Optical Local Area Network (lan) Patents (Class 398/58)
  • Patent number: 9031092
    Abstract: A computer system and method for transmitting LAN signals over transport systems. LAN signals are generated in any client LAN compliant interface. A transceiver receives the client LAN signal in the LAN format. The client LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client LAN signal to an internal electrical LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical LAN signal is then re-modulated into a second LAN signal. The second LAN signal is then transmitted to a transport system.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: May 12, 2015
    Assignee: Pivotal Decisions LLC
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Patent number: 9030924
    Abstract: The present application provides a method for time division multiplex service protection. The method includes: on an OLT in a passive optical network, a working uplink port and a protection uplink port are set for a time division multiplex service and a protection group is created for the working uplink port and the protection uplink port; when a service flow protection for the time division multiplex service is triggered, the time division multiplex service flow is switched from the working uplink port to the protection uplink port, therefore realizing the protection for the time division multiplex service flow. The present application provides an uplink channel protection mechanism for important services in an access system, such as the time division multiplex service, which needs no protection switching protocol, and makes the service recovery time stand within 50 ms, thereby realizing fast and nondestructive recovery of the time division multiplex service.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: May 12, 2015
    Assignee: ZTE Corporation
    Inventors: Ruichun Dai, Dezhi Zhang
  • Patent number: 9032209
    Abstract: A network component comprising at least one processor coupled to a memory and configured to exchange security information using a plurality of attributes in a management entity (ME) in an optical network unit (ONU) via an ONU management control interface (OMCI) channel, wherein the attributes provide security features for the ONU and an optical line terminal (OLT). Also included is an apparatus comprising an ONU configured to couple to an OLT and comprising an OMCI ME, wherein the OMCI ME comprises a plurality of attributes that support a plurality of security features for transmissions between the ONU and the OLT, and wherein the attributes are communicated via an OMCI channel between the ONU and the OLT and provide the security features for the ONU and the OLT.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: May 12, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventor: Frank Effenberger
  • Patent number: 9031408
    Abstract: A method provides advertisements to optical network units (ONUs) by an optical line terminal (OLT), wherein the advertisements enable the ONUs to identify free channels from a plurality of wavelength-division multiplexing (WDM) channels in a passive optical network (PON). The method includes: transmitting from the OLT to the ONUs an advertisement identifying a free channel for each of a plurality of incompatible channel (ICH) groups, receiving a request from an ONU for the advertised free channel of an ICH group, authenticating the requesting ONU via the advertised free channel, allocating the advertised free channel to the requesting ONU upon successful authentication of the requesting ONU, and transmitting an updated advertisement from the OLT to the ONUs.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 12, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Stefan Dahlfort, David Hood
  • Patent number: 9031406
    Abstract: The present invention uses digital subcarrier cross-connect switching to accomplish various network processes more efficiently. These processes include interconnecting network components, and performing optical and optoelectronic add/drop operations.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: May 12, 2015
    Assignees: University of Kansas, Board of Regents, The University of Texas System
    Inventors: Rongqing Hui, Andrea Fumagalli
  • Publication number: 20150125146
    Abstract: One embodiment is directed to a wireless drop terminal (WDT) for use in a fiber-to-the-home (FTTH) network. The wireless drop terminal comprises a fiber interface to optically couple the wireless drop terminal to an optical line terminal (OLT) of the FTTH network via at least one optical fiber and a wireless interface communicatively coupled to the fiber interface. The wireless interface is configured to wirelessly communicate with a wireless optical network terminal (W-ONT) over a fixed directional wireless drop. Other embodiments are disclosed.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 7, 2015
    Inventors: Jan Jozef Julia Maria Erreygers, Jennifer Stephanie Eola Lay, Alfonso Bartolome Munoz
  • Publication number: 20150125148
