Including Subscribers Patents (Class 398/71)
  • Patent number: 7515830
    Abstract: An optical communication apparatus using a sub-carrier multiple access includes a laser diode for generating an optical signal with a central frequency, a temperature controller installed at a subscriber side for controlling a temperature of laser diode placed at a transmitting terminal, an optical coupler for coupling the optical signal outputted from the laser diode to an optical fiber and an optical receiver for receiving the optical signal outputted from the optical coupler. The central frequency of the optical signal outputted from the laser diode is changed in response to the change of the temperature controlled by the temperature controller.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: April 7, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-Hyun Jang, Eui-Suk Jung, Byoung-Whi Kim, Hyeong-Ho Lee
  • Patent number: 7512341
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: March 31, 2009
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Patent number: 7499651
    Abstract: In accordance with the teachings of the present invention, an upgradeable passive optical network is provided. In a particular embodiment, an upgradeable optical network includes an upstream terminal and a distribution node. The upstream terminal is operable to forward a downstream signal comprising traffic in a first wavelength, the traffic in the first wavelength transmitted by a first transmitter at the upstream terminal. The distribution node is communicatively coupled to the upstream terminal and is operable to communicate the downstream signal from the upstream terminal to a first plurality and a second plurality of downstream terminals. The distribution node comprises a primary power splitter configured to create a plurality of copies of the downstream signal for communication to the downstream terminals.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: March 3, 2009
    Assignee: Fujitsu Limited
    Inventors: Martin Bouda, Stephen A. Smith
  • Publication number: 20090052897
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Application
    Filed: October 20, 2008
    Publication date: February 26, 2009
    Applicant: HITACHI COMMUNICATION TECHNOLOGIES, LTD
    Inventors: Tohru KAZAWA, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Publication number: 20090047020
    Abstract: In a PON system, a PON-ID assigned to a connected ONU before replacement is assigned to a newly connected ONU after the replacement and, setting data before the replacement is succeeded also after the replacement. An OLT includes a PON-ID state where a management state of the PON-ID is stored, a PON-ID management table where the PON-ID and an ONU serial number of the connected ONU and setting data are correspondingly stored and, a delete ONU table where the PON-ID and an ONU serial number of a replacement object are correspondingly stored. When the OLT receives an ONU replacement instruction from an operation system, the PON-ID assigned to the ONU of the replacement object is assigned to an ONU newly connected during the ONU replacement.
    Type: Application
    Filed: October 15, 2008
    Publication date: February 19, 2009
    Applicant: HITACHI COMMUNICATION TECHNOLOGIES, LTD.
    Inventors: Toshiyuki SAITO, Takahiro Yoshida, Yasunari Shinohara, Junya Shimofusa
  • Patent number: 7493044
    Abstract: A method of transmitting data includes receiving a plurality of downstream wavelength streams from a first optical fiber, each wavelength stream corresponding to a separate downstream data transmission, passing all downstream streams but at least one downstream targeted-wavelength stream to a second optical fiber, and routing the downstream targeted-wavelength stream to a subscriber on a third optical fiber, wherein the first optical fiber, the second optical fiber, and the third optical fiber are connected to a single device, and wherein the third optical fiber is a drop cable.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: February 17, 2009
    Assignee: Corning Cable Systems, LLC
    Inventors: David R. Kozischek, Karl T. Messmer
  • Patent number: 7493043
    Abstract: In a PON system, a PON-ID assigned to a connected ONU before replacement is assigned to a newly connected ONU after the replacement and, setting data before the replacement is succeeded also after the replacement. An OLT includes a PON-ID state where a management state of the PON-ID is stored, a PON-ID management table where the PON-ID and an ONU serial number of the connected ONU and setting data are correspondingly stored and, a delete ONU table where the PON-ID and an ONU serial number of a replacement object are correspondingly stored. When the OLT receives an ONU replacement instruction from an operation system, the PON-ID assigned to the ONU of the replacement object is assigned to an ONU newly connected during the ONU replacement.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: February 17, 2009
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Toshiyuki Saito, Takahiro Yoshida, Yasunari Shinohara, Junya Shimofusa
  • Publication number: 20090041461
    Abstract: In a PON system, a PON-ID assigned to a connected ONU before replacement is assigned to a newly connected ONU after the replacement and, setting data before the replacement is succeeded also after the replacement. An OLT includes a PON-ID state where a management state of the PON-ID is stored, a PON-ID management table where the PON-ID and an ONU serial number of the connected ONU and setting data are correspondingly stored and, a delete ONU table where the PON-ID and an ONU serial number of a replacement object are correspondingly stored. When the OLT receives an ONU replacement instruction from an operation system, the PON-ID assigned to the ONU of the replacement object is assigned to an ONU newly connected during the ONU replacement.
