Including Subscribers Patents (Class 398/71)
  • Patent number: 8687963
    Abstract: A method for optical network termination (ONT) configuration is provided. The method includes: obtaining, by an optical line terminal (OLT), service types supported by an ONT and management methods available for each of the service types; and negotiating, by the OLT, with the ONT according to the management methods available for each of the service types, so as to determine a management method to be adopted for each of the service types, and configuring the ONT according to the determined management method.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: April 1, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wei Lin, Sulin Yang
  • Patent number: 8682164
    Abstract: An optical wavelength division node includes an optical splitter, a plurality of optical circulators, and a colorless light source module. The optical splitter receives and splits a downstream signal light source into a first-path and a second-path signal light source. The optical circulator in a first-order position receives and transmits the first-path signal light source to an optical network unit in a first-order position, and receives a return signal and passes it to a next optical circulator, and finally the optical circulator in a last-order position receives the return signal and transmits it. The colorless light source module receives the second-path signal light source and the return signal transmitted by the optical circulator in a last-order position, and uses the second-path signal light source to modulate the return signal to generate an upstream signal light source to be transmitted to the optical line terminal by the optical splitter.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: March 25, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Po-Lung Tien, Maria C. Yuang, Hsing-Yu Chen, Jyehong Chen
  • Patent number: 8670667
    Abstract: The present disclosure generally pertains to an arrayed media converter (AMC) that has an array of Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) Optical Network Units (ONUs) for terminating an optical channel in the feeder or distribution portion of a telecommunication network. The ONU converts an optical signal from the optical channel into at least one electrical signal for transmission to a customer premises. Thus, the AMC serves as an interface between at least one WDM-PON link and at least one conductive connection, such as a twisted pair. In one exemplary embodiment, the AMC comprises a sealed housing that is environmentally hardened to protect the AMC from environmental conditions, including changes in weather. Such an AMC may be used to provide a robust, cost effective Fiber To The Curb (FTTC) solution, but the AMC may be used at other points within the network, if desired.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 11, 2014
    Assignee: ADTRAN, Inc.
    Inventors: Leif J. Sandstrom, Kevin W. Schneider
  • Publication number: 20140064731
    Abstract: Fiber optic terminals, systems, and methods for providing differentiated network services to subscribers of a fiber optic network are disclosed. In certain embodiments, fiber optic terminals and methods are disclosed for providing more than one network service to subscribers supported by the same fiber optic terminal. In one embodiment, a fiber optic terminal is provided comprising a first optical path connected to a first network-side optical fiber providing a first network service to a first subscriber-side optical fiber. The fiber optic terminal also comprises a second optical path connected to a second network-side optical fiber providing a second network service differentiated from the first network service to a second subscriber-side optical fiber. In this manner, differentiated network services can be provided to subscribers supported by the fiber optic terminal by configuring connections of the subscribers to either the first optical path or second optical path in the fiber optic terminal.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Mark E. Conner, Kenneth F. Dunn, JR.
  • Patent number: 8665888
    Abstract: In the field of communications, a method and a system for packet transmission in an optical communication system, and an Optical Line Terminal (OLT) are provided. The method includes: receiving, from a port, a first uplink packet from an Optical Network Unit (ONU), where the first uplink packet includes a Logical Link Identifier (ID); determining a first ID corresponding to the first uplink packet, where the first ID includes an ONU ID or a Port ID; acquiring a Multiprotocol Label Switching (MPLS) tunnel label according to the Logical Link ID and the first ID; and transmitting a second uplink packet on an MPLS tunnel corresponding to the MPLS tunnel label, where the second uplink packet includes data in the first uplink packet and the MPLS tunnel label. The system includes an ONU and an OLT.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 4, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hongyu Li, Ruobin Zheng
  • Patent number: 8655174
    Abstract: A wavelength division multiplexer is provided by the present invention, which implements the wavelength division multiplexing and de-multiplexing of the optical signals in the basic and upgrade bands by reasonably arranging the filters and selecting the spectral properties of the filters, so that the existing time division multiplexing passive optical network (TDM-PON) can transmit the next generation passive optical network (NG-PON) simultaneously and the existing TDM-PON can be smoothly upgraded to the NG-PON, meanwhile, it provides the deployed TDM-PON with the subsequent network compatibility. The wavelength division multiplexer provided in the present invention can meet the high isolation requirement of the optical signals in working band with low cost, and takes both the isolation requirement and the optical network insertion loss requirement into account, thus it has high reliability, is easy to use and for system upgrade.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: February 18, 2014
    Assignee: ZTE Corporation
    Inventors: Songlin Zhu, Dan Geng, Jie Su
  • Patent number: 8649682
    Abstract: A distribution node of a passive optical network (PON) comprises a first port for receiving a first optical continuous envelope modulated downstream data signal at a first wavelength (?C) from a first optical line termination unit (OLT1) and a second port for receiving a second optical continuous envelope modulated downstream data signal at a second wavelength (?L) from a second optical line termination unit (OLT2). A first converter (FBG-1) performs continuous envelope modulation-to-intensity modulation conversion of the first optical downstream data signal and forwards the converted first optical downstream data signal (?C) to the first group of optical network units (ONU1 . . . N). A second converter (FBG-2) performs continuous envelope modulation-to-intensity modulation conversion of the second optical downstream data signal and forwards the converted second optical downstream data signal (?L) to the second group of optical network units (ONUN+1 . . . 2N).
