Optical Switching Patents (Class 398/45)
  • Patent number: 8406623
    Abstract: A system for optical data communication, including: a first sending node including a first data item for transmission to a first receiving node during a first timeslot; a second sending node including a second data item for transmission during a second timeslot; a first optical data link (ODL) and a second ODL; a first output switch configured to switch the first data item from the first sending node onto the first ODL during the first timeslot; a second output switch configured to switch the second data item from the second sending node onto the first ODL during the second timeslot; an optical coupler connecting the first and second ODL; and a first input switch operatively connecting the first receiving node with the second ODL and configured to switch the first data item from the second ODL to the first receiving node during the first timeslot.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 26, 2013
    Assignee: Oracle International Corporation
    Inventors: Pranay Koka, Michael Oliver McCracken, Herbert Dewitt Schwetman, Jr., Xuezhe Zheng, Ashok Krishnamoorthy
  • Patent number: 8406625
    Abstract: Provided is an optical network in which a wavelength division multiplexing-based optical transmission scheme is implemented. An apparatus for cross-connecting an optical path includes a path switch including a plurality of input terminals receiving optical signals from other nodes, and a plurality of output terminals sending the optical signals to the other nodes, the path switch switching the path of the optical signal so that the optical signal input via one of the input terminals is output to one of the output terminals; and a wavelength converter converting a wavelength of the optical signal input via the input terminal and outputting the wavelength-converted optical signal to the output terminal according to a switching result of the path switch.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: March 26, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hwan-seok Chung, Sun-hyok Chang, Sang-soo Lee, Kwang-joon Kim
  • Publication number: 20130071116
    Abstract: The present disclosure provides virtual router/switch systems and methods with a domain of optical switches operating as a single, virtualized router using a control plane design combining centralized control of higher layer packet switching functions with distributed control over transport switching functions. The virtual router systems and methods simplify and reduce cost of Internet Protocol (IP) networks by removing the core routers, replacing them with lower cost, high capacity optical switches which are Packet Optical Transport Systems (POTS). The virtual router systems and methods avoids full mesh connectivity of the edge routers and the associated need to maintain routing adjacencies to each of the other edge routers. The virtual router systems and methods include a centralized IP layer management. Further, the virtual router systems and methods include distributed control of the optical layers.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 21, 2013
    Applicant: Ciena Corporation
    Inventor: Lyndon Y. Ong
  • Publication number: 20130071117
    Abstract: Methods and nodes are disclosed for the support of traffic protection and recovery in mesh networks having multiple nodes communicating via communication links. The problem of timely and reliable Shared Mesh Protection message delivery is addressed through creation of protocols and encoding of Shared Mesh Protection messages within an overhead of the optical data unit container, and by processing the Shared Mesh Protection messages by intermediate nodes of the mesh network. Thus, the Shared Mesh Protection messages are transmitted through the data plane with the transmission of user data.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 21, 2013
    Inventors: Ping Pan, Radhakrishna Valiveti, Rajan Rao, Biao Lu
  • Patent number: 8401384
    Abstract: Provided is an optical access system, including: an optical line terminal, a plurality of optical network units and an optical switching unit. The optical line terminal sends to the optical switching unit a control frame including a switching time when the optical switching unit is to make a switch from one of the optical communication paths between the optical line terminal and the plurality of optical network units to another, and an identifier of an optical communication path to which the switch is made in order to switch the optical communication paths between the optical line terminal and the plurality of optical network units. The optical switching unit switches the optical communication paths between the optical line terminal and the plurality of optical network units based on the switching time and the identifier of the optical communication path after switching which are included in the control frame.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: March 19, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Koji Wakayama, Hiroki Ikeda, Michitaka Okuno, Kenichi Sakamoto
  • Patent number: 8396364
    Abstract: An apparatus comprising a path computation element (PCE) configured for at least partial impairment aware routing and wavelength assignment (RWA) and to communicate with a path computation client (PCC) based on a PCE protocol (PCEP) that supports path routing, wavelength assignment (WA), and impairment validation (IV). Also disclosed is a network component comprising at least one processor configured to implement a method comprising establishing a PCEP session with a PCC, receiving path computation information comprising RWA information and constraints from the PCC, establishing impairment aware RWA (IA-RWA) based on the path computation information and a private impairment information for a vendor's equipment, and sending a path and an assigned wavelength based on the IA-RWA to the PCC. Disclosed is a method comprising establishing impairment aware routing and wavelength assignment for a plurality of network elements (NEs) in an optical network using routing and combined WA and IV.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: March 12, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventors: Young Lee, Greg Bernstein
  • Patent number: 8391308
    Abstract: In accordance with a first aspect of the disclosure, a system is provided. The system includes: an optical line terminal (OLT) shelf including a plurality of optical line cards, each optical line card supporting at least one passive optical network (PON) interface for communicating with a corresponding set of optical network units (ONUs), the OLT shelf thereby corresponding to a plurality of sets the ONUs; a system card controller for controlling the plurality of optical line cards; and a DOCSIS proxy for emulating a cable modem (CM) SNMP agent for each ONU, the DOCSIS proxy being responsive to an SNP manager in a DOCSIS NMS to configure the ONUs accordingly.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: March 5, 2013
    Assignee: Hitachi Communication Technologies, Inc.
