type contact layer is reduced towards the first conductivity type contact layer in a stacking direction while bypassing a quantum well layer or a quantum dot of an active layer, and includes a second conductivity type cladding layer including a material for reducing the mobility of carriers.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 6, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hitoshi SHIMIZU, Takeo KAGEYAMA, Keishi TAKAKI, Norihiro IWAI
  • Patent number: 8031992
    Abstract: The invention relates to an optoelectronic module having at least one leadframe, at least one carrier element connected to the leadframe, and at least one optoelectronic component connected to the carrier element, which component can emit and/or receive light. The invention furthermore relates to a method for producing an optoelectronic module that includes providing at least one leadframe, at least one carrier element and at least one optoelectronic component, connecting the optoelectronic component to the carrier element and connecting the carrier element to the leadframe, and at least partly encapsulating the optoelectronic component, the carrier element and the leadframe with a plastic.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: October 4, 2011
    Assignee: Finisar Corporation
    Inventor: Karl Schrödinger
  • Publication number: 20110235971
    Abstract: A semiconductor optical device includes a first optical waveguide including first, second, and third sections; a second optical waveguide including fourth, fifth, and sixth sections; an input optical coupler; and an output optical coupler. The first and second optical waveguides and the input and output optical couplers each include a first cladding layer composed of an n-type semiconductor and a core layer. The second and fifth sections each include an intermediate semiconductor layer on the core layer, and a second cladding layer composed of an n-type semiconductor. The first, third, fourth, and sixth sections and the input and output optical couplers each further include a third cladding layer on the core layer. At least one of the third cladding layers includes a first cladding section on the core layer and a second cladding section on the first cladding section. The second cladding section is composed of a semi-insulating semiconductor.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 29, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Jun-ichi HASHIMOTO
  • Publication number: 20110235972
    Abstract: Techniques for combining initially separate single mode and multimode optical beams into a single “Dual Mode” fiber optic have been developed. Bi-directional propagation of two beams that are differentiated only by their mode profiles (i.e., wavefront conditions) is provided. The beams can be different wavelengths and or contain different modulation information but still share a common aperture. This method allows the use of conventional micro optics and hybrid photonic packaging techniques to produce small rugged packages suitable for use in industrial or military environments.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 29, 2011
    Inventors: Anthony J. Ruggiero, Donald A. Masquelier, Jeffery B. Cooke, Jeffery S. Kallman
  • Publication number: 20110234121
    Abstract: The invention provides a method and system of controlling illumination characteristics of a plurality of lighting segments. According to the invention, there is provided an illumination system, comprising: a plurality of lighting segments; a detecting subsystem configured to detect an illumination intensity and/or color of lights emitted from each lighting segment; a controller configured to receive the detecting subsystem's output signals representing illumination intensity and/or color of lights emitted from each lighting segment and to generate sets of driving signals to respectively adjust the driving currents of each lighting segment in response to the output signals, so as to adjust the illumination intensity and/or color of the lights emitted from each lighting segment in accordance with a predetermined illumination setting, wherein each set of driving signals has a unique period feature which is distinguished from that of other sets of driving signals corresponding to other lighting segments.
