Heat And Pressure Simultaneously To Effect Sintering Patents (Class 419/48)
  • Patent number: 5043137
    Abstract: This invention relates to a method and a device to produce a coating from metal powder metallurgically bonded to a metallic part, said metal powder being compacted over the surface of said metallic part to form the coating using cold isostatic pressing, then coupling an open metallic container to the coating leaving a space between said open metallic container and said coating, completely filling the space between the metallic container and the coating with a ceramic material and sealing, so that the ceramic material exerts pressure due to the thermal expansion over the coating during the heating in a sintering furnace in order to get a metallurgical bond between the metallic part and the coating and simultaneously sintering the coating to achieve the desirable the desirable thickness and the required properties.
    Type: Grant
    Filed: February 6, 1991
    Date of Patent: August 27, 1991
    Assignee: Instituto Mexicano de Investigaciones Siderugrgicas
    Inventors: Arturo Lazcano-Navarro, Gregorio Vargas-Gutierrez, Andres Geronimo-Torres, Francisco M. Flores-Malacara
  • Patent number: 5043320
    Abstract: A powder-in-tube method is disclosed for making a composite superconducting oxide wire which comprises loading a copper tube with a mixture composed of rare earth metal oxide, BaO.sub.2 and copper oxide or the finished superconductor powder and subjecting the loaded tube to drawing and a heat treatment at a temperature of up to 950.degree. C., wherein prior to loading the copper tube, the tube is oxidized at least on its inside to form a copper oxide layer having a thickness of 1 to 100 .mu.m and then a silver intermediate layer is inserted to the oxidized copper tube.
    Type: Grant
    Filed: February 20, 1990
    Date of Patent: August 27, 1991
    Assignee: Asea Brown Boveri AG
    Inventors: Gundolf Meyer, Erwin Schonfeld, Clemens Verpoort
  • Patent number: 5041416
    Abstract: A superconductor metal matrix composite formable into an electrical current carrying material. A superconductive particulate is intermixed with a normal metal matrix, pressed into form and heated to form the composite. The metal matrix surrounds the superconductive particulate to prevent loss of oxygen from the superconductive particulate so the particulate retains its superconductive properties. The metal matrix also becomes superconductive due to proximity effect.
    Type: Grant
    Filed: October 16, 1990
    Date of Patent: August 20, 1991
    Assignee: FMC Corporation
    Inventor: Charles N. Wilson
  • Patent number: 5030277
    Abstract: A method for fabricating a titanium aluminide composite structure consisting of a filamentary material selected from the group consisting of silicon carbide, silicon carbide-coated boron, boron carbide-coated boron, titanium boride-coated silicon carbide and silicon-coated silicon carbide, embedded in an alpha-2 titanium aluminide metal matrix, which comprises the steps of providing a first beta-stabilized Ti.sub.3 Al powder containing a desired quantity of beta stabilizer, providing a second beta-stabilized Ti.sub.3 Al powder containing a sacrificial quantity of beta stabilizer in excess of the desired quantity of beta stabilizer, coating the filamentary material with the second powder, fabricating a preform consisting of the thus-coated filamentary materials surrounded by the first powder, and applying heat and pressure to consolidate the preform.The composite structure fabricated using the method of this invention is characterized by its lack of a denuded zone and absence of fabrication cracking.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: July 9, 1991
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Daniel Eylon, William C. Revelos, Paul R. Smith, Jr.
  • Patent number: 5021085
    Abstract: The invention relates to high speed tool steels produced by powder metallurgy; to parts subject to heavy wear which are fabricated from such steel; and to a method of such fabrication. According to the invention, the part subject to heavy wear contains Nb in the amount of 2-15 wt. % and V in the amount of 1-4 wt. %, and further contains metal carbides in the amount of 10-30 vol. %; and that the lower limit of the carbon content is given by the formulaC.sub.min =0.45+0.1(%Nb)+0.20(%V),and the upper limit of the carbon content is given by the formulaC.sub.max =1.0+0.15(%Nb)+0.24(%V).In manufacturing the steel the melt of the alloying components is subjected to atomization in an overheated state (substantially above the liquidus temperature), to produce a powder.
    Type: Grant
    Filed: February 7, 1990
    Date of Patent: June 4, 1991
    Assignee: Boehler Ges m.b.H.
    Inventors: Sadi Karagoz, Bruno Hribernik, Johann Stamberger, Josef Puber, Franz Jeglitsch, Hellmut Fischmeister, Franz Matzer, Claus-Dieter Locker, Elfriede Kudielka, Heimo Jager
  • Patent number: 5019156
    Abstract: A sintered electric contact material for use in vacuum switch tubes comprises about 50 to 70% by volume of a Cr powder, about 0.1 to 1.15% by volume of a Ti powder, and the remainder of a Cu powder. The sintered material can be obtained advantageously by heating a mixture of the Cr powder, the Ti powder and the Cu powder in a non-oxidizing atmosphere under pressure, at a temperature below the melting point of Cu (the melting point is 1083.degree. C. at normal pressure).
