Oxide Containing Patents (Class 419/19)
  • Patent number: 4659379
    Abstract: A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.
    Type: Grant
    Filed: April 16, 1985
    Date of Patent: April 21, 1987
    Assignee: Energy Research Corporation
    Inventors: Prabhakar Singh, Mark Benedict
  • Patent number: 4622269
    Abstract: An electrical contact formed of a mixture of finely divided electrically conductive metal doped with graphite or cadmium oxide. A thin coating of the electrically conductive metal is disposed upon the side of the contact which is adapted to be welded or brazed to an electrically conductive support. The electrical contact is made by mixing the finely divided cadmium oxide and pressing the mixture into a desired shape. A slurry of conductive metal is then sprayed on one side of the contact. After coating, the contact is sintered at a temperature less than the melting point of the electrically conductive material, whereby the contact is formed and the coating is firmly attached to it. The invention is particularly useful with silver or copper-based electrical contacts.
    Type: Grant
    Filed: December 30, 1985
    Date of Patent: November 11, 1986
    Assignee: GTE Products Corporation
    Inventors: Chi H. Leung, Ron J. DeNuccio
  • Patent number: 4615733
    Abstract: A composite material, including reinforcing fiber material with principal components SiO.sub.2 and/or CaO and/or Al.sub.2 O.sub.3, and with a Mg content by weight of between about 0% and about 10%, an Fe.sub.2 O.sub.3 content by weight of between about 0% and about 5%, and a content by weight of other inorganic substances of between about 0% and about 10%, and consisting essentially of mineral fibers and non fibrous particles to a total percentage of not more than about 20% by weight, the weight percentage of the part of the non fibrous particles which have a diameter of greater than or equal to about 150 microns being between about 0% and about 7%. Also, the composite material includes a matrix metal selected from the group consisting of aluminum, magnesium, copper, zinc, lead, tin, and alloys having these as principal components, the volume proportion of the mineral fibers being in the range of from about 4% to about 25%.
    Type: Grant
    Filed: April 2, 1985
    Date of Patent: October 7, 1986
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Kubo, Tadashi Dohnomoto, Atsuo Tanaka, Yoshiaki Tatematsu
  • Patent number: 4614638
    Abstract: A method for producing a sintered ferrous alloy containing at least one alloying element whose standard free energy for oxide formation at 1,000.degree. C. is 11,000 cal/g mol O.sub.2 or less is described. The method comprises a sintering procedure comprising steps of elevating the temperature of a green compact comprising said at least one alloying element, sintering it in a sintering furnace and cooling it, wherein the pressure in the sintering furnace is maintained at between about 0.2 and 500 Torr by supplying a reducing gas during at least a part of the sintering procedure under reduced pressure.
    Type: Grant
    Filed: December 6, 1985
    Date of Patent: September 30, 1986
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nobuhito Kuroishi, Mitsuo Osada, Akio Hara
  • Patent number: 4610726
    Abstract: A cermet is produced by providing a bulk reaction mixture of particulate reactants plus elemental metal, which reaction mixture is in admixture with a ceramic diluent that is the same as ceramic material formed during sintering of the reaction mixture. Sintering produces a boride-oxide ceramic with the oxide being a metal oxide of the elemental metal. However, the elemental metal is present in the reaction mixture in substantial excess over that amount stoichiometrically required. Sintering is conducted under inert atmosphere, generally after pressing. The invention is particularly directed to boride-based ceramics containing aluminum, which materials are suitable as components of electrolytic cells for the production of aluminum by molten salt electrolysis.
    Type: Grant
    Filed: June 29, 1984
    Date of Patent: September 9, 1986
    Assignee: Eltech Systems Corporation
    Inventor: Harry L. King
  • Patent number: 4609525
    Abstract: The composite according to the invention is prepared by milling an atomized silver, two metal oxide alloy powder dry or wet in a mill in order to reduce its particle size and deform its particle shape. Subsequently an internal oxidation of the powder is carried out in two stages, at a first temperature range between 673.degree. K. and 773.degree. K. for two to six hours and in a second temperature range between 873.degree. K. and 1073.degree. K. for 0.5 to 2 hours. The internally oxidized powder is pressed into molded parts and these are densified by sintering in a temperature range between 973.degree. K. and 1173.degree. K. in air or a neutral atmosphere and by coining.
