Optical Switching Patents (Class 398/45)
  • Patent number: 8942559
    Abstract: As described herein, a network device includes an optical circuit switch to perform circuit switching. The network device also has a plurality of removable line cards, each of which includes a packet switch. A switching manager automatically reconfigures the optical circuit switch based on a configuration of the removable line cards to maintain a guaranteed packet switching bandwidth between active line cards.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: January 27, 2015
    Assignee: Hewlett-Packard Development, L.P.
    Inventors: Nathan Binkert, Moray McLaren, Michael Tan
  • Patent number: 8942558
    Abstract: Due to demand for more network bandwidth, a need for multi-user optical network topologies has, and will continue to, increase. A method or corresponding apparatus in embodiments of the present invention provide for an availability determination tool for determining and displaying wavelength and subrate availabilities within a network. Benefits of embodiments of a tool include allowing a user to identify the availability and capacity of any wavelength on any network, via an interactive graphical user interface, such as by using three-dimensional representations. In one embodiment, the disclosed availability determination tool allows users to locate and view any combination of available wavelengths between nodes in an optical network topology, and generate graphical and tabular reports of the availability in order to maintain an efficient and organized method or apparatus for determining and controlling wavelengths in a network.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: January 27, 2015
    Assignee: Tellabs Operations, Inc.
    Inventors: David W. Jenkins, Ramasubramanian Anand, Hector Ayala, Dion Kwun Kit Leung, Kenneth M. Fisher
  • Publication number: 20150023661
    Abstract: Reflecting optical devices are optimally positioned by an all optical switch in an optically-connected system by transmitting optical power readings taken from an optimal monitoring module that are transmitted to the all optical switch for optimal positioning of a reflecting optical device in order to produce maximum optical output power.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Inventors: John M. BORKENHAGEN, Eugen SCHENFELD, Mark Z. SOLOMON
  • Patent number: 8934479
    Abstract: A node is configured to receive first optical channel data unit (ODU) signals; encapsulate one or more of the first ODU signals into a second ODU signal; encapsulate the second ODU signal into an optical channel transport unit (OTU) signal; and transmit the OTU signal on one or more optical channels.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: January 13, 2015
    Assignee: Infinera Corporation
    Inventors: Radhakrishna Valiveti, Rajan Rao, Robert G. Bryttegard
  • Patent number: 8929742
    Abstract: An optical communication module in which the pin arrangement can be applied flexibly. An optical communication module has an outer shape formed based on normal standards and which is able to communicate with a host-side circuit board, etc. to which it is fitted, via a predetermined communication interface; wherein the optical communication module exchanges input/output I/F information with the circuit board, etc., and the communication interface can be switched to another communication interface based on these input/output I/F information.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: January 6, 2015
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Masayuki Miura
  • Patent number: 8929733
    Abstract: A network component comprising a generalized multiprotocol label switching (GMPLS) control plane controller configured to implement a method comprising transmitting a message to at least one adjacent control plane controller, wherein the message comprises a Type-Length-Value (TLV) indicating Routing and Wavelength Assignment (RWA) information, wherein the TLV comprises a Node Attribute TLV, a Link Set TLV, or both, and wherein the TLV further comprises at least one sub-TLV indicating additional RWA information. A method comprising communicating an open shortest path first (OSPF) link state advertisement (LSA) message comprising a TLV with at least one sub-TLV to a GMPLS control plane controller, wherein the TLV comprises a Node Attribute TLV, a Link Set TLV, or both, and wherein the TLV further comprises at least one sub-TLV indicating RWA information.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: January 6, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Greg Bernstein, Young Lee
  • Publication number: 20150003828