    Type: Application
    Filed: October 15, 2008
    Publication date: February 12, 2009
    Applicant: HITACHI COMMUNICATION TECHNOLOGIES, LTD.
    Inventors: Toshiyuki SAITO, Takahiro Yoshida, Yasunari Shinohara, Junya Shimofusa
  • Patent number: 7489869
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: February 10, 2009
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Patent number: 7486890
    Abstract: Provided are an optical transmission apparatus and method using a light source for wavelength division multiplexing (WDM) optical communication that employs a Fabry-Perot laser diode (F-P LD) whose output wavelength is locked by an externally injected incoherent light, a multifiber, and a waveguide grating router.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: February 3, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun Jae Lee, Kwang Joon Kim
  • Patent number: 7477845
    Abstract: A system is provided to reduce data burst overhead in an Ethernet passive optical network. During operation, the OLT transmits grant messages to a number of ONUs, wherein a grant message assigns a start time and a duration of a transmission timeslot in which an GNU may transmit an upstream data burst. In response to the grant messages, the OLT receives a number of upstream data bursts, wherein the time gap between two consecutive upstream data bursts is less than the summation of a default laser turn-on time, a default laser turn-off time, an AGC period, and a CDR period.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: January 13, 2009
    Assignee: Teknovus, Inc.
    Inventor: Glen Kramer
  • Patent number: 7474852
    Abstract: A system for communication of signals between remote devices and monitoring and control devices via fiber. The system in accordance with one aspect of the invention includes a plurality of remote interface units each coupled to a corresponding one of the remote devices, a base unit coupled to one or more monitoring devices and one or more control devices, and a central hub coupled between the base unit and the plurality of remote interface units. The central hub is coupled to the base unit by a first fiber optic link, and is coupled to the remote interface units by additional fiber optic links.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: January 6, 2009
    Assignee: Multidyne Electronics Inc.
    Inventors: Vincent Jachetta, Brian C. Moore, James G. Jachetta, Francis P. Jachetta
  • Patent number: 7471900
    Abstract: Provided are a passive optical network system and a method of transmitting a broadcasting signal in the same system. A central office (CO) generates a broadcasting signal and a downstream optical data signal using a coding method guaranteeing a run-length, multiplexes the downstream optical data signal and the broadcasting signal, and transmits the multiplexed downstream optical data signal and broadcasting signal. A remote node (RN) transmits the multiplexed downstream optical data signal and broadcasting signal received from the CO to one or more optical network units (ONUs). A gain medium, which is located on a transmission line between the CO and the RN, amplifies the broadcasting signal using the downstream optical data signal as a pump light source. Accordingly, a high gain can be obtained by amplifying the broadcasting signal using the gain medium located on the transmission line without a separate pump light source.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 30, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon Seop Lee, Byung Tak Lee, Hyun Seo Kang, Jai Sang Koh
  • Publication number: 20080317469
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Application
    Filed: August 4, 2008
    Publication date: December 25, 2008
    Applicant: Hitachi Communication Technologies, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Patent number: 7469102
    Abstract: Various methods, systems, and apparatuses is described in which a passive-opticalnetwork includes a first multiplexer/demultiplexer, a second multiplexer/demultiplexer, a wavelength tracking component, and a transmission wavelength controller. The first multiplexer/demultiplexer is located in a first location. The second multiplexer/demultiplexer is located in a second location remote from the first location. The wavelength tracking component determines the difference between the transmission band of wavelengths of the first multiplexer/demultiplexer and the second multiplexer/demultiplexer to provide a control signal to match the transmission band of wavelengths of the first multiplexer/demultiplexer and the second multiplexer/demultiplexer. The transmission wavelength controller alters an operating parameter of the first multiplexer/demultiplexer based on the control signal to control the transmission band of wavelengths of the first multiplexer/demultiplexer.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: December 23, 2008
    Assignee: Novera Optics, Inc.