    Type: Application
    Filed: November 26, 2009
    Publication date: September 29, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ang Ding, Xiaoyan Zhu, Gongming Wei, Hugo Johan Cornelissen
  • Publication number: 20110229078
    Abstract: Small-form fiber optic interface devices (20) for electronic devices (200) are disclosed. The device has a ferrule (50) with a body (51) that operably supports at least one waveguide (152) and at least one electrical wire (160). The device has a first electrical contact (90) supported by the ferrule body and a second electrical contact (100) that substantially surrounds the outer surface (57) of the ferrule body front section (56). The ferrule body comprises a dielectric material at least partially interposed between the first and second electrical contacts.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 22, 2011
    Inventors: Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20110229075
    Abstract: A 90-degree optical hybrid interferometer having an optical path length difference to a pair of the optical signal waveguide arm and the local oscillator optical waveguide arm at either the I phase side or the Q phase side at the TE optical signal side and the TM optical signal side respectively thus giving a phase delay to output interference signals of the I phase side and the Q phase side. The 90-degree optical hybrid interferometer has eight output ports arranged in order of Ip, In, Qp, and Qn at both the TE side and the TM side respectively, by setting the output phase difference which is the sum of the phase difference according to the optical path length difference and phase conversion characteristics of each optical coupler at the I phase side and the Q phase side and the phase delay, as +?/2.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 22, 2011
    Inventor: SHINYA WATANABE
  • Patent number: 8023783
    Abstract: A virtual image display device is provided which displays a two-dimensional image for viewing a virtual image in a magnified form by a virtual optical system. The virtual image display device includes an optical waveguide (13) to guide, by internal total reflection, parallel pencil groups meeting a condition of internal total reflection, a first reflection volume hologram grating (14) to diffract and reflect the parallel pencil groups incident upon the optical waveguide from outside and traveling in different directions as they are so as to meet the condition of internal total reflection inside the optical waveguide and a second reflection volume hologram grating (15) to project the parallel pencil groups guided by internal total reflection inside the optical waveguide as they are from the optical waveguide by diffraction and reflection thereof so as to depart from the condition of internal total reflection inside the optical waveguide.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 20, 2011
    Assignee: Sony Corporation
    Inventors: Hiroshi Mukawa, Katsuyuki Akutsu
  • Patent number: 8019188
    Abstract: An optical transmission apparatus includes a light receiving element and an optical waveguide. The light receiving element receives light. The optical waveguide includes a core, a clad and a concave portion. The clad is adjacent to the core. The concave portion is formed in a portion of the core or a portion of the clad and diffuses the light. The portion of the core or the portion of the clad emits the light toward the light receiving element.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: September 13, 2011
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Naotaka Mukoyama, Kazuhiro Sakai, Hiroki Sugibuchi, Akira Sakamoto
  • Patent number: 8019189
    Abstract: A laser light source device which can inexpensively achieve a visually recognizable level of speckle reduction is disclosed. The laser light source device includes: a laser module including a light source and a first optical waveguide, wherein light emitted from the light source is outputted from an output end of the first optical waveguide; a second optical waveguide connected to the first optical waveguide, wherein the light outputted from the output end of the first optical waveguide is inputted to an input end of the second optical waveguide and guided through the second optical waveguide; and an intensity modulation unit disposed in the vicinity of the second optical waveguide, the intensity modulation unit applying intensity modulation to the second optical waveguide, wherein a core diameter at the input end of the second optical waveguide is larger than a core diameter at the output end of the first optical waveguide.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: September 13, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Shinichi Shimotsu
  • Patent number: 8019185
    Abstract: This invention provides a versatile unit cell as well as programmable and reconfigurable optical signal processors (such as optical-domain RF filters) that are constructed from arrays of those unit cells interconnected by optical waveguides. Each unit cell comprises an optical microdisk, an optical phase shifter, and at least one input/output optical waveguide, wherein the microdisk and the phase shifter are both optically connected to a common waveguide.
    Type: Grant
    Filed: June 1, 2008
    Date of Patent: September 13, 2011
    Assignee: HRL Laboratories, LLC
    Inventor: Daniel Yap
  • Publication number: 20110217003
    Abstract: An apparatus includes a slider mounted on an arm, a first waveguide including a first core guiding layer, a second waveguide mounted on the slider and including a second core guiding layer having a uniform thickness smaller than the thickness of the first core guiding layer, and a coupler for coupling light from the first core guiding layer to the second core guiding layer, wherein the coupler comprises a curved mirror formed in the second waveguide and positioned to reflect light from the first core guiding layer into the second core guiding layer.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 8, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Edward Charles Gage, William Albert Challener, Mary Cynthia Hipwell, David Allen Sluzewski, Michael Allen Seigler, Xuhui Jin, Yiao-Tee Hsia
  • Publication number: 20110211787
    Abstract: A component for an optical interconnect includes a waveguide having at least one surface that is configured at an angle equal to or less than 90° relative to an axis of the waveguide. A tap is operatively connected to the waveguide. The tap has an angled surface that is adhered to the angled surface of the waveguide. An angle of the angled surface of the tap is substantially identical to the angle of the angled surface of the waveguide. An axis of the tap is positioned at an angle that is two times the angle of the angled surface of the tap. An at least partially reflective coating established on at least a portion of the angled surface of the tap.