    Abstract: A digital (fiber optic) link transports one or more RF digital signal blocks, that when converted into analog and (optionally) converted to a RF center frequency with an D-A converter, form RF analog signal blocks. The RF analog signal block occupies a specified frequency band and is preferably capable of being distributed over a downstream coaxial portion of a HFC network and/or being broadcast. The D-A conversion is performed in a fiber node at a remote location where the transmission medium converts from digital optical fiber preferably to coaxial cable. The multiple RF digital signal blocks may be broadcast to multiple nodes or unicast to a single node. The RF signal blocks allow for any type of band-limited RF signal to be transported. The optical digital traffic to compose a RF analog signal blocks using a D-A converter may be point-to-point Ethernet, or may utilize a software-defined networking controller such as the one described in the OpenFlow™ specification, and may use buffering as necessary.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Thomas H. Williams, Luis Alberto Campos, Christopher Donley
  • Patent number: 8923695
    Abstract: An apparatus comprising a path computation element (PCE) configured for at least partial impairment aware routing and wavelength assignment (RWA) and to communicate with a path computation client (PCC) based on a PCE protocol (PCEP) that supports path routing, wavelength assignment (WA), and impairment validation (IV). The PCEP comprises at least one operation selected from the group consisting of a new RWA path request operation and a path re-optimization request operation. Also disclosed is a network component comprising at least one processor configured to implement a method comprising establishing a PCEP session with a PCC, receiving path computation information comprising RWA information and constraints from the PCC, and establishing impairment aware RWA (IA-RWA) based on the path computation information and a private impairment information for a vendor's equipment.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: December 30, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Young Lee, Greg Bernstein
  • Patent number: 8917722
    Abstract: System and computer program product embodiments for fiber channel forwarder fabric login sequence in a fiber channel switch environment, where a Fiber Channel Forwarder (cFCF) is separated from a Fiber Channel over Ethernet (FCoE) data forwarder (FDF), are provided. In one embodiment, by way of example only, at a Fiber Channel Login (FLOGI) to a target device from an initiator device, a node address acceptance notification is held from reaching the initiator device until each of the zoning distributions have been considered to have been completed.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Daniel G. Eisenhauer, Roger G. Hathorn, Henry J. May, Louis W. Ricci
  • Patent number: 8917986
    Abstract: A optical transmission system includes light sources generating light of at least two wavelengths, where any two adjacent wavelengths are separated by less than 10 nm. The wavelengths fall within the zero dispersion zone of an optical fiber, and may be shifted by 1 nm or less to reduce crosstalk effects.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: December 23, 2014
    Assignee: ARRIS Solutions, Inc.
    Inventors: Venk Mutalik, Marcel F. Schemmann, Long Zou, Zhijian Sun
  • Patent number: 8913892
    Abstract: Distributed antenna systems in which the distributed antenna systems can be sectorized. Radio bands distributed by the distributed antenna systems are allocated to one or more sectors. The antenna units in the distributed antenna systems are also allocated to one or more sectors. In this manner, only radio frequency (RF) communications signals in the radio band(s) allocated to given sector(s) are distributed the antenna unit allocated to the same sector(s). The bandwidth capacity of the antenna unit is split among the radio band(s) allocated to sector(s) allocated to the antenna unit. The sectorization of the radio band(s) and the antenna units can be configured and/or altered based on capacity needs for given radio bands in antenna coverage areas provide by the antenna units.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: December 16, 2014
    Assignee: Coring Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliot Greene, Michael Sauer, Gerald Bernhart Schmidt
  • Patent number: 8908683
    Abstract: For a fiber channel forwarder fabric login sequence in a fiber channel switch environment, where a Fiber Channel Forwarder (cFCF) is separated from a Fiber Channel over Ethernet (FCoE) data forwarder (FDF), at a Fiber Channel Login (FLOGI) to a target device from an initiator device, a node address acceptance notification is held from reaching the initiator device until each of the zoning distributions have been considered to have been completed.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Daniel G. Eisenhauer, Roger G. Hathorn, Henry J. May, Louis W. Ricci
  • Publication number: 20140355986
    Abstract: The present invention relates to an interface and method for enabling interconnection of a host device and a small-formfactor pluggable module. The interface comprises a host device connector operative to receive a mating small-formfactor pluggable module connector and a switching device connected to the host device connector and operative to selectively switch at least one signal carried over the host device connector between at least two separate signal paths of the host device depending on a selected switching mode of the switching device.