    Abstract: A transmission apparatus includes: a first mapping unit configured to allocate a first frame that stores a client signal to an intermediate frame; a second mapping unit configured to allocate the intermediate frame to a second frame that has a higher bit rate than a bit rate of the first frame; and a rate controller configured to control a bit rate of the intermediate frame based on the bit rate of the first frame and the bit rate of the second frame.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Wataru Odashima, Hayato Furukawa, Toru Katagiri
  • Publication number: 20150125147
    Abstract: A conversion module including physical layer and control modules. The physical layer module, via an optical network, receives first data from a service provider. The control module, via a coaxial cable network: transmits the first data, via sub-carriers, from the conversion module to a first network module according to a first bit loading profile; requests from the first or second network module a report that indicates channel conditions respectively for the sub-carriers; based on the request, receives the report; updates a second bit loading profile based on the report; transmits, to the first or second network module, the updated second bit loading profile or a difference between the first and updated second bit loading profiles; and subsequent to performing a switch over between the first and second bit loading profiles, transmit second data according to the updated second bit loading profile to the first or second network module.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Inventors: Jin Zhang, Kok-Wui Cheong
  • Publication number: 20150125149
    Abstract: This application provides a wavelength negotiation method of a multi-wavelength passive optical network, including: receiving a wavelength status table that is broadcast by an OLT over each downstream wavelength channel of a multi-wavelength PON system, where the wavelength status table is used to indicate information about available wavelengths of the multi-wavelength PON system and statistic information of registered ONUs of a corresponding wavelength channel; selecting an upstream transmit wavelength and a downstream receive wavelength according to the wavelength status table; and reporting information about the upstream transmit wavelength and information about the downstream receive wavelength to the OLT so that the OLT refreshes the wavelength status table. This application also provides a wavelength negotiation apparatus of the multi-wavelength passive optical network and a multi-wavelength passive optical network system.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Bo GAO, Jianhe GAO
  • Patent number: 9025960
    Abstract: A method implemented by a middlebox comprising registering a customer premises equipment (CPE) in the middlebox, wherein the CPE is coupled to the middlebox via an electrical line, and facilitating registration of the CPE in a central office (CO) equipment coupled to the middlebox.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: May 5, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Liming Fang, Jim Chen, Li Zhang
  • Patent number: 9025623
    Abstract: The disclosure relates to a method and apparatus for implementing self-adaption of cross granularity in an Optical Transport Network (OTN). The method includes: acquiring an optical interface side OTN service signal which has been processed by a frame-forming chip, and performing determination on the frame header of an Optical channel Data Unit (ODU) frame of the current level in the OTN service signal; when frame-alignment is determined to be successful, performing level-by-level de-multiplexing processing on the ODU frame of the current level to obtain cross granularities of different levels, selecting output channels for the cross granularities of different levels, performing mapping processing on the output cross granularities of different levels to form fixed rate service signals, and outputting the fixed rate service signals to back board ports, where the signals are transmitted to a cross board.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 5, 2015
    Assignee: ZTE Corporation
    Inventors: Ruimin Ma, Hongbing Zou, Haiping Hao
  • Publication number: 20150117851
    Abstract: A network management device monitors an optical network that is configured for a required bandwidth. The optical network includes multiple optical nodes and a plurality of light paths between the multiple optical nodes. The multiple optical nodes include transport cards with a majority of the transport cards provisioned as active cards to receive a traffic load of up to full capacity of the transport cards, and with a minority of the transport cards provisioned as floating spare cards for the active cards.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 30, 2015
    Inventors: Glenn A. Wellbrock, Tiejun J. Xia
  • Publication number: 20150117860
    Abstract: A method for setting up, operating and/or scaling a modular optically routed transport network includes: providing a quasi passive Optical Transport Network (OTN) core network according to ITU-T G.709 with N network nodes at the core network edge; providing at least one active component in each network node for the transmission of data over the core network; and changing at least one of the at least one active component in at least one network node for scaling the network. The at least one active component is an optical transceiver comprising digital signal processors (DSPs).