    Type: Application
    Filed: October 31, 2008
    Publication date: September 1, 2011
    Inventors: Huei Pei Kuo, Michael Renne Ty Tan, Shih-Yuan Wang, Robert G. Walmsley, Paul Kessler Rosenberg
  • Publication number: 20110211789
    Abstract: The invention relates to a phase plate which is easy to manufacture such as to have a desirable characteristic and the like. The phase plate (10) is substantially shaped like a circular cylinder and has a fixed refractive index in a direction along a center axis (AX) of the circular cylinder. The phase plate (10) also has plural regions (11-18) sequentially arranged as concentric circles from the center in a cross section perpendicular to the center axis (AX). The boundary between two adjacent regions in the regions (11-18) can be distinguished by the difference between refractive indexes. Each of the regions (11, 13, 15, 17) has a refractive index n1, while each of the regions (12, 14, 16, 18) has a refractive index n2 (?n1).
    Type: Application
    Filed: November 17, 2009
    Publication date: September 1, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Eisuke Sasaoka
  • Patent number: 8009939
    Abstract: A fiberoptic system for clearance detection between rotating and stationary turbomachinery components is presented. The system comprises an optical fiber probe comprising a plurality of optical fibers, at least one of the optical fibers comprising a transmission fiber and at least one of the optical fibers comprising a signal fiber; a light source for providing light through the transmission fiber towards a target; filters for receiving light from the signal fibers, at least two of the filters for filtering different wavelengths; and at least one photodetector for receiving filtered light from the filters.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 30, 2011
    Assignee: General Electric Company
    Inventors: Danian Zheng, Peter John Eisenzopf, Kevin Thomas McCarthy, Roy Paul Swintek, Norman Arnold Turnquist, Hua Xia
  • Patent number: 8009958
    Abstract: An optical sight is provided and may include a housing, at least one optic supported by the housing, and an illumination device associated with the at least one optic that selectively supplies the at least one optic with light. The illumination device may include a first fiber associated with a first light source and a second fiber associated with a second light source. A coupler may join the first fiber and the second fiber and may supply the at least one optic with light from at least one of the first light source and the second light source.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: August 30, 2011
    Assignee: Trijicon, Inc.
    Inventors: Darin W. Schick, Thomas K. Maciak, Kian Siong Lim
  • Patent number: 8009992
    Abstract: An optical interconnect includes a translatable optical source; an optical modulator element disposed on a circuit board and configured to receive an optical beam from the optical source; and an optical receiver disposed on a circuit board and configured to receive a modulated optical beam from the modulator element.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: August 30, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: R. Stanley Williams
  • Patent number: 8009947
    Abstract: An optical semiconductor device includes a waveguide having one or more first segments having a region that includes a diffractive grating and another region combined to the region, one or more second segments having a region that includes a diffractive grating and another region combined to the region and a plurality of third segments having a region the includes a diffractive grating and another region combined to the region, a length of the second segment being different from that of the first segment, a length of the third segment being shown as L3=L1+(L2?L1)×K1 in which 0.3?K1?0.7, L1 is a length of the first segment, L2 is a length of the second segment and L3 is a length of the third segment; and a refractive index control portion controlling refractive index of the first segment through the third segments.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 30, 2011
    Assignee: Eudyna Devices Inc.
    Inventor: Takuya Fujii
  • Patent number: 8005322
    Abstract: It is provided a polarization-independent optical isolator without depending on the polarized wave of the light being input to the waveguide-type optical isolator, in particular, it is able to completely isolate the propagating light of the backward direction.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 23, 2011
    Assignee: Tokyo Insititute of Technology
    Inventors: Tetsuya Mizumoto, Yuya Shoji
  • Patent number: 8000570
    Abstract: Disclosed are multi-stage optical amplifiers that propagate higher-order mode (HOM) signals. One embodiment, among others, comprises a first segment of optical fiber in which a first HOM signal propagates, a second segment of optical fiber in which a second HOM signal propagates, and a mode converter that converts the first HOM signal into the second HOM signal.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: August 16, 2011
    Assignee: Furukawa Electric North America, Inc.