    Type: Application
    Filed: October 25, 2011
    Publication date: December 4, 2014
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventors: Elmar Trojer, Ling Chen, Yue Sun
  • Publication number: 20140355977
    Abstract: A network node comprises an optical input, an optical output, a random-access queue and a processing system. It receives a data packet, at the optical input and determines whether to process it as a guaranteed-service packet or as a statistically-multiplexed packet. A guaranteed-service packet is output within a predetermined maximum time of receipt, optionally within a data container comprising container control information. A statistically-multiplexed packet is queued. The node determines a set of statistically-multiplexed packets that would fit a gap between two guaranteed-service packets; selects one of the packets; and outputs it between the two guaranteed-service packets.
    Type: Application
    Filed: January 31, 2012
    Publication date: December 4, 2014
    Applicant: TransPacket AS
    Inventors: Steinar Bjornstad, Jan Petter Braute
  • Publication number: 20140355983
    Abstract: An electronic circuit device, including a combined optical transmission and cooling fluid conduit network. The network includes at least one cooling conduit having an optical transmission medium. The network is configured to convey a cooling fluid via the at least one cooling conduit and to convey an electromagnetic signal via the optical transmission medium. The network is in thermal communication with a first set of one or more components of the electronic circuit device and in signal communication with a second set of one or more components of the electronic circuit device. The first set and second set of components are at least partly overlapping. A method for conveying optical signal in such an electronic circuit device is also provided.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 4, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mircea Gusat, Bruno Michel, Thomas E. Morf, Sebastien Ragot, Maria Soimu
  • Patent number: 8903242
    Abstract: The invention relates to a directionless and colorless reconfigurable optical add/drop multiplexer (ROADM) for a number of clients comprising: an add/drop interface for optical signals of at least one optical network, wherein each received optical signal is split by at least one optical splitter into optical signals which are applied to a downstream cross connector distributing the split optical signals to wavelength selectors of different clients, wherein each wavelength selector performs a wavelength selection of at least one wavelength from the distributed optical signals, wherein an optical signal having a selected wavelength (?) is applied to a client transponder of a client.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: December 2, 2014
    Assignee: ADVA Optical Networking, SE
    Inventors: Dogan Atlas, Xiaoping Wu
  • Patent number: 8897638
    Abstract: An optical packet switching apparatus includes an optical packet switching apparatus, an optical transmitting apparatus, and an optical packet receiving apparatus. The optical packet transmitting apparatus includes a packet generator for generating a packet signal by adding the routing information to a received client signal, a BIP adding unit for adding BIP to the generated packet signal, and an electrical-to-optical converter for converting the packet signal, to which the BIP has been added, into an optical packet signal so as to be sent out. The optical packet receiving apparatus includes an electrical-to-optical converter for converting the received optical packet signal into an electrical packet signal, and a BIP comparison unit for detecting the error occurrence in the packet signal, based on the BIP added to the packet signal.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: November 25, 2014
    Assignee: Fujitsu Telecom Networks Limited
    Inventors: Koshi Kitajima, Satoshi Fukutomi, Wataru Kawasaki
  • Patent number: 8891966
    Abstract: An optical packet switching device causes branching of an optical packet that is input to an optical switch and detects a synchronization pattern having a predetermined number of bits from the branched optical packet. Then, the optical packet switching device calculates a synchronization point indicating a location of the synchronization pattern with respect to a detection timing and controls, in accordance with the calculated synchronization point, a delay amount of a delay element that delays an optical packet ON signal that is output to the optical switch.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: November 18, 2014
    Assignees: Fujitsu Limited, Fujitsu Telecom Networks Limited
    Inventors: Tatsuya Toyozumi, Koji Matsunaga, Yasuo Tanaka, Hironobu Fukuura, Wataru Kawasaki, Shota Mori
  • Patent number: 8891963
    Abstract: Various signal routing systems are disclosed. Some routing systems include a crosspoint switch or switching fabric for coupling input ports to output ports, allowing an input signal received at one of the input ports to be transported to one or more of the output ports. The systems may include aggregation or compression modules to allow multiple input signals to be combined into one or more compressed signals, which may be converted into optical signals for transmission to a communication network. In some embodiments, the communication network may include a packet switched router which extracts some of the input signals from the optical signals and produced corresponding packetized signals that are coupled to output ports. Some routing system may include only a packet switched router. Some routing systems may be configured to receive compressed or aggregated signals and to decompress or deaggregate such signals to form individual signals as output signals.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: November 18, 2014
    Assignee: Evertz Microsystems Ltd.