    Type: Application
    Filed: December 27, 2012
    Publication date: April 30, 2015
    Inventor: Ralf-Peter Braun
  • Patent number: 9020345
    Abstract: A method for establishing an end-to-end service is provided in the present invention, which includes: acquiring link information in a network and multi-stage multiplexing capability constraint information supported by gateway network elements; when an end-to-end path computation request is received, according to the link information and the multi-stage multiplexing capability constraint information, performing an end-to-end routing computation to acquire an end-to-end routing, and selecting a multi-stage multiplexing capability used on a gateway network element passed by the end-to-end routing; and configuring the end-to-end service, and configuring the selected multi-stage multiplexing capability on the gateway network element passed by the end-to-end routing. A system for establishing the end-to-end service, an optical transport network and a signal transmission method thereof are also provided in the present invention, which can all implement the interconnection between new networks and old networks.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: April 28, 2015
    Assignee: ZTE Corporation
    Inventors: Xihua Fu, Xinling Zhang
  • Publication number: 20150110489
    Abstract: A communication resource in a network environment analyzes upstream communications received over multiple passive optical networks. The upstream communications are received from multiple client devices in different passive optical networks. Based on analysis of the upstream communications, via an active or passive approach, a corresponding communication resource detects in which of the multiple passive optical networks each of the client devices reside. A scheduler resource can be configured to use the class information as a basis to schedule subsequent upstream communication, avoiding occurrence of optical beat interference.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Inventor: Paul D. Brooks
  • Patent number: 9014550
    Abstract: A cross connecting unit outputs an including frame whose type matches a type of an including frame stored in a storage unit in association with identification information of a multiplexing unit having a problem among including frames generated by an including unit to a backup multiplexing unit when any one of multiplexing units has a problem.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: April 21, 2015
    Assignee: NEC Corporation
    Inventor: Masahiko Tsuchiya
  • Patent number: 9014151
    Abstract: A method and apparatus for low-rate traffic signal transmission on Optical Transport Networks (OTN). The method includes: defining a frame format of the low-rate traffic optical channel data unit (ODU) signal for bearing the low-rate traffic signal; mapping the low-rate traffic signal to the low-rate traffic optical channel payload unit (OPU) of the low-rate traffic ODU signal, generating overhead bytes and filling the bytes in an overhead section of the low-rate traffic ODU to obtain the low-rate traffic ODU signal; multiplexing low-rate traffic ODU signals to an ODUk signal of which the rate matches the transmission rate rank of the OTN where the signal is transmitted, and transmitting the signal via the OTN. Based on this method, the invention provides an apparatus for the low-rate traffic signal transmission in the OTN as well. With this invention, the low-rate traffic signal transmission in the OTN can be implemented conveniently.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: April 21, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Shimin Zou
  • Publication number: 20150104172
    Abstract: Flexible VON provisioning may include calculating a candidate mapping pattern to satisfy a virtual optical network (VON) demand based on virtual-to-physical node mapping choices. A distance-adaptive routing and spectral slot assignment evaluation of the candidate mapping pattern may be performed. When the VON demand is satisfied by the candidate mapping pattern, the candidate mapping pattern may be added to a valid mapping patterns list. A final mapping pattern may be selected from the valid mapping patterns list, the final mapping pattern having one of a lowest slot layer and a smallest overall slot usage on the valid mapping patterns list. Then, network resources may be reserved based on the final mapping pattern selected to service the VON demand.
    Type: Application
    Filed: June 25, 2014
    Publication date: April 16, 2015
    Inventors: Xi Wang, Qiong Zhang, Inwoong Kim, Paparao Palacharla, Motoyoshi Sekiya
  • Patent number: 9007228
    Abstract: An Ethernet-based transmission system using a dying gasp according to the present invention includes an SMPS for supplying power to an Ethernet-based lower level system, detecting a state of a power fault, and outputting a dying gasp alarm signal. A CPU receives the dying gasp alarm signal, and generates and transmits an alarm packet. A PHY chip receives the alarm packet, and uplinks the alarm packet so that the alarm packet is transferred to a higher level stage. An L3 switch receives the alarm packet and determines whether a power fault has occurred in the lower level system. Accordingly, the present invention applies a dying gasp to an Ethernet-based or EPON-based transmission system and is then capable of generating and transmitting an alarm packet so that when a power fault occurs, a device in a higher level network can rapidly determine the occurrence of the power fault.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: April 14, 2015
    Assignee: UBIQUOSS Inc.