    Type: Grant
    Filed: May 17, 1990
    Date of Patent: May 28, 1991
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Eizo Naya, Mitsuhiro Okumura
  • Patent number: 5017217
    Abstract: A method for manufacturing ceramic/metal or ceramic/ceramic composite articles is disclosed. The articles can be useful for the production of aluminum in fused salt electrolysis cells, as armor plates for the protection against projectiles, cutting tools, or in abrasion resistance applications. The temperature slope of the process if optimized such that one of the reactants in the manufacturing proceeds through peritectic decomposition at a heating rate of low temperature increase for desirably uniform temperature distribution over the reaction mixture. Then the temperature increase is greatly elevated to obtain a reaction sintering condition for avoiding grain growth of undesired reaction products. Elevated temperature reaction sintering conditions can be maintained to decompose undesired components before they are entrapped by the reaction product.
    Type: Grant
    Filed: August 21, 1990
    Date of Patent: May 21, 1991
    Assignee: Eltech Systems Corporation
    Inventors: Thomas M. Clere, Gholamreza J. Abbaschian, Douglas J. Wheeler, Albert L. Barnes
  • Patent number: 5015440
    Abstract: Light weight refractory aluminides, such as Al.sub.3 Nb and related aluminides may be produced from metallic powders by a high temperature exothermic reaction of refractory metals with molten aluminum. Mixtures of refractory metals and aluminum may be prepared and densified by powder metalurgy techniques. Applicant's process permits near net formations of stock shapes and parts by conducting the reaction in situ in a die.
    Type: Grant
    Filed: September 1, 1989
    Date of Patent: May 14, 1991
    Assignee: McDonnell Douglas Corporation
    Inventor: David M. Bowden
  • Patent number: 5015290
    Abstract: An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.
    Type: Grant
    Filed: October 12, 1989
    Date of Patent: May 14, 1991
    Assignee: The Dow Chemical Company
    Inventors: Terry N. Tiegs, Robert R. McDonald
  • Patent number: 5011655
    Abstract: The invention provides a method of manufacturing a thin metallic body composite structure. First, an inner layer of a first metal is cleaned to remove oxides and promote metallurgical bonding. The inner layer has a plurality of penetrating holes piercing the thickness of the inner layer. The penetrating holes are filled with metal powder of a second metal. Two outer layers of the second metal are placed on opposite sides of the cleaned and filled inner layer to form a sandwich structure. The sandwich structure is heated to a temperature at which recrystallization will occur in a non-oxidizing atmosphere. The sandwich structure is then hot worked to reduce thickness of the sandwich structure forming the thin metallic body composite structure.
    Type: Grant
    Filed: December 22, 1989
    Date of Patent: April 30, 1991
    Assignee: INCO Alloys International, Inc.
    Inventor: William L. Mankins
  • Patent number: 5002727
    Abstract: Composite magnetic compacts having good conductivity and excellent mechanical and magnetic properties and their forming methods. The composite magnetic compacts are basically made by forming mixtures consisting essentially of 1 to 50 percent by weight of a magnetic powder and the remaining percentage of a powder of superplastic Zn-22Al alloy. A drop in the strength of the compacts that occurs when the mixing percentage of the magnetic powder increases is made up for by the impregration of plastic in the compacts or the simpler addition of a plastic powder to the mixture of the powders of magnetic material and superplastic Zn-22Al alloy. The forming methods of the composite magnetic compacts are carried out at different temperatures and under different conditions depending on the composition of the powder mixtures and so on.
    Type: Grant
    Filed: May 7, 1990
    Date of Patent: March 26, 1991
    Assignee: Agency of Industrial Science and Technology
    Inventors: Kunio Okimoto, Tomio Sato, Toshio Yamakawa, Nanao Horiishi
  • Patent number: 5000781
    Abstract: The invention provides an aluminum based alloy consisting essentially of the formula Al.sub.bal Fe.sub.a X.sub.b, wherein X is at least one element selected from the group consisting of Zn, Co, Ni, Cr, Mo, V, Zr, Ti, Y and Ce, "a" ranges from about 7-15 wt %, "b" ranges from about 2-10 wt % and the balance is aluminum. The alloy has a predominately microeutectic microstructure. The invention also provides a method and apparatus for forming rapidly solidifed metal, such as the metal alloys of the invention, within an ambient atmosphere. Generally stated, the apparatus includes a moving casting surface which has a quenching region for solidifying molten metal thereon. A reservoir holds molten metal and has orifice means for depositing a stream of molten metal onto the casting surface quenching region. A heating mechanism heats the molten metal contained within the reservoir, and a gas source provides a non-reactive gas atmosphere at the quenching region to minimize oxidation of the deposited metal.