    Inventors: Chang-Hee Lee, Kwang-Uk Chu
  • Patent number: 7466919
    Abstract: A system and method for simultaneous delivery of a plurality of independent blocks of 500 MHz digital broadcast television services, stacking a plurality of RF blocks on a plurality of spectrally sliced WDM optical bands.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: December 16, 2008
    Assignee: AT&T Corp.
    Inventors: Martin Birk, Patrick P. Iannone, Kenneth C. Reichmann, Nicholas J. Frigo, Cedric F. Lam
  • Patent number: 7457542
    Abstract: An optical access network system having a function of correcting upstream signal waveform distortions occurring in the PON section, wherein a central office side apparatus comprises a main controller to notify each subscriber connection apparatus of a transmission grant period, an equalizer of a tap gain adaptive control type to correct waveform distortions of signals received from the subscriber connection apparatuses, an equalizer controller, and a parameter table for storing, for each subscriber connection apparatus, the initial values of tap gains to be set for the equalizer. The main controller issues a switchover request for switching the equalization characteristic to the equalizer controller each time notifying a subscriber connection apparatus of a transmission grant period, and the equalizer controller retrieves the initial values of the tap gains for the subscriber connection apparatus from the parameter table in response to the switchover request, and sets these values to the equalizer.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: November 25, 2008
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Kenro Sekine, Nobuaki Tajimi
  • Patent number: 7457541
    Abstract: A system for integrating broadcast and communication technologies includes an optical-line terminal (OLT), a optical-network unit (ONU) and a user gateway, wherein a broadcast signal is processed on the basis of time division multiplexing (TDM) such that the quality of a broadcast service can be ensured. The ONU separates the optical signal transmitted from the OLT into the broadcast signal and the communication signal, processes upstream information transmitted from a user, and optically transmits the broadcast signal and the communication signal selected on a user-by-user basis, on the basis of a time slot. The user gateway opto-electrically converts a time slot-based optical signal transmitted from the ONU, separates the time slot-based optical signal into individual signals, distributes the individual signals on a service-by-service basis, and optically transmits the upstream information from the user to the ONU.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: November 25, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-Ho Koh, Yun-Je Oh, Chan-Yul Kim, Seung-Jin Lee
  • Patent number: 7454141
    Abstract: A return path system includes inserting RF packets between regular upstream data packets, where the data packets are generated by communication devices such as a computer or internet telephone. The RF packets can be derived from analog RF signals that are produced by legacy video service terminals. In this way, the present invention can provide an RF return path for legacy terminals that shares a return path for regular data packets in an optical network architecture.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: November 18, 2008
    Assignee: Enablence USA FTTX Networks Inc.
    Inventors: James O. Farmer, Deven J. Anthony, Stephen A. Thomas, Patrick W. Quinn
  • Publication number: 20080279555
    Abstract: To inform a location of a caller to the other party in an IP phone system, a wireless IC tag preserving unique ID information is attached to an optical connector of a user connection port. The relations between locations of the optical connectors and ID information of corresponding wireless IC tags are stored in a port control database. An IC tag reader in an optical network unit (ONU) reads the ID information in the wireless IC tag attached to the optical connector to which the ONU is connected. When an emergency call is initiated, the ONU transmits destination information of the emergency call and the ID information of the wireless IC tag to a central station. A control terminal in the central station compares the ID information of the wireless IC tag against the port control database to determine a location of the optical connector. The central station adds the determined location information to the destination information of the emergency call and transmits the information to an IP network.