    Type: Grant
    Filed: November 15, 1985
    Date of Patent: September 2, 1986
    Assignee: Siemens Aktiengesellschaft
    Inventors: Horst Schreiner, Bernhard Rothkegel
  • Patent number: 4604260
    Abstract: A solid electrolytic capacitor is made with an Aluminum-titanium body. Aluminum and titanium powders are press-molded into a body which is then heated sufficiently to provide a porous Al-Ti alloy with an oxide layer. Next, the body is heated in an atmosphere containing at least 0.1% by volume of oxygen at a temperature in the range of about 500.degree.-700.degree. C. Thereafter, a layer of manganese dioxide is formed over the oxide layer and a cathode electrode layer is then formed over the manganese dioxide layer.
    Type: Grant
    Filed: May 22, 1985
    Date of Patent: August 5, 1986
    Assignee: NEC Corporation
    Inventors: Shigeaki Shimizu, Yoshio Arai
  • Patent number: 4602955
    Abstract: A composite material sensitive to weak variations of oxygen pressure at a low temperature, of the type containing microscopic particles of an ionic conductor of oxygen ions contained in a solid solution, in tetravalent metal oxides, oxides of other metals with a valence less than four, other than the said of such a solid solution, the material contains discrete microscopic particles of an electronic conductor.
    Type: Grant
    Filed: December 31, 1984
    Date of Patent: July 29, 1986
    Assignee: Electricite de France
    Inventors: Michel Gouet, Dominique Especel, Marianne Goge
  • Patent number: 4602954
    Abstract: A method of producing metallic strip containing discrete particles of one or more additional metallic or non-metallic materials dispersed therein, includes the step of forming a homogeneous mix of ductile metallic particles and a minor proportion of metallic and/or non-metallic particles having chemical and/or physical properties different from those of the ductile metallic particles. A slurry coating comprising a suspension of the mixed particles in a film forming cellulose derivative is deposited onto a moving support surface, dried and removed from the support surface before being subjected to rolling to effect compaction of the ductile content of the strip and sintering at a temperature at which the metallic particles coalesce to form a matrix containing particles of the additional metallic or non-metallic material(s) which either remain as discrete particles or alloy with the matrix.
    Type: Grant
    Filed: April 4, 1985
    Date of Patent: July 29, 1986
    Assignee: Mixalloy Limited
    Inventors: Idwal Davies, John Bellis
  • Patent number: 4602956
    Abstract: Composite cermets having a central core of a first cermet composition and one or more surrounding layers of different cermet compositions are formed by a multi-step pressing operation, followed by sintering. A tungsten/alumina or molybdenum/alumina composite cermet is useful as an end closure for alumina arc tubes of metal halide discharge lamps.
    Type: Grant
    Filed: December 17, 1984
    Date of Patent: July 29, 1986
    Assignee: North American Philips Lighting Corporation
    Inventors: Deborah P. Partlow, Shih-Ming Ho
  • Patent number: 4599277
    Abstract: In a process for sintering a metal member bonded to a substrate during which the metal member undergoes densification at a temperature which is different from the curing temperature of the substrate, an improvement is provided which comprises causing the densification temperature of the metal member to be closer to or identical with the curing temperature of the substrate by adding to said metal member prior to sintering an amount of organometallic compound which undergoes decomposition before the densification temperature of the metal member has been reached to provide under the sintering conditions employed a densification temperature-modifying amount of a metal or metal oxide which can be the same as or different from the metal of the aforesaid metal member.The improved sintering process of the present invention is particularly adapted for use in the fabrication of multilayer ceramic substrates which serve as circuit modules for seminconductor chips.
    Type: Grant
    Filed: October 9, 1984
    Date of Patent: July 8, 1986
    Assignee: International Business Machines Corp.
    Inventors: James M. Brownlow, Robert Rosenberg
  • Patent number: 4599214
    Abstract: Disclosed are extruded dispersion strengthened metallic materials which are substantially free of texture as well as a method for producing such materials. The method comprises extruding a billet of dispersion strengthened metallic powder material comprised of one or more metals and one or more refractory compounds said powder material having a mean grain size less than about 5 microns and whose grain size is substantially stable at the extrusion conditions, through a die having an internal contour such that the material is subjected to a natural strain rate which is substantially constant as it pass through the die.
    Type: Grant
    Filed: August 17, 1983
    Date of Patent: July 8, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventor: Michael J. Luton
  • Patent number: 4597790
    Abstract: In a method of producing unbaked agglomerates, green pellets or briquettes are produced by adding 5 to 30% of reduced iron powder, mill scale powder or iron sand and also adding a binder consisting of a cement or granulated blast furnace slag and then the green pellets or briquettes are dry cured thereby producing agglomerates having excellent reducing performance.