    Type: Grant
    Filed: November 28, 1988
    Date of Patent: March 19, 1991
    Assignee: Allied-Signal Inc.
    Inventors: David J. Skinner, Paul A. Chipko, Kenji Okazaki
  • Patent number: 5000910
    Abstract: At least two kinds of element metal or half-metal powders are mechanically alloyed in a non-oxidizing atmosphere in a blending machine. Then, the resultant mechanically alloyed powdered blend is heated and pressurized in the non-oxidizing atmosphere at a temperature higher than a minimum temperature required for generating the intermetallic compound from the element powders.
    Type: Grant
    Filed: January 24, 1990
    Date of Patent: March 19, 1991
    Assignees: Masaharu Tokizane, Siro Hagishita
    Inventors: Masaharu Tokizane, Kei Ameyama, Haruhiko Sugimoto
  • Patent number: 4999338
    Abstract: Subject a heated, non-molten, intimate admixture of a base metal and a superconducting oxide material to pressure sufficient to form a densified article. The densified article is either superconducting as formed or capable of being rendered superconducting by annealing in the presence of oxygen. Depending upon the choice of materials the densified article is stable at temperatures up to 1000.degree. C.
    Type: Grant
    Filed: February 23, 1990
    Date of Patent: March 12, 1991
    Assignee: The Dow Chemical Company
    Inventors: Sunil D. Wijeyesekera, Robert H. Heistand, II
  • Patent number: 4992238
    Abstract: Process for shaping and improving the mechanical properties of blanks produced by powder metallurgy from an alloy with increased high-temperature strength by extrusion, and the deformation is successively performed in at least two temperature ranges different from one another or in two phases, in that the blank (2) is first reduced in its cross section at a temperature T.sub.1 and then is either agin reduced in at a lower temperature T.sub.2 or is deformed at a temperature T.sub.3 under counterpressure so that its cross section is further widened. T.sub.3 can be smaller than or equal to T.sub.1.
    Type: Grant
    Filed: July 28, 1989
    Date of Patent: February 12, 1991
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Malcolm Couper, Reinhard Fried
  • Patent number: 4989153
    Abstract: A sintering machine for applying heat and pressure to a die retained between two plate sets, includes a temperature sensor, a position sensor and a pressure sensor which are all connected to a computer for sensing the temperature of and pressure applied to the die, as well as the position of a movable one of the plate sets. This information is used to control a power supply unit which supplies current through the die to heat the die, and a hydraulic press for moving the movable one of the plate sets. Pressure and temperature are controlled in a discontinuous fashion during discrete intervals until a selected final temperature and pressure are reached. This more closely controls the sintering process over earlier systems which applied continously increasing temperature and pressure to the die.
    Type: Grant
    Filed: August 19, 1988
    Date of Patent: January 29, 1991
    Assignee: Sintris S.r.L.
    Inventor: Giuseppe Bonvini
  • Patent number: 4985401
    Abstract: A superconductor is produced by electric discharge explosion flame spraying of a composite body of constituents of an immiscible alloy. The electrically discharged composite body is deposited on a substrate and the resultant alloy is oxidized to yield an oxide of the alloy having superconductive property. This process can be applied to the Ln-Ba-Cu system (Ln is at least one of the rare earth elements including Y), typically the Y.sub.1 Ba.sub.2 Cu.sub.3 - or Y.sub.2 Ba.sub.4 Cu.sub.8 system, or other immiscible alloy systems such as the Bi-(Ca, Sr)-Cu system to form an oxide thereof.
    Type: Grant
    Filed: February 24, 1989
    Date of Patent: January 15, 1991
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Akira Sawaoka, Ryuichi Matsuda, Tadashi Kondo
  • Patent number: 4983572
    Abstract: A superconductive body of an oxidic superconductive material having good mechanical properties is characterized in that the oxidic material forms a matrix through which finely divided particles are mixed at least the surface of which consists of a metal or a metal alloy. Particles in the form of fibres are preferably used and the surface of the particles consists of silver or gold.
    Type: Grant
    Filed: August 25, 1988
    Date of Patent: January 8, 1991
    Assignee: U.S. Philips Corporation
    Inventor: Gijsbertus De With
  • Patent number: 4980126
    Abstract: A single step is relied on in the canning process for hot isostatic pressing metallurgy composites. The composites are made from arc-sprayed and plasma sprayed monotape. The HIP can is of compatible refractory metal and is sealed at high vacuum and temperature. This eliminates out-gassing during hot isostatic pressing.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: December 25, 1990
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: John J. Juhas
  • Patent number: 4973356
    Abstract: The present invention relates to a method of preparing an alloy for use as a cutting tool material comprising hard principles and binder phase by which a uniform distribution of the hard principles in the binder phase is obtained, and the resulting product.