    Type: Application
    Filed: June 12, 2008
    Publication date: November 13, 2008
    Inventors: Yukio Horiuchi, Noboru Edagawa
  • Patent number: 7450850
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 11, 2008
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Publication number: 20080232804
    Abstract: Redundancy is provided in a passive optical network (PON) to protect against network malfunctions or provide other benefits. The Optical Line Terminal (OLT) that couples an external network to the PON routes network traffic via one or, alternatively, both of two paths or links between the OLT and a subscriber device. The subscriber device is coupled to two Optical Network Terminators (ONTs), each of which, along with a portion of the fiber network, forms part of one of the links.
    Type: Application
    Filed: March 19, 2007
    Publication date: September 25, 2008
    Inventor: Luc ABSILLIS
  • Patent number: 7421203
    Abstract: A method for transmitting a packet in a wireless access network based on a wavelength identification code scheme. The method comprises the steps of connecting n number of RNCs (Radio Network Controllers) to one sub-ring where the “n” is a positive integer, and assigning a unique wavelength to each RNC; identifying a packet to be transmitted between the RNCs located within a same sub-ring using the assigned unique wavelength, and transmitting the packet through an SRC (Sub-Ring Controller); connecting m number of SRCs to one main-ring where the “m” is a positive integer, and assigning a unique wavelength to each SRC; and detaching a wavelength identification code from the packet to be transmitted between the RNCs located within different sub-rings, and transmitting the packet having the encapsulated wavelength identification code through an MRC (Main-Ring Controller).
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: September 2, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi Kim, Jea Hoon Yu, Min Ho Kang
  • Patent number: 7415174
    Abstract: An optical channel monitor assembly for simultaneously measuring the optical power levels of multiple series of dense wavelength division multiplexed channels or the like traveling on separate optical fibers in an optical communications system includes an arrayed waveguide grating router having a first side and a second side, the first side including a first plurality of ports and the second side including a second plurality of ports, the first plurality of ports in optical communication with the second plurality of ports, wherein the first side includes a first input port for collectively receiving a first series of optical channels, wherein the second side includes a first plurality of output ports for individually delivering the first series of optical channels, wherein the second side includes a second input port for collectively receiving a second series of optical channels, and wherein the first side includes a second plurality of output ports for individually delivering the second series of optical cha
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: August 19, 2008
    Assignee: Ciena Corporation
    Inventor: Brandon C. Collings
  • Patent number: 7412169
    Abstract: A fiber to the home FTTH network for convergence of broadcasting and communication is disclosed. The network includes: an OLT for receiving and converting a first predetermined number of broadcast signals and an Ethernet signal into a plurality of converted optical signals, combining the converted optical signals into converged optical signals for subsequent transmission by an optical wavelength division multiplexing method; and an optical network unit (ONU) for classifying the optical signal transmitted from the OLT into the first predetermined number of broadcast signals and the Ethernet signal, switching a second predetermined number of broadcasting signals of the first predetermined number of broadcasting signals according to each SIU by channel selection information contained in upstream Ethernet information, and switching the Ethernet signal to be transmitted to the SIU according to each SIU so as to transmit the switched signal.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: August 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Hun Joo, Jun-Ho Koh, Chan-Yul Kim, Jae-Hun Cho
  • Patent number: 7403712
    Abstract: Embodiments of present system encompass: a plurality of laser sources that produce a plurality of respectively different optical wavelengths; a matrix switch having a plurality of inputs operatively coupled to the plurality of laser sources, each of the plurality of inputs receiving a respective optical wavelength; and the matrix switch having an output that produces a series of interleaved pulses of the different optical wavelengths.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: July 22, 2008
    Assignee: Northrop Grumman Corporation
    Inventors: David B. Hall, Paul L. Greene
  • Patent number: 7400833
    Abstract: A MAC (Medium Access Control) control block for controlling transmission of data between a plurality of MAC clients and a plurality of MACs in an Ethernet passive optical network (EPON) is provided. The MAC control block includes the plurality of MAC clients and the plurality of MACs associated with the MAC clients for forming a frame for data transmission; a plurality of optical multipoint (OMP) blocks connected between the MAC clients and the MACs for implementing a multipoint control protocol (MPCP); and a multipoint gating control block for controlling the OMP blocks so that when any one of the OMP blocks is transmitting the data, the other OMP blocks are prevented from transmitting data.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: July 15, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Yeon Song, Jin-Hee Kim, A-Jung Kim, Se-Youn Lim, Min-Hyo Lee, Su-Hyung Kim
  • Publication number: 20080166125