    Inventors: Vladimir Bronstein, James Chen
  • Patent number: 8391711
    Abstract: Provided is an optical relay system (10) which is capable of suppressing wasteful power consumption of an entire system to a low level. The optical relay system (10) includes a plurality of relay devices (30) and a network control device (20). The network control device (20) causes an optical signal to be regenerated by a regenerative repeater (35) within the relay device (30) existing at an upstream of the relay device (30) reporting that the optical signal has deteriorated by a degree exceeding a predetermined level. Further, the network control device (20) causes the regenerative repeater (35) to stop regenerating the signal in a case where deterioration of the signal remains within an allowable range even when the regenerative repeater (35) stops regenerating the signal.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: March 5, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Takuya Iwasawa, Kenta Noda, Takayuki Suzuki
  • Patent number: 8391709
    Abstract: A wavelength selective switch (WSS) based on an array of MEMS mirrors tiltable in 1-dimension about only one axis exhibits “hitting” or unwanted port connections during switching. Two WSS's can be cascaded to create M×N switching functionality in a hitless manner by the inclusion of block ports at specified positions in one or both of the WSS's. Greater use efficiency of ports can be achieved if quasi-hitless performance is acceptable.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: March 5, 2013
    Assignee: JDS Uniphase Corporation
    Inventors: Paul Colbourne, Sheldon McLaughlin, Stephen Robert de Hennin, Pierre D. Wall
  • Patent number: 8391707
    Abstract: First and second switching device are connected by a number of signal paths. The first switching device receives an instruction to switch from a first one of the signal paths to a second one of the signal paths. The first switching device performs, in response to the received instruction, a first switching operation to connect the first path, at an input of the first switching device, to the second path, at an output of the first switching device. The second switching device receives the instruction to switch from the first path to the second path and detects a loss of signal on the first path as a result of the first switching operation performed by the first switching device. The second device performs, in response to detecting the loss of signal on the first path, a second switching operation to connect the first path, at an output of the second switching device, to the second path, at an input of the second switching device.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 5, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Glenn A Wellbrock, Tiejun J Xia
  • Patent number: 8380065
    Abstract: Provided is an optical access system comprising: an optical line terminal connected to another network; a plurality of optical network units, each connected to a user terminal; and at least one of an optical switching unit and an optical splitter, which is installed between the optical line terminal and the plurality of optical network units. The optical line terminal allocates a length of time to a discovery phase for detecting the plurality of optical network units, and a length of time to data transmission phases for transferring data from the plurality of optical network units; and changes a ratio of the length of time of the discovery phase to the length of time of the data transmission phases so that the length of time of the discovery phase is shortened in the case where a number of the optical network units that are registered in the optical line terminal increase.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: February 19, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Michitaka Okuno, Koji Wakayama, Kenichi Sakamoto, Hiroki Ikeda
  • Patent number: 8380066
    Abstract: A network including nodes configured to provide auto-discovery and those that do not are provided in a network. The nodes that do not provide auto-discovery may be provided as end points or terminating nodes in the network. A path or circuit identifier is entered into a database at those nodes and communicated to a network management system. The network management system compares the path identifiers, and, if the two match, the network management system designates the nodes associated with the path identifiers as terminating nodes. A path through the network connecting these nodes can then be determined and monitored. In addition, fiber connection information may further be stored at each node and communicated to the network management system, such that links along the path can also be identified by the network management system. Thus, path determination and monitoring in a network including non-auto-discovering nodes can thus be obtained.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: February 19, 2013
    Assignee: Infinera Corporation
    Inventors: Venkata Ramarao Garikapati, Dharmendra Naik
  • Publication number: 20130039658
    Abstract: A Layer 1 transport network, such as an Optical Transport Network (OTN), transports traffic in Layer 1 data transport units. Traffic received at a node of the transport network is mapped to Layer 1 data transport units according to destination such that each Layer 1 data transport unit carries traffic for a particular destination of the transport network. The Layer 1 transport network can carry a plurality of different traffic types and the node can map the received traffic to Layer 1 data transport units according to destination and traffic type. Identification information can be added to an overhead section associated with the Layer 1 data transport unit to indicate at least one of: traffic type and destination of the traffic carried within the data transport unit.