    Inventors: David J Digiovanni, Siddharth Ramachandran
  • Patent number: 8000569
    Abstract: A fibre optic transmission application, in particular, an optical device that can be incorporated into telecommunications equipment as well as into test and measurement equipment with reduced insertion loss, reduced crosstalk effects and reduced height, with increased versatility in the implementation of optical functions other than multiplexers and demultiplexers. Relates to components, modules, equipments and instruments such as multiplexers, demultiplexers, routers, channel monitors, and tunable filters that encompass such optical devices.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: August 16, 2011
    Assignee: Yenista Optics
    Inventors: Michiel Jacobus Van Der Keur, Alain Poudoulec
  • Patent number: 7997723
    Abstract: A near-eye display related apparatus and device is disclosed. The apparatus includes a housing configured to receive an optical engine, and a light guiding plate attached to the housing and configured to receive light representing an image from the optical engine, the light guiding plate includes a first diffractive grating adapted to incouple the light into the light guiding plate, and a second diffractive grating adapted to outcouple the light from the light guiding plate such that the light is received by an eye of a user wearing the apparatus. The light guiding plate has a contact surface portion configured to optically couple the light guiding plate to a transparent plate, The contact surface portion being adapted to be in physical contact with the transparent plate.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: August 16, 2011
    Assignee: Nokia Corporation
    Inventors: Seppo Pienimaa, Xia Wang, Kong Qiao Wang, Antti Salo, Tapani Levola
  • Publication number: 20110194815
    Abstract: A waveguide intersection includes an input waveguide and an output waveguide; a crossing waveguide intersecting the input waveguide and the output waveguide to form an intersection; and a block that is optically joined to the intersection such that a guided mode is produced within the intersection. A method of reducing optical losses within a waveguide intersection includes increasing a cross-sectional height of an intersection such that optical energy passing through the intersection is laterally confined.
    Type: Application
    Filed: September 4, 2008
    Publication date: August 11, 2011
    Inventors: David A. Fattal, Jingjing Li
  • Patent number: 7995878
    Abstract: An optical memory includes an array of optical material and a beam scanning device. The optical material assumes first and second states, and incident light causes the optical material to transition from the first state to the second state. The beam scanning device selectively directs a received optical data signal across the array of optical material.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: August 9, 2011
    Assignee: The Regents Of The Univeristy Of Michigan
    Inventors: Pei-Cheng Ku, Yin-Ting Yeh
  • Patent number: 7995875
    Abstract: A mirror embedded optical waveguide according to the present invention comprises: a core; an angled cut face in the core; an adhesive layer on the angled cut face, the adhesive layer having approximately the same refractive index as that of the core; and a metal film on the adhesive layer, the metal film being formed by transfer.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: August 9, 2011
    Assignee: Hitachi Cable, Ltd.
    Inventors: Hiroki Yasuda, Koki Hirano
  • Patent number: 7995891
    Abstract: An arrangement includes a photonic band-gap assembly comprising at least one input wave guide and at least one output wave guides, and at least one routing element responsive to signals to selectively route a signal from the input wave guide to one or more of the output wave guides.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: August 9, 2011
    Inventors: Muriel Y. Ishikawa, Edward K. Y. Jung, Clarence T. Tegreene
  • Patent number: 7995883
    Abstract: Disclosed are an optical waveguide and a bi-directional light transceiver, in which a wavelength selective filer is provided in the core of the optical waveguide to divide bi-directional signals, so that manual alignment of optical components are easily achieved and thus a small bi-directional light transceiver is realized and transmission/reception efficiency of light is enhanced.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: August 9, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sei-hyoung Lee, Hyun-seo Kang, Jai-sang Koh
  • Patent number: 7995882
    Abstract: A lighting device is disclosed comprising a plurality of semiconductor light sources disposed on a carrier, wherein the light from the light sources is coupled into assigned lightguides at a set angle to the surface normals of the carrier and the lightguides are provided with reflecting and light exit faces such that the envelope of the light outcoupling faces forms a curved surface segment.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: August 9, 2011
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Mario Wanninger, Markus Hofmann, Günter Waitl, Alexander Wilm
  • Patent number: 7991260
    Abstract: A light-diffusing safety cap for use with a light cable that couples an endoscope to a high intensity light source. The light-diffusing safety cap can be detachably or releasably coupled, in lieu of the endoscope, to the light cable, such that when the high intensity light source emits a high intensity light and the endoscope is not connected to the light cable, the light-diffusing safety cap reduces the intensity of the high intensity light emitted to the environment and provides an indication that the high intensity light source is activated when the endoscope is not connected to the light cable.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 2, 2011
    Assignee: SensorMed, Inc.
    Inventors: Michael C. Doody, William T. Milam
  • Patent number: 7991253
    Abstract: A device includes one or more waveguides and a memristive array adjacent to the waveguide(s). The memristive array is programmable to form a pattern that diffracts light and couples diffracted light into or out of the waveguide(s).