    Abstract: A method and a system for establishing a digital subscriber connection between a central site (1) and a subscriber's transmission device (5). The system comprises an optical fiber (2) between the central site and an intermediate equipment (3) on a signal path between the central site and the subscriber's transmission device, and a metallic pair cable (4) between the intermediate equipment and the subscriber's transmission device. Digital signal processing parts (12a, 12b, 14a, 14b) of a DSL-modem are distributed between the central site and the intermediate equipment. Analog signal processing parts (7) of the DSL-modem are located in the intermediate equipment. The distribution of the digital signal processing parts is selected such that the optical-fiber-carried bit rate is minimal, but on the other hand, the digital signal processing in the equipment is relatively simple.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 10, 2008
    Inventor: Heikki LAAMANEN
  • Patent number: 7398020
    Abstract: A MAC (Medium Access Control) control block for controlling transmission of data between a plurality of MAC clients and a plurality of MACs in an Ethernet passive optical network (EPON) is provided. The MAC control block includes the plurality of MAC clients and the plurality of MACs associated with the MAC clients for forming a frame for data transmission; a plurality of optical multipoint (OMP) blocks connected between the MAC clients and the MACs for implementing a multipoint control protocol (MPCP); and a multipoint gating control block for controlling the OMP blocks so that when any one of the OMP blocks is transmitting the data, the other OMP blocks are prevented from transmitting data.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Yeon Song, Jin-Hee Kim, A-Jung Kim, Se-Youn Lim, Min-Hyo Lee, Su-Hyung Kim
  • Patent number: 7398021
    Abstract: An optical transmitter including a multi-lambda source to output injection light consisting of a plurality of injection wavelengths in channels, a circulator having a first port, a second port, and a third port, the circulator receiving the injection light at the first port, and outputting the received injection light to the second port, and further receiving signal light at the second port, and outputting the received signal light to the third port, an arrayed waveguide grating having a multiplexing port connected to the second port of the circulator, and a plurality of demultiplexing ports, spectrum-slicing injection light received from the circulator at the multiplexing port into a plurality of injection channels, and outputting the injection channels to the demultiplexing ports and further receiving and multiplexing a plurality of signal channels at the demultiplexing ports, into a signal light, and outputting the signal light to the multiplexing port, and a plurality of reflective semiconductor optical a
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Seok Shin, Hyun-Cheol Shin, Seong-Taek Hwang, Dae-Kwang Jung
  • Patent number: 7389048
    Abstract: The present invention provides an optical wavelength-division multiple access system and a corresponding optical network unit. A wavelength band Da (wavelengths ?d1 to ?dn) for downlink optical signals corresponding to the n ONUs, a wavelength band Ua (wavelengths ?u1 to ?un) for uplink optical signals corresponding to the n ONUs, a wavelength band Db (wavelengths ?dn+1 to ?dn+m) for downlink optical signals corresponding to the m ONUs, and a wavelength band Ub (wavelengths ?un+1 to ?un+m) for uplink optical signals corresponding to the m ONUs are set different from one another, the wavelength bands Ua and Ub are set adjacent to each other, and the wavelength bands Ua and Da or the wavelength bands Ub and Db are set adjacent to each other.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: June 17, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Jun-ichi Kani, Katsumi Iwatsuki
  • Patent number: 7389047
    Abstract: The network comprises an optical ring link (F) and a concentrator (HUB) that sends via one end of the link “downlink” optical signals carried by respective wavelengths and receives “uplink” optical signals via the other end of the link. The link is divided into a plurality of segments (FS1-FS4) separated by access nodes (AN1-AN3) for receivers (RX) of downlink optical signals and for senders (TX) of uplink optical signals. Each access node comprises coupling means that are not wavelength-selective for coupling the segment on the upstream side of the node to the segment on the downstream side and to the receivers and to couple the senders (TX) to the segment on the downstream side. The downlink optical signals are carried by wavelengths belonging to a set of predefined wavelengths. To optimize the use of spectral resources, a rejection filter (NF) is inserted into a segment to reject a portion of the wavelengths of said set of wavelengths.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: June 17, 2008
    Assignee: Alcatel
    Inventors: Thierry Zami, Arnaud Dupas
  • Patent number: 7386236
    Abstract: A passive optical network which employs multiple wavelengths to increase overall system bandwidth, with each wavelength being shared by multiple optical network units (ONUs) according to a time division multiple access (TDMA) protocol. The upstream TDMA traffic therefore includes multiple TDMA data streams at different wavelengths. An optical line terminal (OLT) preferably receives the multiple TDMA data streams and separates them to different detectors before ultimately combining all data into a single data stream using a multiplexer after performing clock and data recovery functions. In this manner, the upstream bandwidth in a passive optical network can be markedly increased without requiring an increase in data transmit speeds, and while using low cost/low speed detectors in the OLT, and low cost/low speed transceivers in the ONUs. System bandwidth can be further improved by using higher cost, higher speed components.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: June 10, 2008
    Assignee: Alloptic, Inc.