    Inventors: Dong Il Song, Min-kyu Cho
  • Patent number: 9002194
    Abstract: A multi-path provisioning scheme is provided to ensure full protection while reducing or minimizing resource overbuild. A signal to be provisioned is divided at a source node into a plurality of sub-signals that are independently routed from the source node to a destination node. Bandwidth for back-up traffic B is allocated in addition to bandwidth for primary traffic T. In some embodiments, the initial bandwidth B of the backup traffic equals the bandwidth of the primary traffic. The T+B traffic is initially distributed so that no link carries more than B traffic. The traffic distribution pattern is then iteratively revised to reduce the bandwidth requirements for the backup traffic while still meeting requirements for protection.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: April 7, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Ming Xia, Stefan Dahlfort
  • Patent number: 9001823
    Abstract: A method and system for service clock transparent transmission in an optical transport network (OTN) are provided. The system includes a service accessing end and an OTN receiving end; the method includes the following steps: the OTN receiving end performs de-mapping operation to an OTN frame after receiving the OTN frame, and performs two-level buffering operation to the service data flow recovered therefrom, a first buffering unit performs a homogenization treatment to the service data flow and then outputs to a second buffering unit, which the second buffering unit outputs the service data flow according to the service clock after receiving the service data flow. After adopting the present invention, it is able to ensure that the quality of the recovered service clock is relatively higher, which meets the customer requirement on the related specification of the service clock.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 7, 2015
    Assignee: ZTE Corporation
    Inventors: Xiaopeng Song, Yan Yuan
  • Patent number: 9002167
    Abstract: An improved optical fiber management bridge 100 can comprise an optical hinge 152 for an electronics communications device 112 which is especially useful for a broadband network 104. The electronics communications device can have a housing 120 for enclosing an electronics package 114 comprising at least one optical module 118 and optical fibers 108. The optical bridge can have optical surfaces 156 for supporting portions of the optical fibers 108 which are routed and extend between the top 128 and base 122 of the housing 120. The optical bridge can have an intermediate portion 163 for accommodating safe transition of the optical fibers 108 over the hinge line 129 of the housing 120.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: April 7, 2015
    Assignee: Google Technology Holdings LLC
    Inventors: Vipul D. Rathod, Dennis P. Conroy, Jamie J. Swift, David M. Thibeault, Thomas M. Weiss
  • Patent number: 9002203
    Abstract: A method for data processing of an optical network element is provided, wherein a configuration information is received at the optical network element and a light signal is adjusted to a wavelength or wavelength range indicated by said configuration information; wherein an incoming optical signal is demodulated via the light signal and mixed as an electrical demodulated signal with a signal of an oscillator; wherein the signal of the oscillator is tuned to improve a reception of the incoming signal at the optical network element; and wherein the light signal is used for upstream modulation to provide a modulated optical upstream signal. Furthermore, an according device and a communication system are suggested including at least one such device.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: April 7, 2015
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Thomas Treyer, Karl Kloppe, Harald Rohde
  • Patent number: 8982915
    Abstract: A network interface includes an interleaver module and line drivers. The interleaver module receives symbols on a plurality of input lanes. The symbols are arranged in groups, and each group includes one symbol from each of the plurality of input lanes. The symbols within each group are received concurrently on the plurality of input lanes. The interleaver module also serially outputs the symbols of a first group of the groups onto a first output lane of a plurality of output lanes, serially outputs the symbols of a second group of the groups onto a second output lane of the plurality of output lanes, and serially outputs the symbols of a third group of the groups onto the first output lane. The line drivers drive data based on the plurality of output lanes onto respective lanes of a physical medium.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: March 17, 2015
    Assignee: Marvell International Ltd.
    Inventor: William Lo
  • Patent number: 8983295
    Abstract: The inventive concept relates to an optical line terminal registering optical network terminals having overlapping serial numbers. The optical line terminal may include a memory storing serial number information of optical network terminals of which a registration is completed in a storage region; and a control part that if a serial number by a serial number request is received from optical network terminals, the received serial number is compared with the serial number information of the memory and if they overlap each other, a previously set preliminary identifier is allocated to the optical network terminal having an overlapping serial number.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: March 17, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hark Yoo, Geun Yong Kim, Youngsuk Lee, Sung Chang Kim, Dongsoo Lee
  • Patent number: 8976686