    Type: Grant
    Filed: October 23, 1989
    Date of Patent: November 27, 1990
    Assignee: Sandvik AB
    Inventors: Peder von Holst, Hakan Morberg, Rolf Oskarsson
  • Patent number: 4965043
    Abstract: A method of powder-metallurgical production of objects, specifically tubes, rods, or the like, wherein a metal and/or metal alloy powder is charged into a thin-walled capsule is provided. The capsule is closed and exposed to a cold-isostatic pressure so as to form a compression of the capsule for subsequent hot-working, specifically hot extrusion. Prior to the cold-isostatic pressure, a mixture of nitrogen and hydrogen is introduced into the capsule together with the powder of metal and/or metal alloys. Simultaneously, pre-compaction of the powder is created by way of vibration or the like, to a density of approximately 60 t0 80% such as, in particular 70% of the theoretical density. After the cold-isostatic pressing step, the capsule is subjected to porosity or leakage testing in a vacuum chamber to monitor or establish the escape of hydrogen. Non-leaking capsules or pressings are then heated and subjected to hot-working such as hot extrusion.
    Type: Grant
    Filed: January 23, 1989
    Date of Patent: October 23, 1990
    Assignee: Avesta Nyby Powder AB
    Inventor: Claes Tornberg
  • Patent number: 4961902
    Abstract: A method for manufacturing ceramic/metal or ceramic/ceramic composite articles is disclosed. The articles can be useful for the production of aluminum in fused salt electrolysis cells, as armour plates for the protection against projectiles, cutting tools, or in abrasion resistance applications. The temperature slope of the process if optimized such that one of the reactants in the manufacturing proceeds through peritectic decomposition at a heating rate of low temperature increase for desirably uniform temperature distribution over the reaction mixture. Then the temperature increase is greatly elevated to obtain a reaction sintering condition for avoiding grain growth of undesired reaction products. Elevated temperature reaction sintering conditions can be maintained to decompose undesired components before they are entrapped by the reaction product.
    Type: Grant
    Filed: January 6, 1987
    Date of Patent: October 9, 1990
    Assignee: Eltech Systems Corporation
    Inventors: Thomas M. Clere, Gholamreza J. Abbaschian, Douglas J. Wheeler, Albert L. Barnes
  • Patent number: 4950450
    Abstract: A method of making high energy Nd-Fe-B magnets having a mass less than 30 grams wherein an alloy of said materials having a grain size less than that desired in the finished magnet is first prepared and subsequently hot worked to the desired configuration with increased magnetic properties and density by introducing into a cavity formed by a die and punch a Nd-Fe-B alloy powder having a particle size of from 45 .mu.m to 250 .mu.m and a grain size of from 100 to 1500 angstroms, compressing the powder at a temperature of from about 550.degree. C. to 750.degree. C. under a die-punch pressure of at least 10 kpsi under a vacuum of less than 200 millitorr to achieve a permanent magnet having a remanence of at least 7 kilogauss.
    Type: Grant
    Filed: July 21, 1988
    Date of Patent: August 21, 1990
    Assignee: Eastman Kodak Company
    Inventors: Dilip K. Chatterjee, Thomas W. Martin, Paul D. Askins
  • Patent number: 4943320
    Abstract: A process for preparing ceramic-metal composites without melting the metal is disclosed. A compact or green body is made from a ceramic and a metal, and the compact is sealed in a vacuum in a container such as a glass envelope. The compact is then heated to a temperature below the melting point of the metal, but high enough so that the vapor pressure of the metal is significant, and the metal redistributes through the ceramic by evaporation and condensation. The composite thereby forms a body having ceramic particles uniformly coated by the metal. Products formed by the process and fabrication of a B.sub.4 C/Cr composite are also disclosed.
    Type: Grant
    Filed: December 15, 1988
    Date of Patent: July 24, 1990
    Assignee: The Regents of the University of California
    Inventors: Alexander Pechnik, M. Dean Matthews
  • Patent number: 4943319
    Abstract: Disclosed is herein a process for producing a molding product of Al or Cu composite material, which comprises admixing a functional material capable of improving the desired property of the composite material by dispersion into a matrix to a powder of metal selected from Al, Cu or alloys thereof constituting the matrix, charging the dust directly into a molding die, applying cold dust core molding under the pressure of greater than 5 t/cm.sup.2 of facial pressure and applying a diffusing treatment at a temperature higher than 300.degree. C.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: July 24, 1990
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Masahiro Yanagawa, Mutsumi Abe, Kenichi Aota, Takashi Motoda
  • Patent number: 4941920
    Abstract: A sintered target member consisting essentially of 50-75 weight % of Co, 3-12 weight % of Cr and balance substantially Ni, which has a structure comprising dispersion phases consisting essentially of one or more elements constituting the target member and having a maximum permeability of 50 or less. This target member is produced by mixing metal or alloy powders corresponding to low-permeability dispersion phases, charging the resulting mixture into a metal container; sealing the metal container under reduced pressure; sintering it at a temperature of 900.degree.-1300.degree. C. and pressure of 500 atm or more; and removing the metal container from the resulting sintered body.