    Inventor: Rakesh Patel
  • Patent number: 8891964
    Abstract: An optical network includes a multidimensional coder and modulator for handling multiple-in-multiple-out MIMO spatial lightpath properties and content of any specific supercarrier, a spatial mode multiplexer responsive to orthogonal frequency division multiplexing OFDM transmissions and the multidimensional coder, a spatial-spectral routing node coupled over a fiber link to the spatial mode multiplexer for performing switching granularity by a spatial mode reconnection, a multidimensional decoder and demodulator; and a spatial mode demultiplexer coupled over a fiber link to the spatial-spectral routing node and responsive to the multidimensional decoder and demodulator.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: November 18, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Milorad Cvijetic, Ivan B. Djordjevic, Neda Cvijetic, Ting Wang
  • Patent number: 8891971
    Abstract: Implementations of an apparatus including an optical circuit switch (OCS) having a plurality of OCS input/output ports, at least one optical circulator having a port optically coupled to a corresponding one of the plurality of OCS input/output ports and a reflection mitigation positioned in the optical path between each optical circulator port and its corresponding OCS input/output port and/or in the optical path inside the OCS. A corresponding optical transceiver is optically coupled to each of the at least one optical circulators. Each optical transceiver includes a transmitter optically coupled to one port of the optical circulator and a receiver optically coupled to another port of the optical circulator.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 18, 2014
    Assignee: Google Inc.
    Inventors: Hong Liu, Ryohei Urata, Christopher L. Johnson
  • Patent number: 8891962
    Abstract: The present invention provides an optical switching apparatus and method of an eNB.
    Type: Grant
    Filed: October 10, 2009
    Date of Patent: November 18, 2014
    Assignee: ZTE Corporation
    Inventors: Jianhua Du, Chunsheng Li, Youbai Chen
  • Publication number: 20140334816
    Abstract: A method for processing data on an OTN optical transport network is disclosed in embodiments of the present invention, including: receiving and buffering, through an ILK interface, an Ethernet data frame sent by an Ethernet board; encapsulating the Ethernet data frame into a Generic Framing Procedure GFP data frame; and mapping the GFP data frame to a virtual container of the OTN to form an OTN data frame, and transporting the OTN data frame to a corresponding transparent transmission board through a cross-connect board. An apparatus and a system for processing data on an OTN optical transport network are further disclosed in the embodiments of the present invention.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 13, 2014
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Jincan GUO, Zhangwei LEI
  • Publication number: 20140334819
    Abstract: In one embodiment, method of wrapping photonic packets includes receiving, by a node, a first packet and receiving, by the node, a second packet. The method also includes concatenating the first packet and the second packet to produce a concatenated frame, where concatenating the first packet and the second packet includes removing an inter-packet-gap (IPG) between the first packet and the second packet and converting the concatenated frame to a photonic frame, where the concatenated frame is an electrical frame.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 13, 2014
    Applicant: Futurewei Technologies, Inc.