    Abstract: A Tandem connection monitoring (TCM) path search method, a TCM path creation method, a path search management system, and a path creation management system are provided. The source end TCM mode and the sink end TCM mode at a single level of each node in an Optical Channel Data Unit-k (ODUk) path are acquired; and a TCM path at the single level between nodes in the ODUk path is calculated according to the source end TCM mode and the sink end TCM mode at the single level of each node that are acquired. TCM level information and the sink end TCM mode of a second node for TCM path creation between a first node and the second node are acquired by specifying the first node and the second node; and a TCM path between the first node and the second node that are specified is created and stored.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: March 10, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Shujian Wang, Heng Shen
  • Patent number: 8976794
    Abstract: An apparatus for forwarding an Fiber Channel over Ethernet (FCoE) data frame into an Ethernet network comprising a processor configured to receive a data frame on a input port, obtain a first destination address and a virtual local area network identifier (VID), determine whether the first destination address and the VID matches an entry within a forwarding table, construct a key when the first destination address and VID matches the entry and the data frame is a FCoE frame, and forward the data frame as an outgoing data frame via an output port when the key matches a rule that permits forwarding the data frame.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 10, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventor: Yijun Xiong
  • Publication number: 20150063805
    Abstract: A device for pre-emption in passive optical networks may include a first media access control (MAC) module configured to receive a first type of data traffic and transmit the first type of data traffic to a MAC merge module. The device may further include a second media access control (MAC) module configured to receive a second type of data traffic and transmit the second type of data traffic to the MAC merge module. The device may further include the MAC merge module configured to receive the first and second types of data traffic from the first and second MAC modules, respectively, and provide the first and second types of data traffic for transmission over a port. The MAC merge module may be configured to pre-empt the transmission of the first type of data traffic over the port in favor of the second type of data traffic.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Inventors: Lowell David LAMB, Glen KRAMER, Patricia Ann THALER, Howard FRAZIER
  • Publication number: 20150063806
    Abstract: The invention relates to techniques for controlling a dynamic hitless resizing in data transport networks. According to a method aspect of the invention, a network connection comprises M tributary slots defined in a payload area of a higher order transport scheme of the data transport network and the method comprises the steps of receiving a connection resize control signal at each of the nodes along the path of the network connection; adding at each node along the path in response to the connection resize control signal a second set of N tributary slots to the first set of the M tributary slots, such that the network connection comprises M+N tributary slots; and increasing, after M+N tributary slots are available for the network connection at each node along the path, a transport data rate of the network connection.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventors: Maarten P.J. VISSERS, Hubertus Adrianus Maria VAN HELVOORT, Yang YANG, Wei SU
  • Patent number: 8971707
    Abstract: Use in LAN cable applications, as materials for the coating of the primary cable and for the external jacket, of TFE thermoprocessable perfluoropolymers comprising perfluoroalkylvinylethers in the following amounts, expressed as percent by weight on the total of the monomers: a) 0-5.5% of perfluoromethylvinylether (PMVE); b) 0.4-4.5% of perfluoroethylvinylether (PEVE) and/or perfluoropropylvinylether (PPVE); when a) is present, then a)+b) ranges from 1.5% to 5.5% by weight on the total of the monomers; optionally c) 0-6% of hexafluoropropene (HFP); the TFE amount being the complement to 100% by weight.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: March 3, 2015
    Assignee: Solvay Solexis S.p.A.
    Inventors: Pasqua Colaianna, Giulio Brinati, Aldo Sanguineti
  • Patent number: 8971333
    Abstract: The disclosure claims a bandwidth adjustment method and system for Optical channel Data Unit flexible (ODUflex) based on a Generic Framing Procedure (GFP), wherein, the method includes that: (501) a source end sends a bandwidth adjustment control frame which contains bandwidth adjustment parameters; (503) a plurality of intermediate nodes forward the bandwidth adjustment control frame to a sink end via an ODUflex link, during the forwarding process, the plurality of intermediate nodes determine that resource thereof can satisfy the bandwidth adjustment parameters, and then reserve the bandwidth adjustment resource; (505) after receiving the bandwidth adjustment control frame, the sink end feeds back an adjustment acknowledgment frame which contains adjustment acknowledgment information to the source end via the plurality of intermediate nodes; (507) the plurality of intermediate nodes use the reserved bandwidth adjustment resource to implement adjustment for the bandwidth of the ODUflex link according to the
    Type: Grant
    Filed: September 25, 2010
    Date of Patent: March 3, 2015
    Assignee: ZTE Corporation
    Inventors: Bin Luo, Xiao Pemg
  • Patent number: 8965204
    Abstract: An optical communication system including an optical communication fiber and a plurality of modules. Each of the modules has an optical transceiver that is optically coupled to the optical communication fiber by a corresponding optical drop. And each of the transceivers is configured for transmitting and/or receiving one or more optical signals via the optical communication fiber. The optical signals represent a plurality of individual data streams formatted according to one or more different communication protocols. In this manner, optical communication is enabled among the modules via the optical communication fiber.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: February 24, 2015
    Assignee: Invensys Systems, Inc.