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: February 11, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Marco Presi, Fabio Cavaliere, Ernesto Ciaramella
  • Patent number: 8649679
    Abstract: A computerized system and method for managing a passive optical network (PON) is disclosed. The system includes a detection and analysis module adapted for receiving uploaded measurement data from an optical line terminal (OLT) and at least one optical network terminal (ONT), and at least one of technical tools data, service failure data, and outside plant data. The detection and analysis module is adapted for determining a source of failure or potential failure in the PON by correlating the uploaded measurement data and the at least one of technical tools data and service failure data with information stored in a memory medium for the OLT and each ONT.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: February 11, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Kapil Shrikhande, Kent George McCammon, Kevin Xiangkai Meng, Raghvendra Savoor
  • Patent number: 8644708
    Abstract: An apparatus comprising a first optical transmitter configured to couple to a second optical transmitter, a first optical receiver, and a seed light source, wherein the first optical transmitter and the first optical receiver are part of a first passive optical network (PON) and the second optical transmitter and a second optical receiver are part of a second PON, and wherein at least one of the first optical transmitter and the second optical transmitter is an injection locked laser transmitter. Also disclosed is a method comprising feeding a seed light to a plurality of injection locked laser transmitters in a plurality of PONs using only one broadband light source (BLS), wherein each PON comprises an optical line terminal (OLT) transmitter and a plurality of optical network units (ONUs) transmitters.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: February 4, 2014
    Assignee: Futurewei Technologies
    Inventor: Ning Cheng
  • Patent number: 8644707
    Abstract: The invention relates to a bidirectional optical amplifier array (VA) which is preferably used in a passive optical network (PON) system, is disposed between a first line termination (OLT) and a second line termination (ONU), and is penetrated by an optical downstream signal (OSD) in one direction and an optical upstream signal (OSD) in the opposite direction. Said optical amplifier array is composed of a first part with two branching and combining units (D1 and D2), a unidirectional optical amplifier (E1), and a transponder (T) in which the optical downstream signals and upstream signals (OSU and OSD) are separately amplified. The two signals (OSU and OSD) that run in opposite directions are amplified in a bidirectional amplifier (E2) in a second part. A constant gain is maintained in the bidirectional optical amplifier (E2) by means of the continuous downstream signal (OSD) such that the amplifier can be operated in stable conditions for the upstream signal (OSU) regardless of occurring bursts.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: February 4, 2014
    Assignee: Nokia Siemens Networks GmbH & Co. KG
    Inventors: Stefan Gianordoli, Lutz Rapp, Michael Rasztovits-Wiech, Andreas Stadler
  • Patent number: 8634719
    Abstract: Systems and methods for enabling different network nodes of a network access system to share a backhaul communication link are disclosed. In one embodiment, the method includes: connecting a first modem to a first node of the network access system; connecting a second modem to a second node of the network access system; connecting the first modem to a first port of a splitter filter; connecting the second modem to a second port of the splitter filter; and connecting a backhaul communication link to a third port of the splitter filter, which is configured to multiplex signals transmitted by the modems onto the backhaul communication link, wherein the frequency spectrum of the signal transmitted by the first modem does not overlap substantially with the frequency spectrum of the signal transmitted by the second modem.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 21, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Per-Erik Eriksson
  • Patent number: 8630541
    Abstract: Provided is a wavelength division multiplexing transmission apparatus that enables operation control of transponders each carrying an FBTL optical module from the monitoring control unit by the same operation control as one for the transponders each carrying an NB optical module with four wavelengths assigned. For that purpose, the wavelength division multiplexing transmission apparatus includes the transponders for converting optical signals from wideband wavelengths to narrowband wavelengths, and a monitoring control unit for controlling the transponders by instructions from an operator.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 14, 2014
    Assignee: Fujitsu Telecom Networks Limited
    Inventor: Wataru Kawasaki
  • Patent number: 8630540
    Abstract: A translation agent adapts DOCSIS information, primarily QoS information, for transmission over a PON. The agent places into an IP address field of a DHCP message the MAC address of an ONU associated with a CPE device attempting to register with a CMTS. The translation agent intercepts DHCP reply messages from the DHCP server using the MAC address of the ONU. The translation agent extracts information, including an IP address of the client CPE assigned by the DHCP server. The agent downloads a configuration file for the CPE device using the configuration filename and configuration file server contained in a DHCP reply message. Information contained in the configuration file is converted from content in a format used by DOCSIS, to content in a format used by PON devices. The translated content includes QoS parameters, functions related to which are controlled at the ONU by an OLT coupled to the CMTS.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: January 14, 2014
    Assignee: ARRIS Enterprises, Inc.
