Including Subscribers Patents (Class 398/71)
  • Patent number: 8417117
    Abstract: A passive optical network (PON) comprises an Optical Line Termination (OLT), an Optical Distribution Network (ODN), and a plurality of Optical Network Terminations (ONTs), wherein the OLT includes an OLT Dense Wavelength Division Multiplexing (DWDM) multiplexer, an OLT CWDM demultiplexer, and a Wavelength Division Multiplexing (WDM) filter, wherein the OLT DWDM multiplexer and the OLT CWDM demultiplexer are coupled to the WDM filter, wherein the ODN includes a WDM filter, a DWDM demultiplexer, and a plurality of fanout splitters, wherein the DWDM demultiplexer is coupled to the WDM filter, wherein the WDM filters are coupled to one another and wherein a portion of the plurality of ONTs that are associated with a wavelength are coupled to one of fanout splitters that is associated with the wavelength.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: April 9, 2013
    Assignee: Alcatel Lucent
    Inventors: Joseph Lee Smith, Alain Granger, David Eckard, Jihad Baghdadi
  • Patent number: 8417119
    Abstract: An optical network unit according to the present invention is provided as comprising a configuration that component units built therein are grouped for at least two sheets of substrate modules and arranged thereat. There are provided individual embodiments: (a) arranging an L2 layer and a part of the component unit of an L1 layer at a first substrate module, meanwhile, arranging the left part of the component unit of the L1 layer at a second substrate module; (b) arranging the component units of the L1 layer and of the L2 layer at the first substrate module and the second substrate module individually by grouping therefor; and (c) arranging the component units of the L2 layer and of the L1 layer at the first substrate module and the second substrate module respectively.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: April 9, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Kazutaka Shimoosako, Kunio Odaka, Katsuya Aboshi
  • Patent number: 8412043
    Abstract: An optical communications network that is composed of one station-side equipment being connected to plural subscriber-side equipments. The station-side equipment refers to downstream data signals and prepares transmission plans, and generates downstream control signals that include the transmission plans, and converts downstream signals, that include the downstream data signals and the downstream control signals to which identifiers indicating the subscriber-side equipments that are addressees are assigned, into downstream optical signals, and sends the downstream optical signals out toward the subscriber-side equipments.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: April 2, 2013
    Assignees: Oki Electric Industry Co., Ltd., OF Networks Co., Ltd.
    Inventors: Hideaki Tamai, Yasuyuki Kuroda
  • Patent number: 8406628
    Abstract: A method, equipment, and operation management system for detecting and authenticating a terminal in a passive optical network are provided. The method includes the following steps. The terminal has a logic registration code. A central office end receives the logic registration code sent by the terminal. The central office end judges whether the logic registration code of the terminal matches with the logic registration code stored at the central office end, and determines that the terminal is a valid terminal if the logic registration code sent by the terminal matches with the logic registration code stored at the central office end. The central office end records a terminal serial number from the valid terminal, and records a terminal identifier assigned to the valid terminal.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 26, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wei Wu, Hai Gao
  • Patent number: 8401387
    Abstract: A system comprises an optical network terminal (ONT) that provides an interface to a passive optical network (PON). The ONT is coupled to a subscriber gateway device via at least one cable. The ONT may be located outside a subscriber premises while the subscriber gateway device may be located within the subscriber premises. The ONT converts optical signals received from PON to electrical signals and transmits the electrical signals to the subscriber gateway device without performing any MAC layer functions. The subscriber gateway device includes an optical media access control (MAC) unit that converts the electrical signals into MAC layer signals and a gateway unit that distributes the MAC layer signals to one or more subscriber devices. In this manner the MAC and gateway layer functions are relocated from the ONT to the subscriber gateway device.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: March 19, 2013
    Assignee: Calix, Inc.