    Type: Application
    Filed: February 2, 2010
    Publication date: February 14, 2013
    Inventors: Ghani Abdul Muttalib Abbas, John Ash
  • Publication number: 20130039657
    Abstract: Presented is a system and method for distributing a network application across a plurality of geographically dispersed network sites. The system comprises a plurality of network sites connected by a shared network and interconnected by a dedicated non-blocking communication network. The system can use different interconnecting network topologies based on the number of sites to be interconnected. The method balances the network application load and resources across the interconnected network sites based on a distribution policy implemented without burdening the shared network. The method provides redundancy capabilities by detecting the loss of a network site and redistributing the network application load to the remaining network sites.
    Type: Application
    Filed: June 23, 2011
    Publication date: February 14, 2013
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventors: Martin Julien, Robert Brunner, Laurent Marchand
  • Patent number: 8374120
    Abstract: A base station (BS) apparatus in a broadband wireless communication system is provided. The base station apparatus includes at least one function board for processing a baseband digital signal; at least one processor board for controlling the at least one function board; and at least one switch for routing a signal between the at least one function board and the at least one processor board.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: February 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chang-Won Kim
  • Patent number: 8374502
    Abstract: A network component comprising a generalized multiprotocol label switching (GMPLS) control plane controller configured to implement a method comprising transmitting a message to at least one adjacent control plane controller, wherein the message comprises a Type-Length-Value (TLV) indicating Routing and Wavelength Assignment (RWA) information, wherein the TLV comprises a Node Attribute TLV, a Link Set TLV, or both, and wherein the TLV further comprises at least one sub-TLV indicating additional RWA information. A method comprising communicating an open shortest path first (OSPF) link state advertisement (LSA) message comprising a TLV with at least one sub-TLV to a GMPLS control plane controller, wherein the TLV comprises a Node Attribute TLV, a Link Set TLV, or both, and wherein the TLV further comprises at least one sub-TLV indicating RWA information.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: February 12, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventors: Greg Bernstein, Young Lee
  • Patent number: 8369706
    Abstract: Methods and apparatuses to provide an “Open access” service model using wavelength division multiplexing (“WDM”) passive optical networks (“PONs”) are described. A cross-connect is used to supply a first set of optical signals corresponding to a first service provider and a second set of optical signals corresponding to a second service provider to a WDM multiplexer/demultiplexer. The WDM multiplexer/de-multiplexer is used to multiplex and transmit the first set and the second set to a remote location. Another WDM multiplexer/de-multiplexer at the remote location is used to de-multiplex the first set and the second set. The first set may be supplied to a first user and the second set may be supplied to a second user. Transceivers coupled to the cross-connect may be used to generate the optical signals. For one embodiment, the transceivers include a wavelength-locked light source. For one embodiment, the transceivers are alike.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: February 5, 2013
    Assignee: Novera Optics, Inc.
    Inventor: Wayne V. Sorin
  • Patent number: 8363562
    Abstract: The present disclosure relates to systems and methods for providing bandwidth-on-demand telecommunications services over next-generation optical transport networks (NG-OTN). One embodiment of a system providing bandwidth-on-demand services includes a next-generation optical transport network (NG-OTN) having an intelligent control plane (ICP) and new-generation synchronous optical network (NG-SONET) capabilities. A next-generation operation support subsystem (NG-OSS) is communicatively coupled to the NG-OTN. The NG-OTN and the NG-OSS are configured to provide the bandwidth-on-demand services.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: January 29, 2013
    Assignees: Verizon Services Corp., Verizon Services Organization Inc.