    Inventors: Erich Arnold, Jeffrey Howe, Thomas Cloonan, Michael Emmendorfer
  • Patent number: 8630544
    Abstract: In a passive optical network, an upstream transmission rate from an ONT to an OLT can be optimized by matching a transmission scheme for a channel to the upstream transmission characteristics of the channel. An FEC coding can be made channel dependent so that channels with low error rates can use minimal protection, and therefore minimal overhead, while channels with high input bit error rates can use the level of FEC coding required to produce a desired output bit error rate.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: January 14, 2014
    Assignee: Alcatel Lucent
    Inventor: Adriaan J. de Lind van Wijngaarden
  • Patent number: 8625991
    Abstract: A laser system includes an array of lasers that emit light at a number of different, fixed wavelengths. A group of optical transport systems connect to the laser system. Each of the optical transport systems is configured to modulate data signals onto the light from the laser system to create optical signals and transmit the optical signals on one or more optical fibers.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: January 7, 2014
    Assignee: Juniper Networks, Inc.
    Inventor: Pradeep Sindhu
  • Patent number: 8620159
    Abstract: The invention relates to improvements in or relating to modulation in an Optical Network, and to an apparatus, a method and a communications network for modulation in an Optical Network. An apparatus is arranged to receive a modulated optical signal comprising a carrier wavelength and first data. The apparatus is arranged to substantially erase the first data from the optical signal by performing an inversion operation on the modulated optical signal. The apparatus is arranged to receive second data and to modulate the carrier wavelength with the second data for onward transmission of the second data. The inversion operation comprises applying a signal comprising an inverse of the first data to at least a portion of the modulated optical signal. The signal may further comprise the second data such that the modulation of the carrier wavelength and erasure of the first data is performed in a single operation.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: December 31, 2013
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Marco Presi, Ernesto Ciaramella, Fabio Cavaliere
  • Patent number: 8615169
    Abstract: An optical line terminal performs transmission to optical network units using a light signal having a wavelength different for each of systems, allocates communication time to data, which is transmitted from the optical network units, in a time division manner for each of the systems, selects, for each of the optical network units, a system for performing data transmission, and transmits the data using a wavelength corresponding to the selected system. The optical network unit includes: ith blocking filter that removes a component other than a component in a predetermined wavelength band, which is set to correspond to an ith system, from a received light signal; and ith PON processing unit that applies termination processing to signals and transmitting the data based on an allocation result of the optical line terminal. The PON system includes n optical network units corresponding to i=1 to i=n.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: December 24, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kaori Mie, Yoshifumi Hotta, Seiji Kozaki, Hiroaki Mukai
  • Patent number: 8606100
    Abstract: A wavelength division multiplexing (WDM)-time division multiplexing (TDM) passive optical network (PON) remote terminal (RT) is provided. The wavelength division multiplexing (WDM)-time division multiplexing (TDM) passive optical network (PON) remote terminal (RT), includes: a WDM-TDM converter configured to convert a WDM downstream optical signal that is received from a central office terminal (COT) into a TDM downstream optical signal or to convert a TDM upstream optical signal that is received from an optical network terminal (ONT) into a WDM upstream optical signal; an error detector configured to detect an error; and a controller configured to, in response to an error being detected, transmit the WDM upstream optical signal to the COT via a first standby link or transmit the TDM downstream optical signal to the ONT via a second standby link.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 10, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kwang-Ok Kim, Eun-Gu Lee, Eui-Suk Jung, Sang-Soo Lee, Tae-Whan Yoo
  • Patent number: 8606109
    Abstract: A technique for forwarding downstream packets in a GPON comprising an OLT unit having a physical PON port connected to N Optical Network Termination (ONT) units by optical fibers. The physical PON port accommodates N individual virtual GEM ports terminated with the N ONT units (ONTs) which form N:1 service. The technique comprises assigning in the physical port of the OLT unit a virtual GEM port being a shared broadcast GEM port terminated with all the N ONTs of the N:1 service. Those downstream packets applied to the physical PON port, which would otherwise be flooded—such as broadcast packets or packets having unknown destination address—will now be forwarded only via the shared broadcast GEM port.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: December 10, 2013
    Assignee: ECI Telecom Ltd
    Inventor: Ido Ouzieli
  • Patent number: 8600234