    Inventors: Jer-Chen Kuo, Gerald A. Pesavento
  • Patent number: 7386238
    Abstract: A method and system for conveying contextually relevant information to a wireless client are disclosed. More particularly, a transmitter transmits a diffuse infrared signal to a client having an IrDA compliant communication interface. The transmitter communicates with the client by making a link layer in the transmitter compliant with an IrDA link layer running on the client. To perform communication, data is received at the transmitter from a service provider. The data is formatted into an IrDA compliant diffuse infrared signal and transmitted to the client. The client receives the data and parses it to extract contextually relevant information contained therein. The client may reply to the transmitter if a user of the client is interested in a service offered by the service provider. If the service provider receives a reply from the client, the service is made available to client.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: June 10, 2008
    Assignee: Lockheed Martin Corporation
    Inventors: Noah J. Ternullo, Nader Mehravari, Patrick H. Madden
  • Patent number: 7382982
    Abstract: An Ethernet-PON integrates broadcast/communication through time division multiplexing, which provides users with high-speed, high-volume communication data and high-quality, real-time digital broadcast/image data. An OLT performs a switching operation on a plurality of digital broadcast/image data received from an external broadcaster according to respective broadcast/image selection information from users, time-division-multiplexes the data into a broadcast/image signal, multiplexes the signal and communication data from an IP network into a frame, and electro-optically converts the frame and transmits to the frame to ONTs through an optical splitter. Each ONT receives and photoelectrically converts the signal from the OLT, and performs frame & time-slot demultiplexing to output the entire received communication signals and broadcast/image information contained in a time-slot assigned to the ONT to a corresponding user.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: June 3, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Cheol Lee, Yun-Je Oh, Kee-Sung Nam, Tae-Sung Park
  • Patent number: 7382981
    Abstract: A cable television system (100) having forward and reverse paths includes, in the reverse path, a digital optical transmitter (200) for receiving an RF signal, converting it to a digital signal, and adding a digital pilot tone thereto. A laser is driven in accordance with the summed digital signal to generate a digital optical signal representative of the pilot tone and the RF signal. The cable television system (100) also includes an optical receiver (305) for receiving the digital optical signal and recovering therefrom the RF signal and the pilot tone. The optical transmitter (200) and receiver (305) are coupled by fiber optic communication media (110).
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: June 3, 2008
    Assignee: Scientific-Atlanta, Inc.
    Inventors: Forrest M. Farhan, Alberto P. Gaibazzi
  • Publication number: 20080112704
    Abstract: Generating oscillator signals with which selected signals may be mixed. Such oscillator signals may be generated by dividing a pilot tone, such as a 120 MHz pilot tone found on many cable TV systems. Oscillator signals for demodulating received selected signals may be similarly generated.
    Type: Application
    Filed: May 4, 2007
    Publication date: May 15, 2008
    Applicant: TELESECTOR RESOURCES GROUP, INC.