    Inventors: Nestor J. Camino, Jr., Harris D. Kagan
  • Patent number: 8958697
    Abstract: A system and method for managing the optical layer network data communications of an optical fiber data network by an optical transceiver module is disclosed. The management of the optical layer network data communications comprising data link layer functions or layer 2 functions in an OSI model. Benefits include reduction in reduced cost of network deployments from consolidation of network equipment, such as switches, and reduction in power consumed as well as enabling point-to-multipoint network connections from previously only point-to-point network connection.
    Type: Grant
    Filed: July 8, 2012
    Date of Patent: February 17, 2015
    Inventors: Alexander I. Soto, Walter G. Soto
  • Publication number: 20150043914
    Abstract: A transmission apparatus includes: a data signal processor to add first data of a control signal to a data signal received, and transmit the data signal; a first signal output module to output second data of the control signal; an update controller to control an update of a function included in the first signal output module; and a second signal output module, when receiving a notice of an instruction for updating the function from the update controller, to output the first data that is the second data held therein when the notice thereof is received, wherein the second signal output module, when receiving a notice of a completion for updating the function from the update controller, outputs the first data that is the second data received from the first signal output module updated by the update controller.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Makoto OHTOU, Mitsuo YONEDA
  • Publication number: 20150043913
    Abstract: Methods and apparatus for providing enhanced optical networking service and performance which are particularly advantageous in terms of low cost and use of existing infrastructure, access control techniques, and components. In the exemplary embodiment, current widespread deployment and associated low cost of Ethernet-based systems are leveraged through use of an Ethernet CSMA/CD MAC in the optical domain on a passive optical network (PON) system. Additionally, local networking services are optionally provided to the network units on the PON since each local receiver can receive signals from all other users. An improved symmetric coupler arrangement provides the foregoing functionality at low cost. The improved system architecture also allows for fiber failure protection which is readily implemented at low cost and with minimal modification.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 12, 2015
    Inventors: Jun Xu, Nanjian Qian
  • Publication number: 20150043909
    Abstract: Systems and methods according to these exemplary embodiments provide for methods and systems that allow for either reducing signal loss or improving the optical signal strength in a PON for increasing optical signal range.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Elmar Trojer, Stefan Dahlfort
  • Patent number: 8953940
    Abstract: A method for time synchronization on a passive optical network is disclosed, including: an optical line terminal (OLT) receives clock information sent by a first optical network unit (ONU); the OLT adjusts local time of the OLT according to the clock information, to implement clock synchronization between the OLT and the first ONU; the OLT sends the clock information to a second ONU, to implement clock synchronization between the second ONU and the OLT. The OLT in an embodiment of the present invention does not need to obtain clock signals from an upper network and the clock information does not need to be transmitted in a multi-level mode over a packet network; therefore, the precision of ToD can be greatly increased.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: February 10, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Meng Sui
  • Publication number: 20150037033
    Abstract: A system (100) for providing resilience in a communication network capable of providing multiple services to multiple customers. The system (100) includes at least one Optical Line Terminal (OLT) (110), and at least one Passive Optical Network (PON) based architecture (115) operably coupled to the at least one OLT (110). The PON based architecture (115) includes at least one down link mechanism (120) operably coupled to the at least one OLT (110). The down link mechanism (120) is capable of transporting optical signals generated by the OLT (110) downstream to users end via the PON based architecture (115) and includes at least one Free Space Optics (FSO) Link (130) configured to operate in a continuous mode both during up linking and down linking. The down link mechanism (120) provides the resilience in the communication network.