    Inventors: Stephen S. Liu, Lily F. Chen, Nee B. Gee, Michael F. Lane, Alex E. Tserkovny, Vincent T. Phuah, Sayyid Siddiq Ali
  • Patent number: 8364035
    Abstract: In a PON system in which communication is performed at a plurality of types of transmission rate (L, M, and H) in an upstream direction from a plurality of terminals connected to a station apparatus through optical fibers, within a discovery period for allowing an unregistered terminal to be recognized by station apparatus, the terminal makes a discovery response at one type of transmission rate (L). With this configuration, station apparatus can wait for a discovery response with a receive function being allowed to support transmission rate (L).
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: January 29, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Hiroshi Murata
  • Publication number: 20130016969
    Abstract: Methods and apparatus for communicating Fibre Channel frames between a private loop device and an Ethernet link through a Fibre Channel private loop device interconnect system. In the preferred embodiments, the Fibre Channel private loop device interconnect system is a fabric or an intelligent bridging hub. In one aspect of this invention, a Fibre Channel private loop device is storage device which contains JBODsd or RAIDs. Preferably, the interconnect system includes a routing filter to filter incoming Arbitrated Loop physical addresses (ALPAs) to determine which Fibre Channel frames must attempt to be routed through the fabric. Numerous topologies of interconnect systems may be achieved.
    Type: Application
    Filed: June 15, 2012
    Publication date: January 17, 2013
    Inventor: STUART B. BERMAN
  • Patent number: 8355632
    Abstract: In a transmission apparatus, unlike in the conventional transmission apparatus, a protection switch is not arranged on the signal path, but a TSI having only the basic function performs the function of the protection switch as a substitute, a processing unit to perform the switching function at a low rate is artificially constructed on a TSI, the switch process of SONET protection type is artificially executed by the TSI, and a signal for controlling the TSI function is further controlled thereby to realize the protection switch function. The logic of switching at the main signal rate in addition to the conventional TSI function is deleted.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: January 15, 2013
    Assignee: Fujitsu Limited
    Inventors: Mitsuhiro Kawaguchi, Shosaku Yamasaki, Shigeo Tani, Hideki Matsui
  • Patent number: 8355630
    Abstract: A system and method of detecting polarity inversion in an optical switching circuit is disclosed. The method includes performing a first round of a port verification process on at least two optical ports, transmitting a payload from at least one optical port in the at least two optical ports, determining if the payload was received at a second optical port in the at least two optical ports, assigning a pair of ports to a first group in the case that the predetermined payload was communicated between the pair of ports, and assigning a pair of ports to a second group in the case that the predetermined payload was not communicated between the pair of ports. The method also includes determining that either the first group of ports or the second group of ports has inverted polarity.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: January 15, 2013
    Assignee: Google Inc.
    Inventors: Amin Vahdat, Leon Poutievski, Shashidhar Gandham
  • Publication number: 20130011136
    Abstract: A manner of providing redundancy protection for a data center network that is both reliable and low-cost. In a data center network where the data traffic between numerous access nodes and a network core layer via primary aggregation nodes, an optical network device such as and OLT (optical line terminal) is provided as a backup aggregation node for one or more of the primary aggregation nodes. When a communication path through a primary aggregation node fails, traffic is routed through the optical network device. In a preferred embodiment, a communication link is formed from a plurality of access nodes to a single port of the OLT or other optical network device via an optical splitter that combines upstream transmissions and distributes downstream transmissions. The upstream transmissions from the plurality of access nodes may occur according to an allocation schedule generated when the backup aggregation node is needed.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 10, 2013
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: Fang Hao, Muralidharam S. Kodialam, Tirunell V. Lakshman, Haoyu Song, Martin Zimgibl
  • Publication number: 20130011137
    Abstract: A method for controlling the establishment of a connection with a transport network, said message consisting of extracting from a first signaling message a piece of switching status information for a transport switch of said node, configuring said transport switch within said switching status (65), estimating (64) a piece of time information regarding the configuration of said transport switch and generating a second signaling message intended for a network element of said transport network, said second signaling message comprising a piece of time information for determining a configuration end date of said transport switch. Said second signaling message may be transmitted without waiting for the end of communication of said transport switch. A controller is also described.