    Inventors: Jack Needle, Dimitrios Kokkinos
  • Patent number: 7373084
    Abstract: A termination device for use in a WDM-SCM PON system can effectively support a multi-channel integration function of a WDM/SCM PON system.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: May 13, 2008
    Assignee: Electronics and Telecommunications Reasearch Institute
    Inventors: Hyun Ho Yun, Tae Yeon Kim, Jeong Ju Yoo, Byoung Whi Kim
  • Patent number: 7369769
    Abstract: An Ethernet passive optical network (EPON) ring for providing protection against fiber failures. The optical network unit (ONU) is coupled to the ring fiber by a three-port passive optical splitting module that has three two-way optical passages. By the three two-way optical passages, the OUN receives/transmits data from/to the two ends of the optical line termination (OLT) to provide protection while the fiber failure. Moreover, it provides better authorization of users and simpler collision detection by the two-way transmission of the three-port passive optical splitting module to prevent hackers from invading and to reduce collisions.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: May 6, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Tzu-Jian Yang, Kuan-Ming Lin, Yen-Pin Tseng, Ja-Nan Wang, Jeffrey Liu
  • Patent number: 7369771
    Abstract: An optical network terminator of the present invention includes an optical wavelength division multiplexer for receiving an optical signal and incoherent light. An optical detection unit converts a downstream high speed and low speed optical signals into electrical signals. A laser diode converts an upstream signal into an optical signal. A high speed driving unit is supplied with power from a power supply unit to drive a forward-biased laser diode and establish a data and video channel. A high speed reception unit is supplied with the power to receive a downstream data and video channel. A charging unit outputs charged power at the time of a power failure. A low speed driving unit is supplied with the charged power to reverse-bias the laser diode to establish a voice channel. A low speed reception unit is supplied with the charged power to receive a voice channel.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: May 6, 2008
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Chang Hee Lee, Kwang Pyo Hong, Jin Serk Baik, Sung Man Kim, Sang Mook Lee, Sil Gu Mun
  • Patent number: 7366417
    Abstract: A method and a system in which selected wavelengths of a wavelength division multiplexed (WDM) signal are modulated with multicast data for multicasting data services on an optical network. The WDM signal is received from a hub node of the optical network, such as a unidirectional ring network or a bi-directional ring network. A four-port wavelength crossbar switch (4WCS) selectably switches selected wavelengths from the optical network to a modulator loop. The modulator loop includes a multicast modulator that modulates the selected plurality of wavelengths with the multicast data. Each modulated wavelength is then switched back to the optical network by the 4WCS switch, and sent to a plurality of subscriber nodes of the optical network. This architecture allows a facility provider to be physically separated from a content provider, and affords the flexibility of selectively delivering multicast content to individual subscribers.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: April 29, 2008
    Assignee: AT&T Corp.
    Inventors: Mark D. Feuer, Nicholas J. Frigo, Cedric F. Lam
  • Patent number: 7366416
    Abstract: A hub for use in a passive optical network (PON) includes a transmission fiber on which an information-bearing optical signal is received, a double-cladded, rare-earth doped fiber located along the transmission fiber for imparting gain to the information-bearing optical signal, and a combiner having an output coupled to the transmission fiber and a plurality of inputs. The output is coupled to the transmission fiber such that optical energy at pump energy wavelengths but not signal wavelengths are communicated therebetween. At least one pump source is optically coupled to one of the inputs of the combiner for providing optical pump energy to the double-cladded, rare-earth doped fiber. An optical splitter is also provided. The optical splitter has an input coupled to the transmission fiber for receiving an amplified, information-bearing optical signal and a plurality of outputs for directing portions of the amplified, information-bearing optical signal to remote nodes in the PON.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: April 29, 2008
    Assignee: General Instrument Corporation
    Inventors: Mani Ramachandran, Chandra Sekhar Jasti
  • Patent number: 7362975
    Abstract: A bandwidth allocation device and a dynamic bandwidth allocation method are provided for differentiated classes of service in an Ethernet Passive Optical Network (EPON), which includes an optical line termination (OLT), an optical distribution network (ODN), and a plurality of optical network units (ONUs). The OLT includes a Multi-Point Control Protocol (MPCP) allocator, which includes a class-based queue state counter and a grant generator. The ONU includes an MPCP requester, which includes a class-based buffer counter and a request generator. The device and the method enable efficient utilization of network resources using class-based grant allocation.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: April 22, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Su Il Choi, Jae Doo Huh, Hyeong Ho Lee