    Type: Application
    Filed: December 20, 2012
    Publication date: February 5, 2015
    Applicant: STERLITE NETWORKS LIMITED
    Inventor: Vijay Jain
  • Patent number: 8948598
    Abstract: A method for communicating in a passive optical network (PON), includes receiving traffic from a plurality of optical network units (ONUs) transmitting in an upstream transmission channel, wherein each of the ONUs may transmit at any wavelength within a wavelength band associated with the upstream transmission channel. The method also includes dividing the upstream transmission channel into a plurality of sub-channels, that each include a subset of the wavelength band associated with the upstream transmission channel. The method further includes determining the identity of each of the plurality of ONUs transmitting in each of the sub-channels, assigning a plurality of ONUs transmitting in the upstream transmission channel to each of at least two of the sub-channels based on the determination of the ONUs transmitting in that sub-channel, and allocating transmission timeslots for time-shared transmission by the ONUs in one or more of the sub-channels.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 3, 2015
    Assignee: Fujitsu Limited
    Inventor: Martin Bouda
  • Patent number: 8948599
    Abstract: A network architecture for integrating a 4G wireless mesh network (WMN) with a 3-G network in order to effectively support multimedia communication is described. In one embodiment of the present invention, a wireless mesh network system comprises a plurality of routers each having a wireless optical interface; at least one base station having Internet backhaul and connecting to a wireless optical device; a computer media storing instructions for assigning at least one of the plurality of routers to act as an Internet gateway via said base station; wherein said assigned router and said base station communicating via a link between wireless optical interface of said assigned router and the wireless optical device connected to said base station, and said link is line-of-sight.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: February 3, 2015
    Inventors: Dharma P. Agrawal, Nishan S. Weragama, Hailong Li
  • Publication number: 20150030328
    Abstract: A network system that is able to automatically generate a topology map. A PON topology generation part of a network system with a predetermined network including an OLT and a plurality of ONUs performs a topology map generation process. The topology map generation process includes: (a) calculating a plurality of numbers Nci of 2-branches that are the numbers of 2-branches of splitters on a transmission path between the OLT and the plurality of ONUs, based on a plurality of transmission distances Li, a plurality of downstream transmission power values PT and a plurality of downstream reception power values PRi; and (b) generating a topology map based on the plurality of numbers Nci of 2-branches and the plurality of transmission distances Li.
    Type: Application
    Filed: February 23, 2012
    Publication date: January 29, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Takeshi Fukuda, Kenji Senoh
  • Publication number: 20150030329
    Abstract: The present disclosure discloses a method, wherein the method comprises generating a passive optical network (PON) protocol message, wherein the PON protocol message comprises an identifier of a PON user terminal and an action indication indicating that the PON user terminal intends to exercise a first power supply mode that is a power-saving mode. The present disclosure further provides a method for controlling the PON power supply and for reporting the power supply state. The present disclosure allows control of the energy usage of the PON user terminal to save power when a service in the PON user terminal is not used or when the user terminal uses a backup power source to supply power.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 29, 2015
    Inventors: Hai Gao, Yinghua Dong
  • Patent number: 8942139
    Abstract: In one embodiment, a system includes a switching processor configured to execute logic, a plurality of ports, at least some of the ports being grouped together in one or more link aggregations (LAGs), logic adapted to create at least a first virtual local area network (VLAN) interface for Ethernet traffic using transmission control protocol/internet protocol (TCP/IP) that is received on at least one of the plurality of ports, and logic adapted to create at least a second VLAN for storage area network (SAN) traffic using Fiber Channel over Ethernet (FCoE) and/or remote direct access memory (RDMA) over Converged Enhanced Ethernet (RoCEE) that is received on at least one of the plurality of ports, wherein no SAN traffic using FCoE and/or RoCEE is assigned to the first VLAN, and wherein no Ethernet traffic using TCP/IP is assigned to the second VLAN.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Daniel G. Eisenhauer, Vinit Jain, Nilanjan Mukherjee, Badri Ramaswamy
  • Patent number: 8942558
    Abstract: Due to demand for more network bandwidth, a need for multi-user optical network topologies has, and will continue to, increase. A method or corresponding apparatus in embodiments of the present invention provide for an availability determination tool for determining and displaying wavelength and subrate availabilities within a network. Benefits of embodiments of a tool include allowing a user to identify the availability and capacity of any wavelength on any network, via an interactive graphical user interface, such as by using three-dimensional representations. In one embodiment, the disclosed availability determination tool allows users to locate and view any combination of available wavelengths between nodes in an optical network topology, and generate graphical and tabular reports of the availability in order to maintain an efficient and organized method or apparatus for determining and controlling wavelengths in a network.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: January 27, 2015
    Assignee: Tellabs Operations, Inc.