    Type: Grant
    Filed: May 21, 1985
    Date of Patent: July 1, 1986
    Assignee: Nippon Kokan Kabushiki Kaisha
    Inventors: Seiji Matsui, Kazuharu Yatsunami, Tsuneo Miyashita, Noboru Sakamoto
  • Patent number: 4594217
    Abstract: A process for making a strip or sheet comprising dispersion strengthened metal or dispersion strengthened metal alloy which comprises rolling directly from dispersion strengthened metal powder to a green strip or sheet density of from at least 90% to 95% of theoretical density, sintering the green strip or sheet in an inert atmosphere at a temperature and for a period of time sufficient to form a rigid body; reducing the thickness of the strip or sheet by at least 25% by cold rolling or hot rolling and resintering at sintering temperature of at least about 1800.degree. F. for 40 to 75 or more minutes.
    Type: Grant
    Filed: March 7, 1985
    Date of Patent: June 10, 1986
    Assignee: SCM Corporation
    Inventor: Prasanna K. Samal
  • Patent number: 4588552
    Abstract: Manufacture of a workpiece from a creep-resistant nickel superalloy which is hardened by means of an oxide dispersion, by a powder-metallurgical process in which the mechanically alloyed powder is subjected to an isothermal or quasi-isothermal hot-rolling operation, in the course of which the powder particles are converted into a flake-shaped form with a pronounced longitudinal axes, and the rolled powder is introduced into a steel container and is compressed by isostatic hot-pressing. The workpiece is afterwards subjected to an annealing treatment which is designed to develop a coarse grain size. A preferred embodiment comprises the introduction of the powder into the mold or container in an oriented manner, in order to obtain a stratified packing of the powder, and an annealing treatment which is designed to develop a coarse grain size and is performed as a zone-annealing treatment.
    Type: Grant
    Filed: November 1, 1984
    Date of Patent: May 13, 1986
    Assignee: BBC Brown, Boveri & Co., Ltd.
    Inventors: Gunther Schroder, Robert Singer
  • Patent number: 4585618
    Abstract: A cermet is produced by providing a bulk reaction mixture of particulate reactants which react to produce a self-sustaining ceramic body, and carrying out the reaction with the bulk reaction mixture in contact with molten metal which moderates the reaction and infiltrates the resulting ceramic body. The method is particularly applicable for boride-based ceramics infiltrated with aluminum, suitable as components of electroytic cells for the production of aluminum by molten salt electrolysis.
    Type: Grant
    Filed: February 15, 1984
    Date of Patent: April 29, 1986
    Assignee: ELTECH Systems Corporation
    Inventors: Jean-Marie Fresnel, Pierre-Etienne Debely, Jean-Pierre Waefler
  • Patent number: 4569693
    Abstract: The invention relates to an improvement of the flowability and an increase in the bulk density of high-surface area valve metal powders by means of the addition of finely divided extraneous metal oxides in quantities of up to 5000 ppm, relative to the quantity of metal, before the powder-metallurgical processing of the valve metal powder.
    Type: Grant
    Filed: August 22, 1983
    Date of Patent: February 11, 1986
    Assignee: Hermann C. Starck Berlin
    Inventors: Wolf-Wigand Albrecht, Axel Hoppe, Uwe Papp, Rudiger Wolf
  • Patent number: 4557893
    Abstract: A process for producing composite materials which comprises subjecting particles of a malleable matrix material, i.e., a metal or alloy or the components of a matrix alloy and particles of a reinforcing material such as a carbide or an oxide or an intermetallic to energetic mechanical milling under circumstances to insure the pulverulent nature of the mill charge so as to enfold matrix material around each of said reinforcing particles to provide a bond between the matrix material and the surface of the reinforcing particle. The process is exemplified by the use of aluminum alloy as the matrix material and silicon carbide as the reinforcing particles. Reinforcing particles are present in an amount of about 0.2 to about 30 volume percent of total matrix and reinforcing particles. The invention is also directed to the product of the process.
    Type: Grant
    Filed: June 24, 1983
    Date of Patent: December 10, 1985
    Assignee: INCO Selective Surfaces, Inc.