    Abstract: One embodiment of the present invention provides an optical line terminal (OLT) in an Ethernet passive optical network (EPON). The OLT includes a number of bi-direction optical transceivers. At least one bi-direction optical transceiver is coupled to an optical network unit (ONU) group that includes a number of ONUs. The OLT further includes a first downstream media access control (MAC) interface configured to provide a first downstream control signal and a splitter configured to split the first downstream control signal to a number of sub-signals. At least one sub-signal is configured to control downstream transmission of a corresponding bi-direction optical transceiver to a corresponding ONU-group.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: December 3, 2013
    Assignee: Broadcom Corporation
    Inventors: Ryan E. Hirth, Edward W. Boyd
  • Patent number: 8600231
    Abstract: An optical access network (5) comprises optical network units (10) connected to a node (40). A monitoring unit (35) determines information indicative of energy consumption at the optical network unit (10) over a period of time. An optical network unit (10) can operate in operating states/modes which differ in their energy consumption. Monitoring unit (35) can determine the information by determining a time that an optical network unit spends in the different operating states/modes. Monitoring unit (35) can use a state machine (31) at the node (40) which represents the optical network unit (10). An optical network unit (10) can locally record time spent in states/modes and forward this to the monitoring unit (35). An optical network unit (10) can locally monitor energy consumption and forward this to the monitoring unit (35). An operational parameters of the access network (5) can be modified based on the information determined by the monitoring unit (35).
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: December 3, 2013
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Bjorn Skubic, David Hood
  • Patent number: 8582966
    Abstract: Systems and methods for performing protection switching in a passive optical network are provided. When a fiber cut is detected, control and management plane applications are not immediately informed. A rapid re-registration procedure is instigated upon detection of a fiber cut event. This allows multiple optical network units to re-register quickly without restarting control and management applications.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: November 12, 2013
    Assignee: Cortina Systems, Inc.
    Inventor: Charles Chen
  • Patent number: 8571058
    Abstract: There is provided a terminal apparatus including a message monitor to gather transmission request information from each of first and second terminating apparatus, a dynamic bandwidth allocation unit to allocate each transmission band in accordance with the gathered transmission request information, determine a size and an alignment position of a time slot in accordance with the allocated transmission band, determine a transmission start time of the time slot, and allocate an extinction period so as to stop a transmission of an optical signal between a time slot of the optical signal with the second transmission rate and a time slot following the time slot of the optical signal with the second transmission rate, and a MAC controller to generate a control frame for notifying each of the first and second terminating apparatus of the transmission start time and the size of the time slot.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: October 29, 2013
    Assignee: Fujitsu Limited
    Inventors: Kyosuke Sone, George Ishikawa, Susumu Kinoshita
  • Patent number: 8571422
    Abstract: A burst transmission method and a receiver resetting method and apparatus in a Passive Optical Network (PON) are provided. A burst receiver resetting method in a PON includes: receiving a preamble sequence and synchronizing data; after synchronizing the data, continuing to receive the data, and matching a Burst Terminator (BT); and resetting a receiver after successfully matching the BT. Meanwhile, an apparatus for implementing the method and a corresponding burst data transmission method are provided. By using the burst receiver resetting method and apparatus in the PON and the corresponding burst transmission method at an Optical Network Unit (ONU) burst transmission end, a Reach Extender (RE) does not need to unpack upstream burst bandwidth allocation information carried in downstream data. Therefore, the complexity of the implementation of the RE is reduced, and the method is simple and effective.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: October 29, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jing Li, Dongning Feng, Dongyu Geng, Frank Effenberger
  • Patent number: 8565597
    Abstract: A label switching method is provided. When a Passive Optical Network (PON)-based Label Switching Path (LSP) is established, a PON logical service transmission channel is established between an Optical Line Terminal (OLT) and an Optical Network Unit (ONU). According to an identifier (ID) of the PON logical service transmission channel as a PON label, a PON-based Forwarding Information Base (FIB) table on the ONU is updated, and a PON-based Label Forwarding Information Base (LFIB) table on the OLT is updated, where the PON-based LFIB table records a forwarding relationship between an ingress port plus an ingress label and an egress port plus an egress label, and the PON-based FIB table records a forwarding relationship between the ingress port plus a destination address and the egress port plus the egress label. Therefore, the problems between network segments of different forwarding characteristics, protocol variation, inter-segment conversion, and mapping and control complexity are avoided.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: October 22, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Ruobin Zheng