    Inventors: David W. Jenkins, Ramasubramanian Anand, Hector Ayala, Dion Kwun Kit Leung, Kenneth M. Fisher
  • Publication number: 20150023664
    Abstract: A communication system in which a master station device is connected to a plurality of slave station devices by an optical transmission line and a plurality of wavelengths are used to perform at least one of downstream communication and upstream communication. The master station device includes: a control unit that assigns a wavelength to be used in communication to the slave station device, and that generates a control signal for notifying the slave station device of the assigned wavelength; and an optical transmitter that transmits the control signal generated by the control unit to the slave station device. The slave station device includes an optical receiver and an optical transmitter that carry out communication with the master station device using the wavelength based on the control signal received from the master station device.
    Type: Application
    Filed: January 15, 2013
    Publication date: January 22, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hiroaki Mukai, Koshi Sugimura
  • Patent number: 8938167
    Abstract: An apparatus and method for managing a dynamic bandwidth allocation to support a low-power mode, in a passive optical network (PON) are provided. The apparatus may include a power saving mode managing unit to manage a power saving mode of at least one optical network unit (ONU), a bandwidth allocation parameter storage unit to store a bandwidth allocation parameter used for a power saving mode, and to maintain the stored bandwidth allocation parameter, and a dynamic bandwidth allocating unit to provide bandwidth allocation information to the at least one ONU, when the stored bandwidth allocation parameter is received.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: January 20, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hark Yoo, Young Suk Lee, Sung Chang Kim, Geun Yong Kim, Mun Seob Lee, Dong Soo Lee, Young Sun Kim
  • Patent number: 8934771
    Abstract: An optical network has an optical line termination coupled to a backbone network, in particular to an optical long haul network and a local exchange coupled to an optical access network. The local exchange provides an optical connection between an optical network unit of a tree topology and the optical line termination, which is part of a ring topology. There is also described a method for processing data in such an optical network.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: January 13, 2015
    Assignee: Xieon Networks S.a.r.l.
    Inventor: Sylvia Smolorz
  • Patent number: 8934772
    Abstract: A method for upstream bandwidth allocation in a passive optical network is provided by the disclosure. The method includes the following steps: an Optical Line Terminal (OLT) allocates an upstream bandwidth for an Optical Network Unit (ONU) through an upstream bandwidth mapping (US BWmap) domain, wherein the total length B of payloads transmitted by consecutive Transmission Containers (T-CONTs) allocated for the ONU is: the product of the positive integer n and the data byte length L contained in a code word when the ONU uses Forward Error Correction (FEC) encoding, minus the byte length R of the contents protected by FEC, except the payloads, in an upstream burst slot transmitted by the ONU, i.e. B=L×n?R bytes (401); and the ONU encapsulates the upstream data according to the size of the T-CONT total bandwidth allocated by the OLT and transmits it to the OLT (402). A system for upstream bandwidth allocation in a passive optical network is also provided by the disclosure.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: January 13, 2015
    Assignee: ZTE Corporation
    Inventors: Weiliang Zhang, Dan Geng
  • Publication number: 20150010306
    Abstract: The invention relates to a method and apparatus for synchronizing to upstream bursts of frames when a delimiter pattern normally used for the synchronization is a-priory unknown. The method includes identifying in a specific received signaling burst a sequence of pre-defined fixed bits, determining the position and bit pattern of the identified delimiter based on the found position of the fixed bits in the signaling burst, and using the found delimiter pattern to synchronize to following bursts in a burst stream.
    Type: Application
    Filed: June 30, 2014
    Publication date: January 8, 2015
    Inventor: Dominik PRAUSE
  • Publication number: 20140376914
    Abstract: The disclosure provides a practical system and methods for implementing an adaptive free-space optical network with a high-connectivity, dynamic mesh topology. The network can have operational characteristics similar to those of RF mobile ad-hock networks. Each node has one or more optical terminals that may utilize space-time division multiplexing, which entails rapid spatial hopping of optical beams to provide a high dynamic node degree without incurring high cost or high size, weight, and power requirements. As a consequence the network rapidly sequences through a series of topologies, during each of which connected nodes communicate. Each optical terminal may include a plurality of dedicated acquisition and tracking apertures which can be used to increase the speed at which traffic links can be switched between nodes and change the network topology. An RF overlay network may be provided to act as a control plane and be used to provide node discovery and adaptive route planning for the optical network.
    Type: Application
    Filed: November 1, 2013
    Publication date: December 25, 2014
    Applicant: Raytheon Company
    Inventor: William J. Miniscalco