    Type: Application
    Filed: February 25, 2011
    Publication date: January 10, 2013
    Inventors: Annalisa Morea, Dominique Verchere, Martin Vigoureux, Richard Douville
  • Publication number: 20130011132
    Abstract: The present disclosure provides hybrid packet-optical private network systems and methods for a private and dedicated multi-point Ethernet Private Local Area Network (EPLAN). The network systems and methods include a Layer 1 infrastructure service with the inclusion of reserved, dedicated packet switch capacity upon which clients can build their personal, private packet networks. In the systems and methods described herein, packet networking methods are not used to partition the isolated LAN connectivity. Instead, dedicated Ethernet Private LANs (EPLs) are defined between dedicated virtual switching instances (VSIs) that are defined, as necessary, within larger packet-optical switches. Each VSI is partitioned from the remainder of its packet switch fabric as a dedicated, private resource for a specific EPLAN. A packet network is then built by the customer on top of the private EPLAN bandwidth and operated as an isolated, private network with no influence by other carrier's network resources.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 10, 2013
    Applicant: CIENA CORPORATION
    Inventor: Loudon Blair
  • Patent number: 8351782
    Abstract: A system and method of detecting polarity inversion in an optical switching circuit is disclosed. The method includes performing a first round of a port verification process on at least two optical ports, transmitting a payload from at least one optical port in the at least two optical ports, determining if the payload was received at a second optical port in the at least two optical ports, assigning a pair of ports to a first group in the case that the predetermined payload was communicated between the pair of ports, and assigning a pair of ports to a second group in the case that the predetermined payload was not communicated between the pair of ports. The method also includes determining that either the first group of ports or the second group of ports has inverted polarity.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: January 8, 2013
    Assignee: Google Inc.
    Inventors: Amin Vahdat, Leon Poutievski, Shashidhar Gandham
  • Patent number: 8351442
    Abstract: Method and device for processing network and storage related traffic is provided. The device includes a network port for interfacing with a network switch; a plurality of ports that receive a converged storage and network protocol related initialization request. Based on selectable criteria, a controller selects a port from among the plurality of ports to respond to the converged storage and network protocol related initialization request. The device also includes a translation module operationally coupled to the port for translating information between a converged network and storage protocol and a storage protocol; and a flexible port that is configured by a port controller to communicate with a storage system using the storage protocol or configured to operate as a network port communicating with a network device.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: January 8, 2013
    Assignee: QLOGIC, Corporation
    Inventor: Edward C. McGlaughlin
  • Publication number: 20130004169
    Abstract: A Higher order (HO) Optical channel Data Unit (ODU)k signal is extracted from an HO Optical channel Transport Unit (OTU)k signal using a first clock at or faster than the OTUk clock. An HO Optical channel Payload Unit OPUk signal is extracted from the HO ODUk signal using the first clock. An Optical channel Data Tributary Unit (ODTU) signal is demultiplexed from the HO OPUk signal using the first clock. The ODTU signal is demapped to a lower order (LO) ODUj signal. The LO ODUj data is then smoothed using a smoothing function. Only one clock is used for the multiple stages of extraction of a LO ODUj from a HO OTUk signal.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: EXAR CORPORATION
    Inventors: MOHAMAD SAMI MOHAMAD, HAO LU
  • Patent number: 8346079
    Abstract: An apparatus comprising a path computation element (PCE) configured for at least partial impairment aware routing and wavelength assignment (RWA) and to communicate with a path computation client (PCC) based on a PCE protocol (PCEP) that supports path routing, wavelength assignment (WA), and impairment validation (IV). The PCEP comprises at least one operation selected from the group consisting of a new RWA path request operation and a path re-optimization request operation. Also disclosed is a network component comprising at least one processor configured to implement a method comprising establishing a PCEP session with a PCC, receiving path computation information comprising RWA information and constraints from the PCC, and establishing impairment aware RWA (IA-RWA) based on the path computation information and a private impairment information for a vendor's equipment.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 1, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventors: Young Lee, Greg Bernstein
  • Patent number: 8346084
    Abstract: An optical device for a wavelength division multiplexing system has a telecentric lens system and a signal-processing optical element, where the signal-processing optical element performs switching, attenuation, or other optical signal processing for the optical device. The telecentric lens system acts as a self-compensating optical system to minimize sensitivity of the optical device to unwanted displacement of an input image from the optical axis of the optical device. The optical device may include multiple telecentric lens systems, in which case the optical device is also less sensitive to precise alignment between the telecentric lens systems.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: January 1, 2013
    Assignee: Oclaro (North America), Inc.