  • Publication number: 20130272708
    Abstract: An ONU includes a CDR that regenerates a clock based on a signal from an OLT, an oscillator that generates an internal clock, a time stamp counter that manages a time of the ONU based on the clock in a period in which the CDR regenerates the clock and manages the time of the ONU based on the internal clock in a period in which the CDR does not regenerate the clock, an MPCP control unit that decides, when a Cyclic Sleep mode is set, a receiver-time synchronization time that is a period in which the receiver is normally operated within a sleep time, based on a difference between a time stamp value included in the signal transmitted from the OLT and a time stamp managed by the time stamp counter, and a power-saving control unit that controls the receiver to be normally operated in the receiver-time synchronization time.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 17, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Jun Mizuguchi, Fumihiko Tano
  • Patent number: 8559818
    Abstract: A system for delivering multiple passive optical network services is disclosed. The system includes a first optical transmission service comprising a common wavelength pair routed from a source to each of a plurality of subscribers. The system further includes a second optical transmission service comprising a plurality of unique wavelength pairs, where each of the unique wavelength pairs is routed from the source to a subscriber among the plurality of subscribers. The system delivers the first optical transmission service and the second optical transmission service to the subscriber on a single optical fiber.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 15, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Steven C. Zimmel, Timothy G. Badar, Trevor D. Smith
  • Patent number: 8553709
    Abstract: Signals may be communicated with A/V Bridging services between an upstream link partner and a down stream link partner, each comprising an asymmetric multi-rate Ethernet physical layer (PHY). High bandwidth A/V signals may be transmitted from the upstream link partner and low bandwidth signals may be transmitted from the downstream link partner. One or more of a time stamp, a traffic class and/or a destination address may be utilized in generating PDUs as well as data rate request and a resource reservation messages via the asymmetric Ethernet PHY. The receiving link partner may register for deliver of the PDUs. An aggregate communication rate may be distributed evenly or unevenly among one or more links for transmission and aggregated upon reception via asymmetric multi-rate Ethernet PHY operations. Compressed, uncompressed, encrypted and/or unencrypted signals may be handled. Signal processing may comprise echo cancellation, cross talk cancellation, forward error checking and equalization.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: October 8, 2013
    Assignee: Broadcom Corporation
    Inventors: Wael William Diab, Yong Kim, Scott Powell
  • Patent number: 8543003
    Abstract: Cable communication systems and methods to provide voice and/or data services to subscriber premises in one or more neighborhood nodes via an ingress-mitigated cable plant that conveys upstream information over an upstream path bandwidth. One or more upstream radio frequency (RF) signals have a carrier frequency of between approximately 5 MHz and 19.6 MHz and are modulated using quadrature amplitude modulation (QAM) with voice and/or data information constituting at least some of the upstream information. An example RF signal defines a channel having an average channel power, and a highest value for an average noise power between 5 MHz and 19.6 MHz in the upstream path bandwidth of a given neighborhood node, as measured over at least a 24 hour period, is at least 25 decibels (dB) below the average channel power and/or less than 20 decibels (dB) above a noise floor associated with the neighborhood node.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: September 24, 2013
    Assignee: Certusview Technologies, LLC
    Inventors: Steven Nielsen, Ronald Totten, Travis Halky
  • Patent number: 8543008
    Abstract: A system for powering a network element of a fiber optic wide area network is disclosed. When communication data is transferred between a central office (CO) and a subscriber terminal using a network element to convert optical to electrical (O-E) and electrical to optical (E-O) signals between a fiber from the central office and twisted wire pair, coaxial cable or Ethernet cable transmission lines from the subscriber terminal, techniques related to local powering of a network element or drop site by the subscriber terminal or subscriber premise remote powering device are provided. Certain advantages and/or benefits are achieved using the present invention, such as freedom from any requirement for additional meter installations or meter connection charges and does not require a separate power network.