    Inventors: Arun D. Jatkar, Alfred J. Varall, Jr., Robert D. Schelleng
  • Patent number: 4541985
    Abstract: Process for the preparation of a composite material incorporating an inorganic matrix in which are distributed inclusions of carbon-containing material, where it comprises the following stages:(a) mixing an inorganic powder with a liquid or viscous resin, which can be transformed into vitreous carbon by heat treatment,(b) subjecting the mixture of resin and inorganic powder to a first heat treatment performed under conditions such that the resin is hardened by crosslinking or polycondensation, and(c) subjecting the thus obtained hardened product to a second heat treatment for transforming the resin into vitreous carbon and thus forming said vitreous carbon inclusions.The composite material obtained comprises a copper matrix in which are uniformly and homogeneously dispersed vitreous carbon inclusions, the vitreous carbon content being at the most 8% by weight.The material is used in the production of electric contacts.
    Type: Grant
    Filed: July 26, 1982
    Date of Patent: September 17, 1985
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jacques Devillard, Jean Granier
  • Patent number: 4537323
    Abstract: Boron, oxygen, or a mixture thereof, is used as a sintering aid in sintering Mo-Ti alloys. Compounds formed between these sintering aids and the Mo or Ti have thermal expansion coefficients consistent with that of alloys of Mo and Ti. An hermetic member may be made using these constituents. The hermetic member may be used to seal an assembly such as a high pressure sodium lamp.
    Type: Grant
    Filed: January 9, 1984
    Date of Patent: August 27, 1985
    Assignee: GTE Laboratories Incorporated
    Inventors: Brian M. Ditchek, Thomas R. Middleton
  • Patent number: 4532106
    Abstract: A dispersion-strengthened aluminum-base alloy system is provided which is prepared by mechanical alloying and is characterized by high strength, high elastic modulus, low density and high corrosion resistance. The alloy system is comprised, by weight, of at least above 1.5% up to about 3% Li, about 0.4% up to about 1.5% O, about 0.25% up to about 1.2% C, and the balance essentially Al.
    Type: Grant
    Filed: July 31, 1980
    Date of Patent: July 30, 1985
    Assignee: Inco Alloys International, Inc.
    Inventor: Joseph R. Pickens
  • Patent number: 4526616
    Abstract: A load-bearing thermal insulator, for example a brake piston thrust transmission element, which comprises platelets or flakes of thermally insulating material dispersed in a metal matrix and oriented normal to the direction of heat flow so as to impede the flow of heat through the matrix in one direction.
    Type: Grant
    Filed: July 12, 1983
    Date of Patent: July 2, 1985
    Assignee: Dunlop Limited
    Inventors: Thomas G. Fennell, Ronald Fisher
  • Patent number: 4517155
    Abstract: Copper end terminations of excellent electrical and mechanical properties are provided on multielectrode ceramic capacitors by applying copper, glass frit metallizations to the ends of a ceramic capacitor and firing the applied metallization in an atmosphere of nitrogen which contains a controlled partial pressure of oxygen.
    Type: Grant
    Filed: May 3, 1984
    Date of Patent: May 14, 1985
    Assignee: Union Carbide Corporation
    Inventors: Sri Prakash, William B. Snyder, Jr.
  • Patent number: 4511402
    Abstract: A sintered silicon nitride products and processes for the fabrication thereof are described, wherein the product comprises from 60 to 98.9% by weight of silicon nitride, from 0.1 to 15% by weight of one or more chromium components selected from metal chromium, chromium oxide, and chromium nitride, and from 1 to 25% by weight of one or more oxides selected from oxides of rare earth elements, scandium oxide, yttrium oxide, aluminum oxide, zirconium oxide and silicon dioxide.
    Type: Grant
    Filed: August 14, 1984
    Date of Patent: April 16, 1985
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Kazunori Miura, Yoshinori Hattori, Yasushi Matsuo
  • Patent number: 4507262
    Abstract: Utilizing an organometallic precursor, a metal oxide is formed within the pores of a porous sintered blank substantially uniformly throughout the porosity of the blank producing a porous bubble pressure barrier of predetermined pore size. The barrier is integrally sintered to a face of an electrode, the median pore size of the barrier being significantly smaller than that of the electrode, producing a composite useful as an electrode in a molten carbonate fuel cell. The blank and the electrode are composed of metal.
    Type: Grant
    Filed: April 5, 1984
    Date of Patent: March 26, 1985
    Assignee: General Electric Company
    Inventors: Bradley R. Karas, Charles E. Baumgartner
  • Patent number: 4476090
    Abstract: There is described a new material for jewelry and commodities which has a relatively low density and also is low carat but resistant to oxidation and corrosion. It consists of a noble metal or alloy and 1 to 70 volume % glass, whereby as glass there is used a glass frit having a transformation temperature of 300.degree. to 500.degree. C. and a softening interval of over 80.degree. C. There is also described a process for its production.