    Inventors: Haijun Yuan, Xuehua Wu, Christopher Lin, Giovanni Barbarossa
  • Patent number: 8346078
    Abstract: A position in which an optical signal characteristic is compensated in an optical network can be chosen. An optical network equipment measures an optical signal characteristic for each wavelength, and notifies an optical network equipment on a communication path of an optical signal characteristic index and control necessity determination threshold. In an upstream portion of the communication path, the optical network equipment (a start point or the like of the communication path) that can compensate the optical signal characteristic for each wavelength determines the necessity to eliminate a deviation between wavelengths and the position to eliminate it, using the optical signal characteristic index and the control necessity determination threshold.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: January 1, 2013
    Assignee: Hitachi, Ltd.
    Inventor: Kazuhiro Kusama
  • Publication number: 20120328289
    Abstract: Devices, systems and methods for run-time reassignment of the interconnection between devices pertaining to a Physical (PHY) layer and devices pertaining to a Media Access Control (MAC) layer, with no packet loss or with at most one packet lost are provided. The strategies employed by these devices, systems and methods used REMOTE FAULT, PAUSE and IDLE PATTERN messages. The devices may be interconnected via a reconfigurable optical crossbar.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventors: Martin Julien, Robert Brunner, Stephane Lessard
  • Patent number: 8340516
    Abstract: A grooming apparatus for an optical communication network is disclosed. The apparatus mainly includes a first photoelectric integration unit and an electrical-layer grooming unit. The first photoelectric integration unit includes a wavelength division multiplexing/demultiplexing unit and a photo-electric/electric-photo conversion unit. The wavelength division demultiplexing unit is configured to demultiplex a multi-wavelength optical signal into single-wavelength optical signals. The photo-electric conversion unit is configured to convert the single-wavelength optical signals to single-wavelength electrical signals. The electrical-layer grooming unit is configured to groom the single-wavelength electrical signals. The present invention overcomes the fatal defect of light dispersion, light power estimation, light power adjustment, OSNR limitation for a conventional OADM/ROADM system. Also, the flexibility of the electrical-layer grooming eliminates the wavelength broadcast and multicast issue.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 25, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Zhiyong Huang, Buyun Wang
  • Patent number: 8340134
    Abstract: A method of communicating count value information in an Optical Transport Network (OTN) signal frame. The method comprises determining a count value indicating a number of payload bytes to be sent in a next OTN signal frame; determining that a change in the count value (?) with respect to a current count value is within a predetermined range; selecting an inversion pattern indicating the change in the count value; determining a cyclic redundancy check (CRC) code associated with the inversion pattern; and, inserting the inversion pattern and the CRC code in a Generic Mapping Procedure (GMP) overhead of the OTN signal frame.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: December 25, 2012
    Assignee: PMC-Sierra, Inc.
    Inventor: Steven Scott Gorshe
  • Publication number: 20120321306
    Abstract: Optical nodes in an optical network may provide directionless, colorless, contentionless, and gridless transmission, reception, and switching of optical signals in which a non-fixed number of optical channels and a non-fixed bandwidth for each optical channel is used. Optical nodes can use the full extent of the optical bandwidth due to the absence of channel spacing.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: VERIZON PATENT AND LICENSING INC.
    Inventors: Glenn A. Wellbrock, Tiejun J. Xia
  • Publication number: 20120321295
    Abstract: A device for signal path control includes a first input terminal and a first output terminal for coupling the signal path control device to a communication network. The device also includes a second input terminal and a second output terminal for coupling the signal path control device to a network device, and a relay input terminal coupleable to a relay output terminal of the network device. In a first operation mode, the device directs signals received via the first input terminal to the second output terminal, which is coupleable to an input terminal of the network device. In a second operation mode, the device directs signals received via the first input terminal to the first output terminal. The device switches between the operation modes in response to a trigger signal received via the relay input terminal.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Inventors: Ulrich Vestergaard B. Hansen, Jannik Hoejgaard
  • Publication number: 20120321303
    Abstract: An inventive method for multi-symbol polarization switching for differential detection optical systems includes modulating a laser source by a DQPSK modulator, driving the DQPSK modulator with a data block configured for generating multi-symbol polarization-switched DQPSK differential-encoded signals, and polarizing the multi-symbol polarization-switched DQPSK signals with a polarizing modulator whose modulation speed is based on how often polarization states vary, wherein the data block provides a bits manipulation to provide the multi-symbol polarization switching thereby enabling differential detection for recovering correct original data by a receiver.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: NEC LABORATORIES AMERICA, INC.