    Type: Grant
    Filed: February 28, 2010
    Date of Patent: September 24, 2013
    Inventors: Alexander I Soto, Walter G Soto
  • Patent number: 8532491
    Abstract: A passive optical network system such that the power consumption can be reduced as much as possible according to the end-user traffic. An OLT uses the DBA function thereof and sequentially uses frequencies in ascending order of transmission rate in order to sequentially allocate bands to ONUs in ascending order of the requested bandwidth. At this time, a frequency to be allocated is selected so that the bandwidth allocated to each ONU is narrower than a maximum bandwidth through which transmission using the allocated wavelength is enabled. An OLT uses a grant area to specify the transmission timing of the secondary station and to inform the specified transmission timing to the secondary station. In addition, an area is set for storing information used to inform the secondary station of a new frequency to be used.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: September 10, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Norihiro Sakamoto, Tohru Kazawa, Yusuke Yajima, Akihiko Tsuchiya
  • Patent number: 8521025
    Abstract: Technologies are generally described for network traffic scheduling in a wavelength division multiplexing (WDM) passive optical network (PON). Dynamic wavelength assignment and time allocation in hybrid WDM/TDM PONs with tunable lasers as optical light generators is accomplished by mapping the scheduling into a multi-processor scheduling problem with wavelength channels as machines and ONU requests as jobs. Wavelengths may be considered as parallel identical machines. Taking laser tuning time into consideration preemptive and non-preemptive scheduling with the objective of minimizing the latest job completion time is computed employing a number of heuristic algorithms. The algorithms compute two extreme cases of zero and infinity laser tuning time, respectively. Using the results from these two extreme cases, the heuristic scheduling schemes for the case of arbitrary laser tuning time yield close average latest job completion times for both schedule types.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: August 27, 2013
    Assignee: New Jersey Institute of Technology
    Inventors: Nirwan Ansari, Jingjing Zhang
  • Patent number: 8521033
    Abstract: In a passive optical network, power consumption of the ONU can be reduced by communicating a transmission schedule from the OLT to the ONU that indicates time slots in which the ONU is scheduled to receive payload transmissions from the OLT. Components of the ONU that would normally operate continuously, including processing payloads addressed to other ONUs, are placed in a reduced power state outside of the ONU's allocated time slots.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: August 27, 2013
    Assignee: Alcatel Lucent
    Inventor: Dusan Suvakovic
  • Patent number: 8521024
    Abstract: An optical network includes a first optical network for carrying a plurality of optical channels in an optical fiber, wherein each of the plurality of optical channels comprise a discrete wavelength in a first range of wavelengths. A second optical network coupled to the first optical network by a first tunable filter. A first customer location coupled to the second optical network by a second tunable filter. The first tunable filter is configured to pass a first set of optical channels from the first optical network to the second optical network. The first set of optical channels includes a subset of the plurality optical channels within a second range of wavelengths less than the first range of wavelengths. The second tunable filter is configured to pass a particular channel within the first set of optical channels from the second optical network to the first customer location.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: August 27, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Glenn A. Wellbrock, Tiejun J. Xia
  • Patent number: 8515281
    Abstract: Methods and systems for providing flexible node segmentation are provided. For example, the system can be configured to delay node segmentation in the headend/hub even though the fiber node has been segmented. When a desire for node segmentation in the headend/hub arises, the receiver can be efficiently upgraded through the use of a control signal to provide a receiver output port to each sub-service area.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 20, 2013
    Assignee: Arris Enterprises, Inc.
    Inventor: Zoran Maricevic
  • Patent number: 8509619
    Abstract: A communication control method performing Discovery processing, which is a procedure at an OLT to detect an ONU newly connected, in a PON system, the method includes: a transmission-permission-signal transmitting step of transmitting, by the OLT, a transmission permission signal for discovery, which includes an individual number of an ONU that is permitted to respond and mask information for designating a match-detection target bit for the individual number; and a registration-request-signal transmitting step of comparing, by an ONU, which is not registered in the OLT, a match-detection target bit for the individual number designated in the mask information with an individual number of the ONU based on a received transmission permission signal, and when the target bit and the individual number match each other, transmitting a registration request signal to the OLT.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: August 13, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroaki Mukai, Takashi Kikuzawa, Tetsuya Yokotani
  • Patent number: 8494366
    Abstract: Provided are a wavelength division multiplexing-passive optical network (WDM-PON) in which a reflective semiconductor optical amplifier (RSOA) is used as each optical transmitter of an optical line termination (OLT) and an optical network unit (ONU) and additional spectrum-sliced light is injected into RSOAs of each of the OLT and the ONU, and a WDM-PON that is combined with time division multiple access (TDMA) technology, by which the number of included ONUs increases and conventional TDMA ONUs can be used.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: July 23, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Byoung Whi Kim