    Inventors: Mark R. Biegert, Mark T. Paulsen
  • Patent number: 8396365
    Abstract: There is provided a customer premises optical network unit (ONU) capable of reading management signals and of outputting data through an external node by using I2C serial interfaces. In the ONU, an ONU functioning section has another serial signal terminal and is connected with a first management processing section through a sub-serial transmission path. The first management processing section is also connected with a MSA interface module through an additional monitoring signal transmission path and a monitoring signal transmission path. The monitoring signal transmission path on the side of the MSA interface module is connected with a sub-I/F section. A part of management signals set in an OAM layer of a signal transmitted between an OLT and the ONU may be outputted to an external node by using the first management processing section, the additional monitoring signal transmission path and the monitoring signal transmission path.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: March 12, 2013
    Assignee: Furukawa Electric Co., Ltd
    Inventors: Kunio Odaka, Katsuya Aboshi, Kazutaka Simoosako
  • Patent number: 8391715
    Abstract: When a neighbor ONU receives a signal with light intensity high enough to secure communication between an OLT and a remote ONU, the light intensity may be excessively high to damage a receiver of the neighbor ONU. In order to avoid such a problem, each ONU is notified of a downstream signal transmission plan (downstream light intensity map) prior to transmission of a downstream signal. Each ONU receives the downstream light intensity map (light intensity transmission schedule of downstream signal) in advance. Thus, the neighbor ONU can block or attenuate an optical signal addressed to the remote ONU, and the remote ONU can determine normal operation even when the remote ONU cannot receive a signal addressed to the neighbor ONU. Thus, the remote ONU can be prevented from issuing a wrong error signal.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 5, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Masao Niibe, Masahiko Mizutani, Shinya Fujioka
  • Patent number: 8374504
    Abstract: A transmitting apparatus includes a plurality of code spreaders different in spreading code, a reception processing unit that selectively distributes transmission data to the plurality of code spreaders, a plurality of optical transmitters each of which that transmit a code-spread signal to an optical fiber as a CDMA optical signal of a carrier wavelength different from that of the other optical transmitters, and a signal multiplexing unit that selectively supplies outputs of the plurality of code spreaders to the plurality of optical transmitters. A receiving apparatus includes an optical receiver that receives a wavelength-division-multiplexed CDMA optical signal from the optical fiber, and a plurality of despreaders connected to the optical receiver and different in spreading code, wherein each of the despreaders reproduces a CDMA signal corresponding to its spreading code from an output signal of the optical receiver.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: February 12, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Yoshihiro Ashi, Shinya Sasaki, Tohru Kazawa
  • Patent number: 8369705
    Abstract: In a passive optical network, a downstream transmission rate from an OLT to multiple ONTs can be optimized by matching a transmission scheme for frames addressed to a channel to the downstream transmission characteristics of the channel. An FEC coding can be made channel dependent so that channels with low error rates can use minimal protection, and therefore minimal overhead, while channels with high input bit error rates can use the level of FEC coding required to produce a desired output bit error rate.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: February 5, 2013
    Assignee: Alcatel Lucent
    Inventor: Adriaan J. de Lind van Wijngaarden
  • Patent number: 8369706
    Abstract: Methods and apparatuses to provide an “Open access” service model using wavelength division multiplexing (“WDM”) passive optical networks (“PONs”) are described. A cross-connect is used to supply a first set of optical signals corresponding to a first service provider and a second set of optical signals corresponding to a second service provider to a WDM multiplexer/demultiplexer. The WDM multiplexer/de-multiplexer is used to multiplex and transmit the first set and the second set to a remote location. Another WDM multiplexer/de-multiplexer at the remote location is used to de-multiplex the first set and the second set. The first set may be supplied to a first user and the second set may be supplied to a second user. Transceivers coupled to the cross-connect may be used to generate the optical signals. For one embodiment, the transceivers include a wavelength-locked light source. For one embodiment, the transceivers are alike.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: February 5, 2013
    Assignee: Novera Optics, Inc.
    Inventor: Wayne V. Sorin
  • Patent number: 8364039
    Abstract: An optical network and an optical signal modulation method thereof are provided. The optical network includes an optical fiber and a remote node (RN). The RN receives a continuous carrier wave from the optical fiber and modulates the continuous carrier wave to generate a first frequency offset carrier wave The frequency of the first frequency offset carrier wave is different from that of the continuous carrier wave. A first user device re-modulates and loads data to the first frequency offset carrier wave to generate a first upstream signal. The frequency of the first upstream signal is the same as that of the first frequency offset carrier wave. The RN inputs the first upstream signal into the optical fiber.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: January 29, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chien-Hung Yeh, Chi-Wai Chow
  • Publication number: 20130016972
    Abstract: A laser mux assembly generally includes a back reflector selectively coupled to one of the input ports of an optical multiplexer, such as an arrayed waveguide grating (AWG), and at least one laser emitter coupled to an output port. The laser emitter may include a gain region that emits light across a plurality of wavelengths including, for example, channel wavelengths in an optical communication system. The emitted light is coupled into the output port and the AWG or optical multiplexer filters the emitted light from the laser emitter at different channel wavelengths. The back reflector reflects the filtered light at the respective channel wavelength such that lasing occurs at the channel wavelength(s) of the reflected, filtered light. The laser mux assembly may be used, for example, in a tunable transmitter, to generate an optical signal at a selected channel wavelength.