    Inventors: Hamid Mehrvar, Eric Bernier
  • Patent number: 8886040
    Abstract: The invention relates to techniques for controlling a dynamic hitless resizing in data transport networks. According to a method aspect of the invention, a network connection comprises M tributary slots defined in a payload area of a higher order transport scheme of the data transport network and the method comprises the steps of receiving a connection resize control signal at each of the nodes along the path of the network connection; adding at each node along the path in response to the connection resize control signal a second set of N tributary slots to the first set of the M tributary slots, such that the network connection comprises M+N tributary slots; and increasing, after M+N tributary slots are available for the network connection at each node along the path, a transport data rate of the network connection.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: November 11, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Maarten Vissers, Yang Yang, Huub van Helvoort, Wei Su
  • Patent number: 8886039
    Abstract: An optical packet switching device is provided with: a first input unit and a second input unit for receiving optical packet signals having destination information and information of a wavelength in use; an optical switch unit for routing the optical packet signals; a branching unit for branching the received optical packet signals; an analyzer unit for analyzing the header of the branched optical packet signals so as to detect the destination information and the information of the wavelength in use; and an output competition determination unit for checking for temporal competition of the optical packet signals based on the destination information and for determining whether the optical packet signals should be transmitted or discarded based on the information of the wavelength in use when there is competition.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: November 11, 2014
    Assignee: Fujitsu Telecom Networks Limited
    Inventors: Kimio Uekama, Shota Mori
  • Patent number: 8879910
    Abstract: An optical packet transmitter device includes: a detection unit for detecting packet-length information and priority information from a received Ether signal; a setting unit for setting, according to the degree of priority, a division factor by which the Ether signal is divided and a wavelength used for an optical packet signal to be transmitted; a header generation unit for generating a header containing destination information, the packet-length information, the priority information, and information of wavelength in use of the Ether signal; a transmission processing unit for dividing the Ether signal according to the set division factor and generating a plurality of packet signals; a header insertion unit for inserting the generated header in at least one packet signal; and an electrical/optical converter unit for converting the plurality of packet signals into optical packet signals of a plurality of wavelengths according to the set wavelength in use.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: November 4, 2014
    Assignee: Fujitsu Telecom Networks Limited
    Inventors: Kimio Uekama, Shota Mori
  • Publication number: 20140321850
    Abstract: A modular system for the connection of an external communication network to a user network of a building includes: a user module including: a passage opening of a connection cable of the user network including optical fibres associated with respective users and adapters associated with respective optical fibres of the connection cable of the user network, and an operator module including: an inlet opening of at least one connection cable to the external communication network including optical fibres and an outlet opening of fibre optic connection elements connected to the external communication network and provided with a connector at a terminal end thereof. The user module and the operator module are structurally independent from each other and the external communication network is operatively associated with the user network by means of a connection of the connectors of the fibre optic connection elements with respective selected adapters of the user module.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 30, 2014
    Applicant: PRYSMIAN S.P.A.
    Inventor: Arnaud Le Dissez
  • Publication number: 20140321849
    Abstract: An apparatus includes a switch unit configured to switch signal paths between a plurality of input ports and a plurality of output ports. The apparatus controls the signal paths according to the connection setting information stored in the apparatus. The connection setting information includes first and second connection information. The first connection setting information specifies a first output port to which a signal input via an input port is to be output, in association with identification information identifying the signal, and the second connection setting information specifies a second output port to which the signal is to be alternatively output. The apparatus controls setting of a signal path of the switch unit, based on the second connection setting information in a case where another signal path has been already allocated to the first output port specified by the first connection setting information.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 30, 2014
    Applicant: FUJITSU LIMITED
    Inventor: Toru KATAGIRI
  • Patent number: 8873952
    Abstract: The present invention is directed to a method including determining an appropriate power level for a phase modulator for an optimum number of subcarriers; and applying the determined appropriate power level via a controller to produce the optimum number of subcarriers, wherein the optimum number of subcarriers enables an optical-orthogonal frequency division multiplex O-OFDM based variable rate transmitter with automatic control by a controller to produce an optimum setting based on a required rate.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: October 28, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Philip Nan Ji, Yue-Kai Huang, Ting Wang
  • Patent number: 8873955
    Abstract: Scheduling methods and apparatus for use with optical switches with hybrid architectures are provided. An exemplary distributed scheduling process achieves 100% throughput for any admissible Bernoulli arrival traffic. The exemplary distributed scheduling process may be easily adapted to work for any finite round trip time, without sacrificing any throughput. Simulation results also showed that this distributed scheduling process can provide very good delay performance for different traffic patterns and for different round trip times associated with current switches.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Polytechnic Institute of New York University
    Inventors: Shivendra S. Panwar, Yanming Shen, Shunyuan Ye
  • Patent number: 8873953
    Abstract: An inventive method for multi-symbol polarization switching for differential detection optical systems includes modulating a laser source by a DQPSK modulator, driving the DQPSK modulator with a data block configured for generating multi-symbol polarization-switched DQPSK differential-encoded signals, and polarizing the multi-symbol polarization-switched DQPSK signals with a polarizing modulator whose modulation speed is based on how often polarization states vary, wherein the data block provides a bits manipulation to provide the multi-symbol polarization switching thereby enabling differential detection for recovering correct original data by a receiver.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: October 28, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Shaoliang Zhang, Fatih Yaman, Lei Xu, Ting Wang, Yoshihisa Inada, Takaaki Ogata, Yasuhiro Aoki
  • Publication number: 20140314407
    Abstract: In a communication network, a node at a subscriber premises includes an input/output (I/O) port, and a device for monitoring a subscriber premises. The device includes an upstream signal path including a first switch, a downstream signal path, and a controller having an input/output (I/O) port coupled to the I/O port of the node, and a first output port. The first switch is coupled to the first output port selectively to complete the upstream signal path.