    Type: Grant
    Filed: May 7, 1984
    Date of Patent: October 9, 1984
    Assignee: Degussa Aktiengesellschaft
    Inventors: Horst Heidsiek, Gernot Jackel
  • Patent number: 4451429
    Abstract: A method of reclaiming precious metal incidentally sputtered into vacuum chamber walls, fixtures, and the like. The incidentally sputtered precious metal is reclaimed by grinding it into a metal powder that is useful as an electrical conductor in a cermet ink. Power can also be made by pulverizing the principally sputtered metal too.
    Type: Grant
    Filed: July 8, 1982
    Date of Patent: May 29, 1984
    Assignee: General Motors Corporation
    Inventor: Morris Berg
  • Patent number: 4440572
    Abstract: A process for making a novel alloy of a dispersion strengthened copper by blending dispersion strengthened copper powder and a powdered modifying metal, heat treating the blend to form the alloy, and the compacting and working the compact to densify it.
    Type: Grant
    Filed: June 18, 1982
    Date of Patent: April 3, 1984
    Assignee: SCM Corporation
    Inventors: Anil V. Nadkarni, Prasanna K. Samal
  • Patent number: 4426598
    Abstract: Substantially completely deoxidized dispersion strengthened copper leads in incandescent electric lamps.
    Type: Grant
    Filed: February 2, 1982
    Date of Patent: January 17, 1984
    Assignee: SCM Corporation
    Inventor: Charles I. Whitman
  • Patent number: 4426356
    Abstract: A process for making capacitors using electrode compositions of finely divided particles of noble metals and certain inorganic metal oxides dispersed in an inert organic medium. Suitable inorganic metal oxides are MoO.sub.3, GeO.sub.2, Pb.sub.5 Ge.sub.3 O.sub.11, Nb.sub.2 O.sub.5, NiO, ZnO, SnO.sub.2, CdO, metal phosphates, metal fluorides, phosphate glasses, germanate glasses, fluoride glasses and mixtures and precursors thereof.
    Type: Grant
    Filed: September 30, 1982
    Date of Patent: January 17, 1984
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Kumaran M. Nair
  • Patent number: 4400213
    Abstract: Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value.
    Type: Grant
    Filed: February 3, 1981
    Date of Patent: August 23, 1983
    Inventor: Haskell Sheinberg
  • Patent number: 4386960
    Abstract: Electrode material composed of metal encapsulated substrate particles for making into an electrode for a molten carbonate fuel cell is produced by electroless plating of a metal electrochemically active for the reactions of the cell onto a substrate particle which is non-sintering at the operating temperatures of the cell.
    Type: Grant
    Filed: August 24, 1981
    Date of Patent: June 7, 1983
    Assignee: General Electric Company
    Inventors: Charles D. Iacovangelo, Kenneth P. Zarnoch
  • Patent number: 4383855
    Abstract: The present invention is directed to a method for making a wide variety of general-purpose cermets and for radioactive waste disposal from ceramic powders prepared from urea-dispersed solutions containing various metal values. The powders are formed into a compact and subjected to a rapid temperature increase in a reducing atmosphere. During this reduction, one or more of the more readily reducible oxides in the compact is reduced to a selected substoichiometric state at a temperature below the eutectic phase for that particular oxide or oxides and then raised to a temperature greater than the eutectic temperature to provide a liquid phase in the compact prior to the reduction of the liquid phase forming oxide to solid metal. This liquid phase forms at a temperature below the melting temperature of the metal and bonds together the remaining particulates in the cermet to form a solid polycrystalline cermet.
    Type: Grant
    Filed: April 1, 1981
    Date of Patent: May 17, 1983
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: W. Scott Aaron, Donald L. Kinser, Thomas C. Quinby
  • Patent number: 4379003
    Abstract: Magnetic material is made by reducing an oxide powder compact having at least one nonreducible oxide species. A typical mixture of nickel, iron, and aluminum oxides selectively reduces to form a material having a typical permeability of 10 or more and high resistivity. Reduced eddy current losses occur in devices made from such material.
    Type: Grant
    Filed: July 30, 1980
    Date of Patent: April 5, 1983
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: Murray Robbins, Richard C. Sherwood