    Type: Application
    Filed: January 27, 2012
    Publication date: January 17, 2013
    Applicant: APPLIED OPTOELECTRONICS, INC.
    Inventors: Jun Zheng, Stefan J. Murry
  • Patent number: 8351787
    Abstract: An apparatus comprising a frame alignment processor coupled to a receiver, wherein the frame alignment processor is configured to align a first frame and a second frame in the receiver by matching a first synchronization (sync) pattern predicted using a first sync field in the first frame with a second sync pattern obtained from a second sync field in the second frame. Included is an apparatus comprising at least one component configured to implement a method comprising receiving a first frame, subsequently receiving a second frame that was transmitted after the first frame, predicting a first sync pattern from a first sync field in the first frame, obtaining a second sync pattern from a second sync field in the second frame, and determining that the first frame and the second frame are aligned when the first sync pattern matches the second sync pattern.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: January 8, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventors: Yuanqiu Luo, Frank J. Effenberger
  • Patent number: 8351792
    Abstract: A system and communication method for the system interconnecting the optical network with the radio communication network is provided. The solution mainly applies to an optical access network employing fiber for transmission and the radio communication network connected to the optical access network, wherein a base station of the radio communication network is connected to the optical access network and communicates to an entity in the optical access network to achieve interconnection between the optical network and the radio communication network. After the interconnection is established, a user equipment can enjoy communication services through the interconnected radio communication network and the optical network.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: January 8, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Ruobin Zheng
  • Patent number: 8346081
    Abstract: Methods and apparatus are described for “Smart” RF over Glass (RFoG) CPE Unit with Seamless PON Upgrade Capability. A method includes operating a customer premises equipment device including transporting upstream cable return services with a laser; and switching a drive source for the upstream laser from an analog driver to a digital driver by using a managed electrical switch to reuse a wavelength of the laser. An apparatus includes a customer premises equipment device including a laser for transporting upstream cable return services; and a managed electrical switch coupled to the laser that is used to switch a drive source for the upstream laser to reuse a wavelength of the laser.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: January 1, 2013
    Assignee: Aurora Networks, Inc.
    Inventors: Sudhesh Mysore, Charles Barker, Oleh Sniezko, Krzysztof Pradzynski
  • Patent number: 8340521
    Abstract: An optical transmission system is provided. The optical transmission system includes a user side optical repeater device, a central office side optical repeater device, and wavelength multiplexing and wavelength de-multiplexing functions. The user side optical repeater device is to be connected with a user side optical network unit, transmits data in two ways, and is used for wavelength division multiplexing. The central office side optical repeater device is to be connected with a central office side optical line terminal, transmits data in two ways, and is used for wavelength division multiplexing. The wavelength multiplexing and wavelength de-multiplexing functions are used for relaying between the user side optical repeater device and the central office side optical repeater device.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: December 25, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Masayuki Miura
  • Patent number: 8340518
    Abstract: An OLT, which is one of the embodiments of the present invention, is provided with: an allocation request receiving unit that receives a bandwidth allocation request from each of 1G-ONUs and each of 10G-ONUs; an allocation execution unit that allocates to each of the ONUs a time slot for data transmission in accordance with an allocation rule based on fairness in time allocation or an allocation rule based on fairness in throughput allocation; and an allocation result notification unit that notifies each of the ONUs of information regarding the time slot.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: December 25, 2012
    Assignee: Fujitsu Telecom Networks Limited
    Inventors: Hiroaki Yoshida, Tetsuya Yokomoto, Hiroji Shigetome
  • Patent number: 8335429
    Abstract: Apparatus for connecting telecommunications equipment of premises to a telecommunications network, the apparatus comprising a first module associated with the telecommunications equipment, a second module associated with the telecommunications network, the first module connectable to the second module by a telecommunications link, and access means permitting access to only one of either the first module or the second module.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: December 18, 2012
    Assignee: British Telecommunications Public Limited Company
    Inventor: Malcolm D Campbell
  • Patent number: 8331400
    Abstract: A PON system capable of utilizing the bandwidth of an optical transmission channel in the PON section. In a PON system including an OLT and a plurality of ONUs, the OLT has: a downstream frame processing unit that removes at least part of the header information in a layer 2 header from a downstream frame received from a wide area network, and converts the remaining frame portion into a frame having a header specific to the PON section; and a downstream frame processing unit that extracts a downstream frame portion to be transferred to a user terminal, from a received frame from a PON, and adds the layer 2 header information deleted in the OLT.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: December 11, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Takeshi Shibata, Tohru Kazawa, Yoshihiro Ashi, Masanobu Kobayashi, Hideki Endo