  • Publication number: 20080089686
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Application
    Filed: March 30, 2007
    Publication date: April 17, 2008
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Patent number: 7352967
    Abstract: A data transmission system includes subscriber units and a central office unit which are interconnected via optical fibers. The central office unit multiplexes a video signal with signals other than the video signal to deliver them to the multiple subscriber units. Each subscriber unit demultiplexes a received signal, and includes a wavelength division multiplexer/demultiplexer having a function of eliminating a particular wavelength signal in the subscriber unit.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: April 1, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Masatoshi Katayama
  • Patent number: 7349537
    Abstract: One embodiment of the present invention provides a system that decrypts downstream data in an Ethernet passive optical network (EPON). During operation, the system receives a data frame which is encrypted based on a remote input block and a session key, wherein the remote input block is constructed based on a remote cipher counter and a remote block counter. The system adjusts a local cipher counter based on a received checksum located in a preamble of the data frame, wherein the local cipher counter is substantially synchronized with the remote cipher counter. In addition, the system truncates the local cipher counter by discarding n least significant bits thereof. The system then constructs a local input block based on the truncated cipher counter and a local block counter for the received data frame. Next, the system decrypts the data frame based on the local input block and the session key.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: March 25, 2008
    Assignee: Teknovus, Inc.
    Inventors: Glen Kramer, Lawrence D. Davis, Edward W. Boyd, Ryan E. Hirth, Ngo Thahn Ho
  • Patent number: 7349630
    Abstract: A method and apparatus for configuring a server/client network architecture. A server network device impresses an optical signal onto an optical link at a specified wavelength, where distinct wavelengths are associated with one or more of a plurality of client devices. Thus, the server addresses a specified client device, thereby polling the specified device for a response. An optical demultiplexer/combiner directs the server optical signal to the specified recipient client device on the basis of the wavelength of the server optical signal, and combines all responses on the client devices for transmission back to the server. Any transmission by the specified client device in response to polling by the server is thus received by the server.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: March 25, 2008
    Assignee: Nortel Networks Limited
    Inventor: William Melaragni
  • Patent number: 7349629
    Abstract: An optical network provides a digital interconnect fabric allowing nodes to seamlessly communicate with each other. Each node is connected to a bi-directional optical bus through passive optical interface devices. The optical interface devices route signals from each node onto the bus in both directions and also route signals traveling along the bus in either direction to each node. The optical interface devices and optical bus are passive and do not involve any regeneration of the electrical signals. The nodes are assigned wavelengths of transmission and have tunable receivers for selecting a wavelength of reception. The digital interconnect fabric facilitates Ethernet, Fibre Channel, and other digital communication protocols.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: March 25, 2008
    Assignee: Lockheed Martin Corporation
    Inventors: John Jesse Soderberg, Nelson Corby
  • Patent number: 7349616
    Abstract: There are provided fiber optic local convergence points (“LCPs”) adapted for use with multiple dwelling units (“MDUs”) that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal (“FDT”) may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: March 25, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Guy Castonguay, Terry Dean Cox, Thomas Shaw Liggett, Selena Strickland
  • Patent number: 7349634
    Abstract: Modulators respectively modulate baseband signals into IF signals having different frequencies. Multiplexers multiplex the IF signals. A local oscillation signal source outputs a predetermined local oscillation signal. An external modulator intensity-modulates an optical signal using the local oscillation signal. An optical branching portion branches the intensity-modulated optical signal. Modulators respectively modulate the multiplexed IF signals onto the branched optical signals and then output the optical signals to radio base stations. Optical-electrical converters convert the optical signals into electric signals and antennas transmit the electrical signals to subscriber terminals.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: March 25, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroyuki Sasai, Masaru Fuse