    Inventors: Shaoliang Zhang, Fatih Yaman, Lei Xu, Ting Wang, Yoshihisa Inada, Takaaki Ogata, Yasuhiro Aoki
  • Publication number: 20120321302
    Abstract: An Ethernet switch which includes an input terminal and an output terminal for coupling the Ethernet switch to a communication network is provided. The switch further includes a power terminal for coupling the Ethernet switch to a power supply, and a control unit being adapted to control the path of signals within the Ethernet switch. In a first operation mode, the control unit is adapted for directing signals received via the input terminal to an internal input terminal of the Ethernet switch, for receiving signals from an internal output terminal and for outputting signals via the output terminal. In a second operation mode, the control unit is adapted for directing signals received via the input terminal to the output terminal. The control unit is adapted to switch from the first operation mode into the second operation mode in response to a predefined trigger event.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Inventors: Ulrich Vestergaard B. Hansen, Jannik Hoejgaard
  • Publication number: 20120321305
    Abstract: A switched wireless system is used to increase the range of peer-to-peer communications. The optically-switched fiber optic communication system includes a head-end unit (HEU) having a switch bank. Cables couple the HEU to one or more remote access points in different coverage areas. The switch bank in the HEU provides a link between the remote access points in the different coverage areas such that devices in the different cellular coverage areas communicate with each other. By using the switched communication system, the range and coverage of communication between devices may be extended such that devices in different coverage areas and devices using different communication protocols can communicate.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 20, 2012
    Inventors: Jacob George, Michael Sauer, Dean M. Thelen
  • Publication number: 20120321304
    Abstract: Disclosed herein are a combined communication and broadcasting dual switching system and method. The system includes broadcasting transmission means, an Optical Line Terminal (OLT), an optical detection unit, an active path determination unit, an optical switch unit, and a combining unit. The broadcasting transmission means converts a Radio Frequency (RF) broadcast signal into an optical signal. The OLT includes dual lines and selectively outputs an Internet data signal. The optical detection unit detects a line from which the Internet data signal is being output. The active path determination unit determines that the line is an active path. The optical switch unit receives the optical signal from the broadcasting transmission means, and switches to the active path. The combining unit receives the optical signal output after having been switched, receives the Internet data signal from the OLT, and multiplexes the received optical signal and the received Internet data signal.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: UBIQUOSS Inc.
    Inventor: Shin Hak Yang
  • Publication number: 20120315037
    Abstract: Apparatuses and methods for merging multiple domains into a merged domain and splitting a single domain into multiple domains in an Automatically Switched Optical Network (ASON) are disclosed. For merging, a node in a first domain can be identified to be a new Routing Controller (RC) for the merged domain. A second domain can be identified to be merged with the first domain. Nodes, including old RCs, in the first domain and the second domain are notified of the identity of the new RC in the merged domain. The topology of the old RC's domain is sent to the new RC. The new topology is computed by the new RC from the topology information given by the old RCs. The updated topology is distributed to nodes in the merged domain via the new RC.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Applicant: Ciena Corporation
    Inventors: Alexander SMITH, Vagish Madrahalli
  • Patent number: 8331744
    Abstract: The optical switch is capable of supervising the performance of optical switching in standby channels, and includes: a collimator unit; an optical splitter; a light-gathering unit; and a rotatable mirror. The optical switch further includes: a mirror angle controlling unit which controls a reflection face angle of the rotatable mirror for each wavelength to switch ON/OFF of the light beam coupling to the optical output port for each wavelength reflected, and determines an optical output port position outputting light beams of the reflected wavelengths; and a monitor unit, installed on a return path of a light beam, which monitors a light beam whose optical coupling is made OFF.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 11, 2012
    Assignee: Fujitsu Limited
    Inventors: Hiroyuki Furukawa, Nobuhiro Fukushima
  • Publication number: 20120308231
    Abstract: Techniques are provided for using light path priority of service information in an optical network. At a node in the optical network, priority of service information is stored for a plurality of light paths used in the optical network. The node serves traffic in the optical network using the plurality of light paths based on the priority of service information. These techniques provide for prioritizing light paths (wavelengths) for scenarios such as restoration, congestion and resource contention.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Giovanni Martinelli, Moustafa Kattan, David Bianchi, Ornan Gerstel
  • Publication number: 20120308232