  • Patent number: 8331784
    Abstract: It is necessary to completely remove the overlapping of signals between plural PONs in order to make the PONs coexist. Accordingly, it is required to share or intensively manage bandwidth use conditions over an optical fiber that serves as a common band between plural systems. Therefore, transmission clocks should be synchronized with high accuracy between the plural systems. A reference clock is provided from an external device or a representative OLT to the entire systems to perform clock synchronization between the plural systems, so that the overall systems are synchronized by synchronizing each OLT with the reference clock. A hierarchical management method is selected that manages ONUs under the control of each OLT by managing band use information arranged for each OLT with respect to an external device or a representative OLT for sharing of bandwidth use conditions between plural systems.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 11, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Toshiki Sugawara, Hiroki Ikeda
  • Patent number: 8315523
    Abstract: When a frame is received from one of PON ports 12a to 12c of ONUs 1a to 1c, an OLT 3 compares VPIDs contained in Preamble/SFD regions A of the received Ethernet® frame with VPIDs assigned to LAN ports 31 and 32 of the OLT 3. Upon coincidence, a PON MAC process is started. When a frame is received from a PON port 33 of the OLT 3, each of the ONUs 1a to 1c compares a VPID contained in a Preamble/SFD region of the received Ethernet® frame with VPIDs assigned to the ONUs 1a to 1c. Upon coincidence, a PON MAC process is started.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: November 20, 2012
    Assignee: NEC Corporation
    Inventor: Sadaichiro Ogushi
  • Patent number: 8290369
    Abstract: An optical access system capable of avoiding cutoffs or interruption in the periodically transmitted signals that occur during the ranging time is provided. A first method to avoid signal cutoffs is to stop periodic transmit signals at the transmitter during the ranging period, and transmit all the periodic transmit signals together when the ranging ends, and buffer the signals at the receiver to prepare for ranging. A second method is to fix definite periods ahead of time for performing ranging, then cluster the multiple periodic transmit signals together in sets at the transmitter and send them, and then disassemble those sets back into signals at the receiver. The transmitting and receiving is then controlled so that the transmit periods do not overlap with the ranging periods. In this way an optical access system is provided that can send and receive signals requiring periodic transmissions without interruption even during ranging operation.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: October 16, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Sakamoto, Yoshihiro Ashi, Tohru Kazawa, Ryosuke Nishino, Masayuki Takase, Masahiko Mizutani
  • Patent number: 8290370
    Abstract: Disclosed is a wavelength division multiplexing passive optical network for simultaneously providing a broadcasting service and a data service by employing a broadband light source, which uses mutually injected Fabry-Perot laser diodes, as well as a central office used for the same.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: October 16, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Chang-Hee Lee, Jung-Hyung Moon, Ki-Man Choi
  • Patent number: 8285139
    Abstract: A method, system and apparatus for managing alarms in a Long Reach Passive Optical Network (LR-PON) system are disclosed. The method includes: obtaining a PON signal from an Optical Line Terminal (OLT) or an Optical Network Unit (ONU) on one side; checking whether the obtained PON signal fails; and notifying the ONU or the OLT on the other side if the PON signal fails. The method, system and apparatus under the present invention monitor the LR-PON transmission quality and process various alarm indications raised in the LR-PON signal monitoring.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: October 9, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jianlin Zhou, Shimin Zou
  • Patent number: 8285142
    Abstract: An aggregation node device of a passive optical network (PON) is provided which includes an aggregation optical line terminal (OLT) and an aggregation optical network unit (ONU). The aggregation OLT is connected to a user-side ONU. The aggregation OLT aggregates service data transmitted by a user-side ONU and transmits the aggregated service data to the aggregation ONU. The aggregation ONU is adapted to transmit the received aggregated service data to a network-side OLT. A PON system is further provided. The device and system can not only support the conventional time division multiplexing (TDM) services but also support the services based on variable-length packets and the multicast service. Moreover, it is not necessary to build an equipment room and supply power for an intermediate optical distribution network (ODN) which greatly reduces the network construction and operation costs.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: October 9, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Ruobin Zheng
  • Patent number: 8280252
    Abstract: A subscriber terminal connected to a central-office unit in an optical communication network includes a variable optical attenuator for attenuating an optical signal received from the central-office unit; an optical-electric converter for converting the optical signal received via the attenuator to a corresponding electric signal; a clock extractor for extracting a clock from the electric signal and producing a clock extraction information signal representing whether or not the clock is extracted stably; and a terminal controller. The controller includes a clock extraction decider for determining whether or not the extractor stably extracts the clock on the basis of the information signal, a receiving level adjuster for setting an attenuation value to a value between a minimum and a maximum value, and an attenuation controller for setting the attenuation amount for the attenuator to the set attenuation value.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: October 2, 2012
    Assignee: Oki Electric Industry Co. Ltd.