    Type: Grant
    Filed: November 23, 1988
    Date of Patent: July 17, 1990
    Assignee: Hitachi Metals, Ltd.
    Inventors: Tsutomu Inui, Shun-ichiro Matsumoto, Rokuo Ichiyasu, Takeo Mizuguchi
  • Patent number: 4940404
    Abstract: A method of making a tungsten tantalum material comprising generally 80 percent by weight tungsten and 20 percent by weight tantalum and forming the material into a high strength full density round bar, which can be utilized in a high velocity armor penetrator.
    Type: Grant
    Filed: April 13, 1989
    Date of Patent: July 10, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Robert L. Ammon, Raymond W. Buckman, Jr., Ram Bajaj
  • Patent number: 4935198
    Abstract: Method of and apparatus for powder-metallurgical manufacture of tubes or like elongated profiles, in which metal and/or metal alloy powder (3) is filled--if applicable with pre-compacting by means of vibrations or the like--into a thin-walled capsule, the latter is subsequently closed and cold and/or hot-pressed by means of universally acting isostatic pressure, and the thus obtained compact is further processed, especially extruded. For forming the tubular compact, the capsule filled with powder (3) after closing (cover 9; 9'; 9") and isostatic pressing is centrally pierced (hole 26) by means of a mandrel (4, 5) whereby the powder (3) is correspondingly radially compacted from the inside towards the outside. The capsule features a cylindrical outer casing (8), a bottom (14) and a cover (9; 9'; 9").
    Type: Grant
    Filed: April 29, 1988
    Date of Patent: June 19, 1990
    Assignee: Avesta Nyby Powder AB
    Inventor: Claes Tornberg
  • Patent number: 4931213
    Abstract: A process for producing a ceramic material which is electrically conductive by reacting titanium dioxide with intercalated graphite under conditions which effect the reduction of the titanium dioxide, said product comprising an electrically conductive, corrosion-resistant, substoichiometric titanium dioxide combined chemically with an intercalant or residue thereof, for example, a metal such as copper or nickel, and the use thereof in thermal, electrical and electro-chemical applications.
    Type: Grant
    Filed: January 23, 1987
    Date of Patent: June 5, 1990
    Inventor: Richard B. Cass
  • Patent number: 4931253
    Abstract: A method for producing a titanium alloy powder metallurgy article having high resistance to loading and creep at high temperature is described and comprises the steps of simultaneously pressing a preselected quantity of titanium alloy powder at from 15 to 60 ksi and heating the powder to a temperature just below the beta transus temperature of the alloy to promote beta to alpha phase transformation in the alloy, and then slowly cooling the compacted powder under pressure.
    Type: Grant
    Filed: August 7, 1989
    Date of Patent: June 5, 1990
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Daniel Eylon, Francis H. Froes, Gerhard Welsch
  • Patent number: 4929394
    Abstract: A process for compacting radioactive waste by precompressing the waste in each of capsules while filling the waste into the capsule to thereby compress the waste to the desired bulk/true density ratio under a small total pressing load and diminish damage to the inner surface of the die used, each of the capsules having a cross sectional form corresponding to a divided segment of the cross section of an HIP treatment container, then placing the capsules into the HIP treatment container, subsequently filling the HIP treatment container with a metal powder as a filler, thereafter degassing and sealing the HIP treatment container and subjecting the container to an HIP treatment in its entirety. The process precludes scattering of the radioactive substance from the waste and release of waste fragments to assure improved safety.
    Type: Grant
    Filed: January 31, 1989
    Date of Patent: May 29, 1990
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Doryokuro Kakunenryo Kaihatsu Jigyodan
    Inventors: Kazuo Kitagawa, Fumiaki Komatsu, Takayoshi Masaki, Yoshihisa Sawada, Eiichi Inada, Masao Shiatsuki
  • Patent number: 4929596
    Abstract: Production of a sheathed wire or multiple-filament conductor composed of ceramic high-temperature superconductor by mixing Y.sub.2 O.sub.3, CuO and BaO.sub.2 or BaO.sub.2 +BaO, loading the powder mixture (3) into the interior of a metal sheath (1) lined with Ag intermediate layer (2), slowly heating to a maximum permissible reaction/sintering temperature of 950.degree. C. in a period of at least 0.1 h, holding the sintering temperature for at least 1 h, cooling down to 200.degree. C. at at most 10.degree. to 100.degree. C./h to form a conducting core (4) composed of YBa.sub.2 Cu.sub.3 O.sub.6.5-7.5. Variants having a layer composed of CuO, diffusion barrier composed of Ni, Ta, Nb, V or having Ag intermediate layer doped with AgO or BaO.sub.2. Preferably reactive sintering under a pressure of 10 to 10.000 bar as hot isostatic pressing. Variant: reactive annealing of the powder mixture under oxygen pressure of 10 to 3000 bar at 600.degree. to 950.degree. C.