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: August 2, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M. Bratkovski, Sagi V. Mathai
  • Patent number: 7991255
    Abstract: The invention relates to a pump coupler (2) and a manufacturing method. The pump coupler (2) comprises a least one signal fiber (50) for outputting optical energy, multiple pump fibers (31) for inputting optical energy into the signal fiber (50), and a coupling structure (40) for coupling the optical energy of the pump fibers (31) into the signal fiber (50). A signal feed-through fiber (32) goes through the coupling structure (40). In accordance with the invention the coupling structure (40) is a tapering capillary tube (40) having a first wide end (65) and a second narrow end (70), the pump fibers (31) are connected to the wide end of the capillary tube (40), and at least the narrow end (70) of the capillary tube (70) is collapsed around the signal fiber (32).
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: August 2, 2011
    Assignee: Corelase Oy
    Inventor: Arto Salokatve
  • Publication number: 20110182546
    Abstract: A photoelectric conversion device includes an optical fiber, a molded portion covering an end portion and an end face of the optical fiber, the molded portion including a transparent resin transparent to light inputted and outputted through the optical fiber and a light input/output surface perpendicular to an optical axis of the optical fiber, electric wirings oppositely formed on the light input/output surface of the molded portion so as to sandwich a light input/output portion through which the light inputted and outputted through the optical fiber passes, and an optical device mounted on the electric wirings so as to stride over the light input/output portion. The optical device includes a surface light-emitting element or a surface light-receiving element optically coupled to the optical fiber through the molded portion.
    Type: Application
    Filed: November 18, 2010
    Publication date: July 28, 2011
    Applicant: HITACHI CABLE, LTD.
    Inventors: Hiroki YASUDA, Kouki HIRANO
  • Patent number: 7986861
    Abstract: An optical fiber connector has a first ferrule holding an end of a first optical fiber, a first fiber stub connected to the first ferrule, a second ferrule holding an end of a second optical fiber, and a second fiber stub connected to the second ferrule. The first fiber stub enlarges the beam diameter of light transmitted through the first optical fiber, and produces the collimated light. The second fiber stub reduces the beam diameter of the collimated light, and leads the converging light into the second optical fiber. The first and second fiber stubs are detachably connected inside a connection sleeve across a predetermined gap. First and second GI fibers contained in the first and second fiber stubs satisfy L1?L2 and L1+L2?½ pitch, wherein L1 and L2 represent the lengths of the first and second GI fibers, and one pitch is a sinusoidal period of the light transmitted therethrough.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: July 26, 2011
    Assignee: Fujifilm Corporation
    Inventor: Shinichi Shimotsu
  • Publication number: 20110176768
    Abstract: A filter and fabrication process for a thin film filter that is based on frustrated total internal reflection and multiple waveguide layers, in which the waveguide modes are resonantly coupled. The physics of the design is related to prism coupling of light into planar waveguides, and waveguide coupling between planar waveguides in close proximity. Embodiments include a filter that acts as a bandpass filter and polarizer, a filter that acts as a bandpass filter, polarizer and angle filter (spatial filter), a filter that is widely tunable, and a filter that is widely tunable in both peak transmission wavelength and width. Methods of fabrication are disclosed, and methods to correct for manufacturing errors in thin film deposition are described. The filter embodiments can also be used in reflection as notch filters in wavelength and angle, for a particular polarization component.
    Type: Application
    Filed: January 18, 2011
    Publication date: July 21, 2011
    Applicant: INNOVISION INC.
    Inventors: Kirat Singh, Elmar Prenner, Alan D. Streater
  • Publication number: 20110176330
    Abstract: The present invention relates to a backlight module and light guide plate thereof. The light guide plate includes a first surface, a second surface and a side surface. The first surface has a plurality of first regions, a second region and a central line. The second region has a plurality of microstructures outside the first regions. The first regions and the second region are solid. The side surface is disposed between the first surface and the second surface. The first regions are adjacent to the side surface and extend toward the central line, and the first regions are intervally spaced. Whereby, the manufacture step of the light guide plate is simplified, and the manufacture cost of the light guide plate is lowered, and the distribution of the microstructures can reduce the hot spots in front a plurality of point light sources efficiently.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 21, 2011
    Applicant: CHI LIN TECHNOLOGY CO., LTD.
    Inventors: Sung-Tao Wu, Yuan-Chi Lee