    Inventor: Masahiro Sarashina
  • Patent number: 8270832
    Abstract: A method, apparatus and system for aligning frames in which an Optical Network Unit (ONU) receives a frame comprising frame delimitation information and synchronization-related information; performs a first verification based on a comparison of the frame delimitation information and a fixed pattern; performs a second verification based on a comparison of the synchronization-related information and a value associated with synchronization-related information in a previously received frame; proceeds to a synchronization state if both the first verification and the second verification are successful; and returns to a hunt state if either the first verification or the second verification fails.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: September 18, 2012
    Assignee: FutureWei Technologies, Inc.
    Inventors: Yuanqiu Luo, Frank Effenberger
  • Patent number: 8260140
    Abstract: An optical network component, architecture and method for a wavelength division multiplexed passive optical network includes a band coupler configured to demultiplex first and second wavelength division multiplexed content transmitted from an optical line terminal into a first band signal and a second band signal. An arrayed wavelength grating is configured to receive the first band signal and to further demultiplex the first band signal into different wavelengths to provide a plurality of wavelength signals. An optical splitter is configured to split the second band signal into sub-signals and multiplex the sub-signals with each of the wavelength signals such that the first and second wavelength division multiplexed content is provided on a single wavelength to a user.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: September 4, 2012
    Assignee: NEC Laboratories America, Inc.
    Inventors: Yuanqiu Luo, Jianjun Yu, Junqiang Hu, Lei Xu, Philip Nan Ji, Ting Wang, Milorad Cvijetic
  • Patent number: 8254292
    Abstract: A method and an apparatus for implementing a storage function in a passive optical network (PON) system. On the basis of a LINK ID held by the data, data requiring storage, e.g. data making exclusive use of a wide bandwidth such as audiovisual data and large-volume data packages, are determined among all the data sent to an optical network unit. These data requiring storage are stored in a storage device installed in the optical network unit. In case the user requests data stored in the storage device, the stored data are transferred directly to the user, without any need to request and send these data for the second time via an IPTV server and the core network. It is possible to avoid duplicate transfers of data, and in particular to avoid duplicate transfers of data making exclusive use of a comparatively wide bandwidth such as audiovisual data and large-volume data packages, to improve the utilization factor of the downlink bandwidth, and to reduce flow congestion and data delays.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: August 28, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hiroki Ikeda, Na Zhang
  • Patent number: 8244130
    Abstract: An optical line terminal connecting with numbers of optical network units comprises a control unit which controls each optical network unit to make it operate in a first mode in which transmission and reception of control messages and data are possible or in a second mode in which the transmission and reception of control messages are possible but the transmission of data is impossible, according to a communication permission request transmitted from an optical network unit and based on a preset maximum number of optical network units permitted to execute upstream communication from the optical network unit to the optical line terminal.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: August 14, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Ying Shi, Hideya Yoshiuchi, Hiroki Ikeda
  • Patent number: 8238756
    Abstract: A passive optical network is provided, which includes an optical central office connected to a line termination device by a branch of the network including a passive amplification medium. The central office is adapted to send/receive a first data optical signal and has a first amplifier for sending a second amplification optical signal. The second signal exciting the amplification medium to amplify the optical power of an optical signal. The line termination device is adapted to receive the first optical signal, modulate the second amplification optical signal; and inject the modulated second signal into the network.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: August 7, 2012
    Assignee: France Telecom
    Inventors: Naveena Genay, Erwan Pincemin, Bertrand Le Guyader
  • Patent number: 8224181
    Abstract: The invention relates to a protection device for removing signal interference in a passive optical network and to a corresponding passive optical network and to a method for removing signal interference in a passive optical network.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: July 17, 2012
    Assignee: Nokia Siemens Networks GmbH & Co. KG
    Inventors: Harald Rohde, Dominic Schupke
  • Patent number: 8212375
    Abstract: The invention is directed to an optical network terminal (ONT) for use in a passive optical network (PON) that provides reliable battery status reporting and, optionally, remote monitoring and configuration of an uninterruptible power supply (UPS) unit. In particular, the UPS unit provides power to the ONT via a power line and transmits data to the ONT via the power line. Generally, the described invention supports one-way or two-way communication of status, alarm, and configuration signals using a single power line. Specifically, such signals may be transmitted over the power line by inserting a carrier frequency, such as a carrier frequency of approximately 1 MHz, onto the power line. In this manner, the invention may provide a simple battery status monitoring system while also reducing the cost of installation.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: July 3, 2012
    Assignee: Calix, Inc.