    Type: Grant
    Filed: July 18, 1988
    Date of Patent: May 29, 1990
    Assignee: Asea Brown Boveri AG
    Inventors: Gundolf Meyer, Erwin Schonfeld, Clemens Verpoort
  • Patent number: 4921664
    Abstract: Method for producing a heat-resistant aluminum-alloy workpiece having high transverse ductility which is manufactured from a compact produced by powder metallurgy, in which alloy powders are first cold-isostatically pressed under a pressure of 1500 to 5000 bar and the extrusion billet (2) produced in this manner is hot-recompacted and extruded to form a bar (7) with rectangular cross-section. Reduction ratio at least 6:1. A prismatic bar section (8) is separated from the bar (7) and is converted without further hot deformation and solely by machining into the final product in a manner such that the mechanical main load directions of the final product position themselves in a plane which is parallel to the plane which is extended through the extrusion direction and the longitudinal axis of the cross-section of the bar (7).
    Type: Grant
    Filed: February 8, 1989
    Date of Patent: May 1, 1990
    Assignee: Asea Brown Boveri Ltd.
    Inventor: Malcolm Couper
  • Patent number: 4917722
    Abstract: A method for producing a single crystal of chromium is disclosed, comprising sintering a chromium molding to thereby apply thereto a thermal strain and heat treating the resulting thermally strained chromium molding. The method achieves high efficiency of crystal growth and produces a single-crystal chromium molding of complicated shape.
    Type: Grant
    Filed: May 18, 1989
    Date of Patent: April 17, 1990
    Assignee: Tosoh Corporation
    Inventors: Tsutomu Kuniya, Koichi Hanawa, Tomoyuki Oikawa
  • Patent number: 4911756
    Abstract: A sintered compact is obtained by sintering a mixture containing about 50 to 75 percent by volume of cubic boron nitride and about 25 to 50 percent of a binder under cBN-stable superhigh pressure conditions. The binder contains about 20 to 50 percent by weight of Al and one or more Ti compounds selected from the group consisting of TiN.sub.z, Ti(C,N).sub.z, TiC.sub.2, (Ti,M)C.sub.z, (Ti,M) (C,N).sub.z and (Ti,M)N.sub.z, wherein M indicates a transition metal of the group IVa, Va or VIa of the periodic table excepting Ti, and wherein z is within a range of 0.5.ltoreq.z.ltoreq.0.85. The atomic ratio of the content of Ti to that of the transition metal M in the binder is within the range of about2/1.ltoreq.Ti/M.ltoreq.97/3.The binder further contains tungsten or one or more tungsten compounds, whereby the total tungsten concentration in the binder is about 4 to 40 percent by weight.
    Type: Grant
    Filed: August 9, 1988
    Date of Patent: March 27, 1990
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuo Nakai, Mitsuhiro Goto
  • Patent number: 4909840
    Abstract: A process for the production of a secondary powder composition having a nanocrystalline structure and being comprised of binary or quasi-binary substances composed of at least one of the elements Y, Ti, Zr, Hf, Nb, Mo, Ta and W and at least one of the elements V, Cr, Mn, Fe, Co, Ni, Cu and Pd, optionally also containing further ingredients, such as Si, Ge, B and/or oxides, nitrides, borides, carbides, and their possible mixed crystals. The components are in powdered form and are mixed in elementary form or as pre-alloys and have particle sizes ranging from 2 to 250 .mu.m. The powder components are subjected to high mechanical forces in order to produce secondary powders having a nanocrystalline structure. The secondary powders obtained in this way can be processed into molded bodies according to known compression molding processes, but at a temperature below the recrystallization temperature.
    Type: Grant
    Filed: April 7, 1988
    Date of Patent: March 20, 1990
    Assignee: Fried. Krupp Gesellschaft mit beschrankter Haftung
    Inventor: Wolfgang Schlump
  • Patent number: 4909983
    Abstract: A method of producing intermetallic phases from powdery ductile components that are mixed in a predetermined mixture ratio and are subsequently precompacted by cold pressing. Subsequently, the precompacted components are pressed, via compaction, to such an extent that the degree of deformation is greater than 80%; thereafter, the thus-produced material is thermally treated.