    Type: Application
    Filed: March 21, 2014
    Publication date: October 23, 2014
    Inventors: Terry W. Bush, Gary W. Sinde
  • Publication number: 20140314409
    Abstract: A method of extending the control plane to a metro sub-domain for a network having a transport plane for carrying subscriber traffic within end-to-end connections, and a control plane for managing at least a portion of resources of the transport plane allocated to the connections. A first set of control-plane enabled nodes of the network is designated as core nodes, each core node being operable to route subscriber traffic between a pair of neighbor core nodes in the network. A second set of control-plane enabled nodes of the network is designated as metro nodes, each metro node being connected to a core node and operating as a sub-domain of the network. Each core node that is connected to at least one metro node is designated as a host node.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Gerard Leo SWINKELS, Darek SKALECKI
  • Publication number: 20140314408
    Abstract: A control plane management system is disclosed for distributed or virtualized network fabrics. The system instantiates a harmonized control plane that aids in provisioning resources across layers within a fabric. The system comprises a network fabric interface that couples with a network fabric of interconnected nodes. The system further comprises a control plane management engine coupled with the network fabric interface. The management engine obtains one or more resource profiles related to each of an upper networking layer of the fabric and a lower networking layer of the fabric, and constructs a control plane provisioning policy as a function of the upper and lower networking layer resource profiles. The management engine then instantiates a harmonized control plane, according to the provisioning policy, by creating a harmonized control plane object having rules outlining the responsibilities of the harmonized control plane.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 23, 2014
    Applicant: Nant Holdings IP, LLC
    Inventor: Thomas Wittenschlaeger
  • Publication number: 20140308036
    Abstract: A branching unit includes a supply destination switching section that switches one supply destination of each of a plurality of power lines that supply electric power to a unit that transfers an optical signal received from a terminal station unit through a transmission line to another supply destination corresponding to a control signal received from the terminal station unit; a current detection section that outputs a detection signal that includes information that denotes whether currents are flowing in the plurality of power lines and information that represents current directions if currents are flowing; and a monitor section that transmits a monitored result based on at least one of a plurality of detection signals received from the current detection section to the terminal station unit.