    Inventors: Mark T. Paulsen, Mark R. Biegert, Clifford Vrla, Gary L. Steinkogler
  • Patent number: 8208810
    Abstract: A method, apparatus and system for bearing Internet Protocol (IP) packets over a Passive Optical Network (PON) are disclosed. The method includes obtaining an IP packet, converting the IP packet into a Gigabit PON Encapsulation Method (GEM) frame. The method further includes performing a Gigabit PON Transmission Convergence (GTC) framing on the GEM frame to obtain a GTC frame and performing a PON physical layer processing on the GTC frame.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 26, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Ruobin Zheng
  • Patent number: 8208811
    Abstract: A first node receives a first phase modulated optical signal at a first wavelength from a master node. The first node also transmits a first amplitude modulated optical signal to the master node at the first wavelength using a portion of the first phase modulated optical signal as a light source.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: June 26, 2012
    Assignee: Verizon Business Global LLC
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 8208809
    Abstract: A system and method for data synchronization in Passive Optical Networks are disclosed. According to an embodiment, the present invention provides a method for providing upstream data synchronization in an optical communication network. The method includes sending data from an Optical Network Unit. The data includes a first data frame, which includes a header sequence, a synchronization segment, and a data segment. The synchronization segment includes 66 bits, which includes a first number of bits having nonzero values and a second number of bits having a value of zero. The first number is different from the second number. The method further includes receiving at least the first data frame by an Optical Line Terminal. The method also includes processing the first data frame. The method additionally includes selecting a first segment of the first data frame, the first segment including 66 bits.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: June 26, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Raymond W. K. Leung, Dongyu Geng, Dongning Feng, Frank J. Effenberger, Sergio Benedetto, Guido Montorsi, Jing Li
  • Patent number: 8195047
    Abstract: A Cable Television optical fiber communication system is disclosed, comprises a provider end, plural optical signal transmission devices and plural user ends, each optical signal transmission device is provided between the provider end and the user ends and has an light splitting element, a RF receive module, and a RF return module. The light splitting element is connected to the provider end via an optical transmission wire and is served to bi-directionally transfer a laser beam having a signal between the provider end and the user ends. The RF receive module is served to transfer a first signal of the provider end to the user ends. The RF return module emits a laser beam having a second signal to the provider end only when an analog return signal is emitted from the user end.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: June 5, 2012
    Inventor: Huitsuo Chou
  • Patent number: 8180222
    Abstract: Transmitting and receiving data includes a process of transferring data over a coaxial network between an optical node and a plurality of cable modems of a hybrid fiber-coaxial cable network. A data transfer system which sends and receives data over a coaxial network located at an optical node of a hybrid fiber-coaxial cable network.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: May 15, 2012
    Assignee: Aurora Networks, Inc.
    Inventors: Guy Sucharczuk, Oleh J Sniezko, Krzysztof Pradzynski, Thomas K Fong
  • Patent number: 8180221
    Abstract: The present invention relates to a wavelength-division multiplexed passive optical network (WDM-PON) for reducing degradation in noise characteristic of a wavelength-locked Fabry-Perot Laser Diode (F-P LD).