    Type: Grant
    Filed: July 5, 1989
    Date of Patent: March 20, 1990
    Assignee: GKSS-Forschungszentrum Geesthacht GmbH
    Inventor: Michael Dahms
  • Patent number: 4904538
    Abstract: A single step is relied on in the canning process for hot isostatic pressing powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates out-gassing during hot isostatic pressing.
    Type: Grant
    Filed: March 21, 1989
    Date of Patent: February 27, 1990
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: John J. Juhas
  • Patent number: 4889557
    Abstract: An aluminium alloy made of consolidated rapid-quenched aluminium alloy powder by using an improved metallurgical method basically comprises, by weight percent, less than 30% silicone, less than 8% iron, less than 7% copper and less than 0.2% oxygen, the balance being substantially aluminium. The consolidated rapid-quenched aluminium alloy powder has features that it contains less than 0.2% oxygen, and the material made from the rapid-quenched aluminium alloy powder has a high limit compressibility factor, rate of reduction and tensile strength. Thus the aluminium alloy material obtained is suitable for structural members such as pistons for internal combustion engines.
    Type: Grant
    Filed: March 24, 1988
    Date of Patent: December 26, 1989
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasuo Iwata, Shigenori Mae, Yoshio Urai, Takayuki Tsunoda
  • Patent number: 4885212
    Abstract: A microstructurally toughened ceramic-particle-reinforced metal-matrix composite article is disclosed. The article exhibits a complex microstructure. The article exhibits high tensile strength, high elastic modulus and high impact resistance. A process for making the article is also disclosed. The process includes positioning structural elements within a metallic container to define one or more void spaces within the container, introducing a quantity of metallic particles or of a particular mixture of metallic particles and ceramic particles into the void spaces, and consolidating the container, structural elements and particles to form the microstructurally toughened composite article.
    Type: Grant
    Filed: February 5, 1988
    Date of Patent: December 5, 1989
    Assignee: United Technologies Corporation
    Inventors: Karl M. Prewo, Vincent C. Nardone, James R. Strife
  • Patent number: 4882825
    Abstract: A method of securing a tubular member within an annular cam member for the manufacture of a cam shaft is provided, including the steps of forming a cam member from sintered materials with at least two axially extending grooves being provided in the inner surface of the cam member adjacent the portion of the cam member having the greatest thickness such that a radially projecting ridge is defined between adjacent grooves, fitting the tubular member into the cam member, supplying a working fluid to the interior of the tubular member and applying pressure to the fluid so as to expand the tubular member while maintaining substantially the same wall thickness within the cam member until the ridge bites into the outer surface of the expanding tubular member and becomes tightly engaged therewith. The pressure applied to expand the tubular member is less than that required to fully expand the tubular member along the inner surface of the cam member.
    Type: Grant
    Filed: October 28, 1987
    Date of Patent: November 28, 1989
    Assignee: Kokan Kako Co., Ltd.
    Inventor: Masanobu Nakamura
  • Patent number: 4878967
    Abstract: A rapidly solidified aluminum-base alloy consists essentially of the formula Al.sub.bal Fe.sub.a Si.sub.b X.sub.c wherein X is at least one element selected from the group consisting of Mn,V,Cr,Mo,W,Nb,Ta, "a" ranges from 2.0 to 7.5 atom percent, "b" ranges from 0.5 to 3.0 atom percent, "c" ranges from 0.05 to 3.5 atom percent and the balance is aluminum plus incidental impurities, with the proviso that the ratio {Fe+X}:Si ranges from about 2.0:1 to 5.0:1. The alloy exhibits high strength, ductility and fracture toughness and is especially suited for use in high temperature structural applications such as gas turbine engines, missiles, airframes and landing wheels.
    Type: Grant
    Filed: September 8, 1987
    Date of Patent: November 7, 1989
    Assignee: Allied-Signal Inc.
    Inventors: Colin M. Adam, Richard L. Bye, Santosh K. Das, David J. Skinner
  • Patent number: 4867806
    Abstract: Al-alloy containing Si, Fe, Cu and Mg and at least one kind of Mn and Co in the basic composition range of 8.0.ltoreq.Si.ltoreq.30.0 wt. %, 2.0.ltoreq.Fe.ltoreq.33.0 wt. %, 0.8.ltoreq.Cu.ltoreq.7.5 wt. %, 0.3.ltoreq.Mg.ltoreq.3.5 wt. %, 0.5.ltoreq.Mn.ltoreq.5.0 wt. % and 0.5.ltoreq.Co.ltoreq.3.0 wt. %, are provided in a powder state. A sindered member formed of these Al-alloys has a high strength and reveals excellent heat-resistivity and stress corrosion cracking resistivity. A structural member made of the sintered all-alloy is manufactured through the steps of subjecting a powder press-shaped body formed at a temperature of 350.degree. C. or lower and at a pressure of 1.5.about.5.0 ton/cm.sup.2 to hot extrusion working at a temperature of 300.degree..about.400.degree. C. to form a raw material for forging, and then forge shaping the raw material at a temperature of 300.degree..about.495.degree. C.