    Type: Application
    Filed: September 21, 2012
    Publication date: October 16, 2014
    Inventor: Ryuji Aida
  • Patent number: 8861967
    Abstract: A reconfigurable optical add/drop multiplexer and a reconfigurable optical add/drop multiplexing method are provided. The reconfigurable optical add/drop multiplexer comprises: an optical processing unit for receiving a first optical signal containing a plurality of optical channels, processing the first optical signal to generate a second optical signal which is a part of the first optical signal, and outputting the second optical signal; and a coherent detection unit for performing a coherent detection on the second optical signal so as to separate from the second optical signal an optical channel contained therein, and outputting the optical channel.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Wuhan Research Institute of Posts and Telecommunications
    Inventors: Shaohua Yu, Shanhong You, Gangxiang Shen, Zhu Yang, Qi Yang
  • Patent number: 8861955
    Abstract: An optical communications network node (10) comprising an optical transmitter module (16), an optical receiver module (12), an electrical cross-point switch (20) and control apparatus (24, 26). The optical transmitter module (16) comprises optical sources (18) each having a different operating wavelength and each being selectively assignable as an optical circuit switching channel source or an optical burst switching channel source. The optical receiver module (12) comprises a said plurality of optical detectors each operable at one of said operating wavelengths. The electrical cross-point switch (20) comprises switch paths (22) and is configurable to allocate a first set of switch paths for optical circuit switching and a second set of switch paths for optical burst switching.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: October 14, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Francesco Testa, Marzio Puleri, Roberto Sabella, Patrizia Testa
  • Patent number: 8855487
    Abstract: The present disclosure provides a method and device for obtaining the routing information of an electro-optical multi-layer network. The ports on which an optical transmitter and an optical receiver are located are determined, and the electro-optical conversion information is added to the routing information on a port of the optical layer node side or the electro layer node side on which the optical transmitter and the optical receiver are located. The electro-optical conversion information includes but is not limited to the wavelength tuning capability and signal processing capability.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: October 7, 2014
    Assignee: ZTE Corporation
    Inventor: Gang Xie
  • Patent number: 8849112
    Abstract: An asymmetrical and dynamic routing system (ADRS) is provided to enable the dynamic adjustment of the bandwidth capacity of two or more network devices exchanging data. The two or more network devices monitor their current bandwidth demand between themselves and others in a network and a first network device can transmit bandwidth request to a second network device when the first network device reaches transmission bandwidth capacity. Each network device is further configured with additional transmit and receive ports and can be selectively enabled in response to a bandwidth request from other network devices. Each network device is further configured to generate control signals that are sent to optical mirrors to re-direct data signals to or from the one or more enabled additional transmit and receive ports.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: September 30, 2014
    Assignee: Level 3 Communications, LLC
    Inventors: James Q. Crowe, Peter Brennan Doerr, Andrew Dugan
  • Patent number: 8849113
    Abstract: A wavelength selective switch includes a wavelength dispersing element, a wavelength converging element, multiple transmission control elements, and a controller. The wavelength dispersing element performs wavelength dispersion of input signal light. The transmission control element divides input signal light into wavelength bands within a channel band and transmits or cuts off the divided input signal light. The wavelength converging element converges signal light having respective wavelengths produced from the transmission control elements for output. The controller controls a transmittance of the transmission control element of at least one of the low and high frequency sides in a channel band.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: September 30, 2014
    Assignee: Fujitsu Limited
    Inventor: Hiroki Ooi
  • Patent number: 8849111
    Abstract: A network element of a transport network has three fabrics housed within a single shelf of a telco rack, namely a packet fabric, an electrical fabric and an optical fabric. A stream of traffic including a plurality of lambdas is received at a trunk interface of such a shelf. The optical fabric in the shelf performs optical switching on the stream to replace a first lambda in the stream with a second lambda. The first lambda is converted within the shelf into an electrical signal. Also within the shelf, first frames are recovered from the electrical signal. The packet fabric in the shelf is used to perform packet switching on the first frames to generate a flow of second frames. The flow of second frames is transmitted at a client interface of the shelf.
    Type: Grant
    Filed: February 26, 2012
    Date of Patent: September 30, 2014
    Assignee: Cyan, Inc.
    Inventors: Stephen J. West, Scott Pradels
  • Patent number: 8849110
    Abstract: A module for routing packets of first and second optical signals comprising first and second inputs (A,B) for receiving the first and second optical signals and first and second outputs (C,D) for the optical signals. The module comprises optical switching means (8) for switching the first optical signal and the second optical signal to either one of the two outputs (C,D), and a correlator module (7). The correlator module comprises at least two optical correlators (9,10,11,12). The correlator module (7) is arranged to generate control signals for controlling the switching means (8) based on destination data in packets of the first and second signals such that if packets of the first and second optical signals overlap, the switching means directs the packet that was received first to the output (C,D) indicated by the destination data of that packet and the overlapping subsequent packet is directed to the other output (C,D) or blocked.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: September 30, 2014
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventor: Attila Bader
  • Publication number: 20140286636
    Abstract: An optical transceiver device has an optical transceiver component, an O/E conversion substrate and a switch control substrate. The optical transceiver component is connected to the first, second optical fiber network equipments for the transmission of optical signal, respectively. The O/E conversion substrate is electrically connected to an in-line equipment at a first location for transmission of electrical signal, and may convert the received optical signal into the electrical signal or convert the received electrical signal into the optical signal. The switch control substrate is electrically connected with an optical switching switch and is connected with the in-line equipment at a second location to receive a control signal for the optical switch from the in-line equipment such that the optical switching switch operates at an normal mode or an bypass mode to guarantee normal network communication of the first, second optical network equipment.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 25, 2014
    Applicant: FORMERICA OPTOELECTRONICS INC.