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: May 15, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Chang-Hee Lee, Sil-Gu Mun, Kun-Youl Park
  • Patent number: 8179910
    Abstract: A network device comprising asymmetric, multi-rate, Ethernet MAC and asymmetric, multi-rate, Ethernet PHY communicates signals via a network utilizing A/V bridging services. Higher bandwidth A/V signals are communicated and lower bandwidth signals are received or vice versa. Signals are communicated based on a plurality of different Ethernet protocols and/or data rates. Signals may be communicated based on 10GBASE-T in a first direction and based on a lower rate Ethernet protocol in a second direction. Extended range mode may be utilized. PDUs comprise time stamps, traffic class designations and/or destination addresses. Data rate requests, resource reservation messages and/or registration for delivery of PDUs may be communicated. Time stamps enable end to end transport within a specified latency target. Video signals may be compressed, uncompressed, encrypted, unencrypted and/or formatted for a video display interface.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: May 15, 2012
    Assignee: Broadcom Corporation
    Inventors: Wael William Diab, Yong Kim, Scott Powell
  • Patent number: 8180220
    Abstract: A protocol configuration method for use by a substation to be coupled to a main station in an optical access network is described.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: May 15, 2012
    Assignee: Alcatel Lucent
    Inventors: Tom Van Caenegem, Edwin Augustus Philomena Ringoot
  • Patent number: 8160457
    Abstract: A system is disclosed for an improved ROSA that has increased sensitivity for permitting greater numbers of ONTs to be connected to an optical network per defined transmission line distances. The ROSA configuration includes a digital optical module with improved performance characteristics. This digital optical module has replaced a conventional photodiode with a PIN detector that is coupled with the TIA. The resulting digital optical module containing this PIN/TIA configuration when incorporated in a ROSA provides a single ROSA solution that will meet or exceed the ITU/IEEE FTTx standards for short and long distances under substantially all operating conditions.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: April 17, 2012
    Assignee: Phyworks
    Inventors: Simon McCaul, Stuart Millard
  • Patent number: 8155528
    Abstract: Methods for authenticating an optical transceiver module to a host are disclosed. The transceiver comprises a receive signal line for transferring data from the transceiver to the host and a transmit signal line for transferring data from the host to the transceiver in preparation for transmission to a communications network. The transceiver includes a controller having a processor in communication with the host, and a first memory register assignable by the processor. A consolidated laser driver/post amplifier is also included and features a pattern generator and a data switch. The pattern generator produces a string of bit values that serve as an authenticating data portion. The data switch selectively inputs the authenticating data portion to the receive signal line of the transceiver according to the state of the first memory register, enabling the authenticating data portion to be received by the host, thereby authenticating the transceiver.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 10, 2012
    Assignee: Finisar Corporation
    Inventor: Stephen T. Nelson
  • Patent number: 8139940
    Abstract: There is provided a wavelength division multiplexing transmission system and apparatuses used therein, in which a remote apparatus to be newly added to a station apparatus autonomously sets a wavelength to be used in the remote apparatus, thereby avoiding the need for presetting a wavelength to be used in the remote apparatus. The remote apparatus includes wavelength determining means that determines an available wavelength on the basis of an optical signal received from the station apparatus. The wavelength determining means may determine the wavelength of an unreceived optical signal as the available wavelength or may determine the wavelength of a received optical signal as the available wavelength, and may set that wavelength as a transmission and reception wavelength to be used in the remote apparatus.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: March 20, 2012
    Assignee: NEC Corporation
    Inventor: Shigekazu Harada
  • Patent number: 8121479
    Abstract: A network component is disclosed that includes a memory comprising a data structure comprising an optical network terminal management and control interface (OMCI) comprising a plurality of managed entities (MEs), wherein one of the MEs is a description of the OMCI. Also disclosed is a network component comprising a processor configured to implement a method comprising promoting the sending of an OMCI Description to an optical line terminal (OLT), wherein the OMCI Description comprises an OMCI Object, whose instance describes the types of MEs supported by an OMCI, a plurality of Managed Entity Objects, whose instances describe each ME supported by the OMCI, and a plurality of Attribute Objects, whose instances describe each attribute supported by the OMCI.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: February 21, 2012
    Assignee: Futurewei Technologies, Inc.