    Abstract: System and computer program product embodiments for fibre channel forwarder fabric login sequence in a fibre channel switch environment, where a Fibre Channel Forwarder (cFCF) is separated from a Fibre Channel over Ethernet (FCoE) data forwarder (FDF), are provided. In one embodiment, by way of example only, at a Fibre Channel Login (FLOGI) to a target device from an initiator device, a node address acceptance notification is held from reaching the initiator device until each of the zoning distributions have been considered to have been completed.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel G. EISENHAUER, Roger G. HATHORN, Henry J. MAY, Louis W. RICCI
  • Patent number: 8326146
    Abstract: The invention relates to a communications node (10) for routing an optical signal 5 comprising at least one data packet, the node (10) having an input optic fiber (12) and an output optic fiber (14) in communication with each other, the input optic fiber (12) in communication with an optical splitter (20) which is arranged to split an incoming optical signal into at least two substantially identical optical signals, the optical splitter (20) further arranged to pass one of the optical signals to an optical correlator (22) and the other of the optical signals to an input optical switch (24), the optical correlator (22) being arranged to compare an address of the packet with a reference address (40) and to generate a trigger if the reference address (40) matches the address of the packet, the input optical switch (24) being arranged to route the data packet to an optical to electrical converter (28) in response to the trigger.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: December 4, 2012
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Atilla Bader
  • Patent number: 8326148
    Abstract: An optical network is disclosed comprising one or more photonic switching nodes is disclosed. Each of the switching nodes comprises a plurality of input ports; at least one output port; and a switch configured to route messages between the plurality of input ports and the at least one output port and provide bufferless resolution of contention between messages for a common output port.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: December 4, 2012
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Keren Bergman, Assaf Shacham
  • Publication number: 20120301140
    Abstract: In accordance with some embodiments of the present disclosure a method for shared mesh protection in an optical transport network comprises provisioning a route for each of a plurality of working demands through the optical transport network. The method further comprises provisioning a route for backup demands corresponding to each of the plurality of working demands. The method additionally comprises packing into a single optical data unit a first backup demand corresponding to a first of the plurality of working demands and a second backup demand corresponding to a second of the plurality of working demands, wherein the first and second of the plurality of working demands share at least one common link in the optical transport network. The method also comprises unpacking the first and second backup demands from the optical data unit.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Qiong Zhang, Paparao Palacharla, Motoyoshi Sekiya
  • Publication number: 20120300771
    Abstract: A transmission apparatus includes a clock generator that generates a clock. When data is received, the transmission apparatus maps a plurality of pieces of received asynchronous data to a cross connection frame by using the generated clock. The transmission apparatus also cross-connects the mapped cross connection frame by using the generated clock. The transmission apparatus also transmits data of the cross-connected cross connection frame.
    Type: Application
    Filed: March 20, 2012
    Publication date: November 29, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Ayumu NONAKA, Mamoru Suematsu
  • Publication number: 20120294611
    Abstract: A method and protocol for dynamic upstream bandwidth allocation to prevent congestion in an aggregation system consisting of multiple PON OLT devices that share a common Service Network Interface (SNI). The method allows OLT devices to communicate real time user traffic load information, and for each OLT to self-throttle upstream throughput based on overall system view of traffic load. The method allows the available SNI bandwidth to be dynamically allocated to OLT ports while maintaining fairness per ONT (user). The method is implemented as a peer-to-peer protocol and does not require central controller resources. The method can be implemented in existing PON systems using software. The method saves the need for expensive dedicated traffic manager devices on the OLT aggregation point.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: PMC Sierra Ltd.
    Inventors: Gal Adler, Israel Ben Shahar
  • Publication number: 20120294610
    Abstract: The present disclosure provides methods and systems for automatic carving of Optical channel Data Unit k (ODUk) levels on connection creation as well as the enforcement of an OTN hierarchy policy. In an exemplary embodiment, the present invention provides several methods of automatically carving Optical channel Data Tributary Unit Group (ODTUG) structures down to a desired ODUk layer during end-to-end circuit setup. These methods may include a recursively descending algorithm, an iterative array algorithm, and an ordered linked list algorithm. Additionally, to interoperate with network elements which may have a fixed ODTUG structure within an Optical channel Transport Unit (OTU), a method of policy enforcement describing each ODUk layer mapped into ODTUG structures is used to select a best match of the currently provisioned ODUk layers.
    Type: Application
    Filed: May 18, 2011
    Publication date: November 22, 2012
    Inventors: Frederick Nick GENTHNER, Satish GOPALAKRISHNA, Kelai Shi