  • Patent number: 8494364
    Abstract: One embodiment provides a system for controlling flow rate in an EPON. The system includes an OLT, an ONUs coupled to the OLT via a passive optical splitter, a switch coupled to a port located on the ONU, and a flow-control mechanism. The ONU includes one or more queues corresponding to one or more classes of Services, and one or more ports. The switch includes a plurality of UNI ports, and the switch is configured to switch one or more upstream traffic flows belonging to the one or more classes of services from the plurality of UNI ports. The flow-control mechanism is configured to set a flow rate of an upstream traffic flow of certain class of service originated from a UNI port. The flow-control mechanism sets the flow rate based on status of an ONU queue corresponding to the class of service of the upstream traffic flow.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: July 23, 2013
    Assignee: Broadcom Corporation
    Inventors: Glen Kramer, Joshua L. Feinstein, Ryan E. Hirth
  • Patent number: 8488935
    Abstract: It is determined that service is to be disconnected for at least a first subscriber of a video content network employing at least one fiber optic cable. The service to the at least first subscriber is provided from a cross-connect cabinet, over the at least one fiber optic cable, to a premises of the at least first subscriber. Sufficient macro-bending loss is induced in the at least one fiber optic cable so as to cause a signal-to-noise ratio at the premises to degrade such that the service is disconnected. The macro-bending loss is induced in a portion of the at least one fiber optic cable which services only the first subscriber. The macro-bending loss can be induced, for example, by winding about a single mandrel, two mandrels in a figure eight pattern, in a tortuous groove in a tray, and so on.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: July 16, 2013
    Assignee: Time Warner Cable Enterprises LLC
    Inventor: Paul D. Brooks
  • Patent number: 8488966
    Abstract: An optical access network (OAN) system is provided. In the system, a remote radio unit (RRU) receives and sends a wireless signal and implement conversion between the wireless signal and a first frequency signal; an optical network device receives and sends the wireless signal, and implement conversion between the wireless signal and the first frequency signal and conversion between the first frequency signal and a fiber transmission signal; an optical distribution network (ODN) connected to the optical network device transmits the fiber transmission signal; an optical line terminal (OLT) device receives and sends the fiber transmission signal, and implements conversion between the fiber transmission signal and a second frequency signal, conversion between the second frequency signal and a base band signal, and conversion between the base band signal and a signal of another standard protocol.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 16, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Ruobin Zheng
  • Patent number: 8483566
    Abstract: A system for transporting a plurality of digital signals includes a head-end unit for routing each digital signal to a particular modem, according to address information in the signal. At its respective modem, each digital signal is mixed for further transmission on a unique, modem-specific, radio frequency (fn) that is predisposed for a sub-octave transmission. A first converter then “stacks” a plurality of the different digital signals onto a common wavelength (?) for transmission as an optical signal over an optical fiber. At the receive end of the optical fiber, a second converter “de-stacks” the plurality of digital signals, and segregates them according to their respective unique radio frequency (fn). A distribution unit then directs each unique radio frequency signal to an addressed node for further transmission over a secondary network.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: July 9, 2013
    Assignee: Titan Photonics, Inc.
    Inventor: Chen-Kuo Sun
  • Patent number: 8483563
    Abstract: An apparatus comprising an optical line terminal (OLT) configured to couple to a plurality of optical network units (ONUs) and transmit a plurality of downstream frames to the ONUs, wherein each of the downstream frames comprises a plurality of forward error correction (FEC) codewords and a plurality of additional non-FEC encoded bytes that comprise synchronization information that is protected by Header Error Control (HEC) code. An apparatus comprising a processing unit configured to arrange control data, user data, or both into a plurality of FEC codewords in a downstream frame and arrange a physical synchronization sequence (PSync), a superframe structure, and a Passive Optical Network-identifier (PON-ID) structure in a plurality of additional non-FEC encoded bytes in the downstream frame, and a transmission unit configured to transmit the FEC codewords and the additional non-FEC encoded bytes in the downstream frame within a 125 microsecond window.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: July 9, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventors: Yuanqiu Luo, Frank J. Effenberger
  • Patent number: 8483562
    Abstract: An approach is provided for integrating one or more fiber switches in a passive optical network. A platform generates a command signal to control a splitter hub of a passive optical network, the splitter hub being configured to communicate with a plurality of optical network terminals that respectively serve a plurality of customer premises. The splitter hub includes a fiber switch configured to provide switching between one of a plurality of input ports and one of a plurality of output ports of the splitter hub.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: July 9, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Glenn A. Wellbrock, Tiejun J. Xia
  • Patent number: 8478125