    Inventors: SEAN JIANG, TUNG-YI YU, SHAN-JU YANG, SHENG-WEI WU, SHIH-CHI CHENG
  • Patent number: 8842988
    Abstract: Data center network architectures, systems, and methods that can reduce the cost and complexity of data center networks. Such data center network architectures, systems, and methods employ physical optical ring network topologies, optical nodes, and optical junction nodes to efficiently allocate bandwidth within the data center networks, while reducing the overall physical interconnectivity requirements of the data center networks.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: September 23, 2014
    Assignee: Plexxi Inc.
    Inventors: Derek E. Spock, Richard A. Barry, David J. Husak, Peter B. Everdell, Ruoding Li
  • Publication number: 20140270760
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for optical switching. An optical switch device includes a first multicast switch unit; and a second multicast switch unit, wherein each of the first and second multicast switch units respectively include: multiple optical input ports; multiple optical switches; multiple optical splitters/combiners; and multiple optical output ports.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: Oplink Communications, Inc.
    Inventors: Kesheng Xu, Kun Liu, Lifu Gong, Feng Qing Zhou
  • Publication number: 20140270761
    Abstract: Application actions are optimized by receiving actions from one or more distributed applications, translating the received actions into one or more network operation primitives, processing the network operation primitives to determine an optimized set of network operation primitives, determining an optimal execution sequence for the optimized set of network operation primitives, and executing the optimized set of network operation primitives based on the optimal execution sequence.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: SODERO NETWORKS, INC.
    Inventors: Lei XU, Yueping ZHANG
  • Publication number: 20140270766
    Abstract: Optical equipment for 1G-EPON, 10G-EPON, and CWDM services are joined together using a novel combination of optical power splitters and multiplexers. This combination of splitters and multiplexers can be disposed in a single housing, which reduces the size of the combination and improves performance, since jumpers between multiple, separately packaged, optical components can be avoided. One example of the inventive techniques and circuits disclosed herein is a combiner/separator circuit for combining and separating 1G-EPON and 10G-EPON signals. In the example application detailed herein, where EPON equipment is combined with CWDM equipment, an important advantage of this optical circuit is its ability to provide return wavelength isolation for EPON systems that have separate ports for 1G and 10G services.
    Type: Application
    Filed: July 24, 2013
    Publication date: September 18, 2014
    Applicant: All Systems Broadband, Inc.
    Inventor: Donald James Gross
  • Publication number: 20140270762
    Abstract: A connectivity device permits simplified connections for realizing complex networking topologies using lower cost components. The device can be optically passive, or can have an active aspect to control switching to realize additional topology related features. The device permits cabling to be simplified while reducing cost to permit implementations of complex networking topologies to be realized faster and with greater reliability. The device aids in scaling out a network implementation and can provide connectivity for an arbitrary number of nodes with efficient capacity usage.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: PLEXXI INC
    Inventors: Ruoding Li, Derek E. Spock, Richard A. Barry
  • Publication number: 20140270763
    Abstract: Provided herein are methods and systems for routing data. One embodiment comprises a filter mask and route determination logic. The filter mask is operable to produce a filter value from the data. Then, the route determination logic may determine where the data is to be accepted or rejected based on rules associated with the filter value. Accepted data is prioritized and associated with a particular path in a plurality of paths.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: Emulex Corporation
    Inventor: Stuart B. Berman