    Inventor: Frank J. Effenberger
  • Patent number: 8107815
    Abstract: In one embodiment, a method for providing wireless communications utilizing a passive optical network (PON) is disclosed. The method includes receiving, at a PON, downstream packets from a base station destined for a mobile station, and transmitting the downstream packets to wireless transceivers associated with PON. The method also includes receiving, at the first wireless transceiver communicatively coupled to a first optical network terminal (ONT), the downstream packets from the first ONT and transmitting a first wireless signal comprising the downstream packets to a first cell. The method also includes receiving, at a second wireless transceiver communicatively coupled to a second ONT, the downstream packets from the second ONT and transmitting a second wireless signal comprising the downstream packets to a second cell.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: January 31, 2012
    Assignee: Fujitsu Limited
    Inventors: Youichi Akasaka, Takao Naito, Satoshi Mizutani
  • Patent number: 8107814
    Abstract: Upstream data handling in a digital Data Over Cable Service Interface Specification (DOCSIS) passive optical network (DPON). Embodiments include receiving at a headend, in an upstream path over an optical network, a plurality of digitized and serialized DPON upstream packets respectively distributed in a time division multiplexed fashion, wherein each DPON upstream packet includes a header, a trailer and a payload, monitoring the optical network for energy in the upstream path, including energy associated with a header and a trailer of respective DPON upstream packets, controlling a bit stuffer that adds bits to the upstream path to (1) stop adding bits to the upstream path when energy is detected in the upstream path and (2) resume adding bits to the upstream path after an end of a trailer of a given DPON upstream packet has been detected, and removing the header and the trailer of the respective DPON upstream packets.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: January 31, 2012
    Assignee: Cisco Technology, Inc.
    Inventors: Thai-Bao H. Kien, Amin Farvez, Richard J. Futch, Richard T. Causey, Michael Jones
  • Patent number: 8095002
    Abstract: A method and corresponding apparatus for diagnosing problems on a time division multiple access (TDMA) optical distribution network (ODN) is provided. An example method may include: (i) measuring no-input signal power level on a communications path configured to carry upstream communications between multiple optical network terminals (ONTs) and an optical line terminal (OLT) in a passive optical network (PON) at a time no upstream communications are on the communications path from the ONTs to the OLT; (ii) comparing the measured no-input signal power level to a threshold; and (iii) generating a notification in an event the threshold is exceeded. Through the use of this method, faults in optical transmitters, such as bad solder joints, can be determined. Such faults may cause errors in parameters, such as ranging or normalization parameters, associated with communications. By determining the faults, the time required to resolve communications errors can be reduced.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: January 10, 2012
    Assignee: Tellabs Pataluma, Inc.
    Inventors: Joseph D. Miguel, David A. DeLew
  • Patent number: 8086103
    Abstract: Dynamic optical wavebands are disclosed that allow a plurality of user streams having a common destination node to be positioned in a substantially adjacent non-overlapping manner on a spectrum for treatment as a routable entity. Each waveband has an associated center wavelength and spectral extent. The plurality of user streams can optionally be encrypted using a corresponding cipher. Wavebands that are received by a network node are filtered so that individual wavebands can be isolated, if necessary. For example, individual wavebands can be switched to an appropriate output node for forwarding in the optical network. In addition, the center wavelength and spectral extent of a waveband can be converted, if necessary, to position the waveband substantially spectrally adjacent to another waveband sharing a common path portion. In this manner, the substantially spectrally adjacent wavebands can be treated as an aggregated waveband for the common portion of a path.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: December 27, 2011
    Assignee: Alcatel Lucent
    Inventors: Marc J. Beacken, Dominick J. Imbesi
  • Patent number: 8073329
    Abstract: The present disclosure discloses a passive optical network (PON) user terminal comprising a passive optical network interface unit (PONIU) having access to a PON system, a service data distribution unit (SDDU) connected to the PONIU for distributing service data, a plurality of service processing units (SPUs) for receiving and accordingly processing the service data distributed by the SDDU, a power source for providing power to the above units, and a power supply control unit (PSCU) for controlling the activating/deactivating of the energy-saving power supply to the SPUs, the SDDU, and the PONIU. The present disclosure further provides a method for controlling the PON power supply and for reporting the power supply state. The present disclosure allows control of the energy usage of the PON user terminal to save power when a service in the PON user terminal is not used or when the user terminal uses a backup power source to supply power.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: December 6, 2011
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Yinghua Dong