    Abstract: An optical PON network comprises a central office which generates N DPSK modulated optical signals, where N is an integer greater than 1, an optical coupling which connects the N signals to at least one optical fiber, a passive distribution node located remotely from the central office which has at least one input port that is coupled to the fiber and a plurality of output ports, the node being arranged to transmit a first wavelength of the N signals to at least one of its output ports, and at least one optical network unit connected through a respective optical fiber to the first output port of the passive distribution node. The passive distribution node comprises an arrayed waveguide grating which provides a passive optical connection between its input port and the first output port and which for that connection functions as a bandpass filter having a profile and bandwidth selected such that the DPSK optical signal passed to the input node is converted to an intensity modulated signal at the output port.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: July 2, 2013
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Nicola Calabretta, Marco Presi, Giampiero Contestabile, Pierpaolo Ghiggino, Ernesto Ciaramella, Fabio Cavaliere, Roberto Proietti
  • Patent number: 8457495
    Abstract: It is necessary to completely remove overlapping of signals between plural PONs in order to make the PONs coexist. Accordingly, it is required to share or intensively manage bandwidth use conditions over an optical fiber that serves as a common band between plural systems. Therefore, transmission clocks should be synchronized with high accuracy between plural systems. A reference clock is provided from an external device or a representative OLT to the entire systems to perform clock synchronization between plural systems, so that the overall systems are synchronized by synchronizing each OLT with the reference clock. A hierarchical management method is selected that manages ONUs under the control of each OLT by managing band use information arranged for each OLT with respect to an external device or a representative OLT for sharing of bandwidth use conditions between plural systems.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: June 4, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Toshiki Sugawara, Hiroki Ikeda
  • Patent number: 8451984
    Abstract: A system and method for providing a call-for-help capability is provided by the invention. The system comprises a central location having a dedicated telephone line having a specified caller identification known to a speakerphone system located in the general location of a person who uses the system for emergency signaling. The person is provided with the speakerphone system and a pendent for generating an emergency signal containing the person's identifier. When received at the central location, a telephone number of the speakerphone system corresponding to the identifier is determined and a telephone call is made on a telephone channel having the specified caller identification. When any call is received by the speakerphone system, its caller identification is examined to determine if the caller identification of the telephone call is the same as the specified caller identification.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: May 28, 2013
    Inventor: Ethan Allen Walker, III
  • Patent number: 8452178
    Abstract: The present disclosure discloses a passive optical network (PON) user terminal comprising a passive optical network interface unit (PONIU) having access to a PON system, a service data distribution unit (SDDU) connected to the PONIU for distributing service data, a plurality of service processing units (SPUs) for receiving and accordingly processing the service data distributed by the SDDU, a power source for providing power to the above units, and a power supply control unit (PSCU) for controlling the activating/deactivating of the energy-saving power supply to the SPUs, the SDDU, and the PONIU. The present disclosure further provides a method for controlling the PON power supply and for reporting the power supply state. The present disclosure allows control of the energy usage of the PON user terminal to save power when a service in the PON user terminal is not used or when the user terminal uses a backup power source to supply power.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: May 28, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Yinghu Dong
  • Patent number: 8442400
    Abstract: The present invention discloses a wavelength-division multiplexing passive optical network (WDM-PON) capable of high-bandwidth transmission for optical signals by using modulation format having high spectral efficiency. The WDM-PON according to the present invention provides a larger capacity and higher bandwidth transmission economically (at lower costs) by using a modulation format where spectral efficiency (a transmission bit number per a unit band width) is high, while using a low noise part of a light source.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: May 14, 2013
    Inventors: Chang-Hee Lee, Ki-Man Choi, Sil-Gu Mun, Jung-Hyung Moon
  • Patent number: 8437635
    Abstract: A method for enabling alternating current (AC) coupling of high-speed burst data signals transmitted by an optical network unit (ONU). The method comprises generating a first data pattern to be sent to an optical transceiver through an AC coupling circuit, wherein the first data pattern is a direct current (DC) balanced pattern; generating a second data pattern to be sent to the optical transceiver through the AC coupling circuit, wherein the second data pattern is output prior to transmission of a high-speed burst data signal; and generating a third data pattern to be sent to the optical transceiver through the AC coupling circuit, wherein the third data pattern is output posterior to the transmission of the high-speed burst data signal.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: May 7, 2013
    Assignee: Broadcom Corporation
    Inventors: Amiad Dvir, Asaf Koren, David Avishai
  • Patent number: RE44498
    Abstract: There are provided fiber optic local convergence points (“LCPs”) adapted for use with multiple dwelling units (“MDUs”) that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal (“FDT”) may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: September 17, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Guy Castonguay, Terry Dean Cox, Thomas Shaw Liggett, Selena Strickland, Elli Makrides-Saravanos, Brent Michael Frazier, Daniel S. McGranahan, Raymond Glenn Jay