    Type: Grant
    Filed: May 31, 1988
    Date of Patent: September 19, 1989
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Haruo Shiina
  • Patent number: 4867788
    Abstract: To control grain size during recrystallization annealing of a consolidated metallurgical, dispersion-strengthened powder allow material, the initial powder is seeded with a powder alloy in which the dispersoid is absent or is in a coarser form or is present in a lesser quantity so that the seeds provide sites at which nucleation of recrystallization is promoted.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: September 19, 1989
    Assignee: United Kingdom Atomic Energy Authority
    Inventor: Andrew R. Jones
  • Patent number: 4861546
    Abstract: A container for holding powdered metal is formed by electroplating a layer of metal over a pattern having a configuration which corresponds to the configuration of an article to be formed. A rigid core is surrounded by the pattern material and the layer of metal. The pattern material is removed from the layer of metal to form a container in which the core is disposed. The core and container may be held against relative movement by gripping the core with the layer of metal or by pin elements extending between the core and layer of metal. The container is filled with metal powder. The metal powder is cold compacted to plastically deform the particles of metal powder without significant bonding between the particles of metal powder. The metal powder is cold compacted by exposing the container to fluid at a relatively low temperature and high pressure.
    Type: Grant
    Filed: December 23, 1987
    Date of Patent: August 29, 1989
    Assignee: Precision Castparts Corp.
    Inventor: Gerald I. Friedman
  • Patent number: 4847044
    Abstract: A softer metal such as aluminum, or a metal forming a metal aluminide, or an alloy containing these metals is added to a metal aluminide composite during fabrication to promote easy consolidation of the metal aluminide matrix with the reinforcing phase. The metal aluminide may be titanium aluminide, nickel aluminide, or iron aluminide. The softer metal, the metal aluminide matrix, and the reinforcing phase are pressed together at a temperature above the softening temperature of the softer metal. The softened metal promotes flow and consolidation of the matrix and the reinforcement at relatively low temperatures. The composite is held at an elevated temperature to diffuse and convert the soft metal phase into the metal aluminide matrix. By consolidating at a lower temperature, cracking tendencies due to thermal expansion differences between the matrix and reinforcement is reduced. By consolidating at a lower pressure, mechanical damage to the fibers is avoided.
    Type: Grant
    Filed: April 18, 1988
    Date of Patent: July 11, 1989
    Assignee: Rockwell International Corporation
    Inventor: Amit K. Ghosh
  • Patent number: 4844988
    Abstract: A diamond composite combined with a cobalt-containing substrate, comprising: a sintered mass of diamond, in which practically all the diamond particles are joined immediately with adjacent particles, a mass of cobalt-containing carbide, said latter mass being larger than the former and said first and latter masses being of a same cross section at the opposed ends, and an intermediate layer of a solid material which consists of Mo, Co and C with a minor proportion of inevitable impurities and which comprises a molybdenum carbide exhibiting a melting point within 200 degrees C. of that of the first said carbide material, said layer intervening between the masses and having a total radial cross sectional area of at least 80% but not greater than 97% of that of the diamond mass and carbide masses at the joint and a thickness of, at least, 25 microns over the whole cross sectional area and method for producing the same.
    Type: Grant
    Filed: December 22, 1987
    Date of Patent: July 4, 1989
    Assignee: The Ishizuka Research Institute, Ltd.
    Inventors: Hiroshi Ishizuka, Satoshi Hayakawa
  • Patent number: 4838935
    Abstract: Tungsten-titanium sputtering targets with improved characteristics are made from high-purity tungsten powder and a second powder consisting of high-purity titanium hydride powder or high-purity titanium hydride powder and high-purity titanium powder. The second powder contains at least 5%, preferably 25% to 100% by weight of titanium hydride powder. A powder mixture having a binodal particle size distribution with respect to the tungsten and second powders is placed under a containment pressure in a die. The die is heated in a vacuum hot-press chamber to a temperature sufficient to dehydride the titanium hydride, and to remove gases and alkali metals. The die is then heated to a second temperature in the range of 1350.degree. to 1550.degree. C. while maintaining the containment pressure and vacuum. A compaction force in the range of 2000 to 5000 psi is then applied to form a compact. The compaction force and vacuum are subsequently released and the compact is cooled.
    Type: Grant
    Filed: May 31, 1988
    Date of Patent: June 13, 1989
    Assignee: Cominco Ltd.
    Inventors: John A. Dunlop, Hans Rensing
  • Patent number: 4838936
    Abstract: Spiral parts, such as orbiting and fixed scroll plates having involute wraps, for use in scroll compressors, the parts having low coefficient of thermal expansion and high tensile strength and Young's modulus, are formed by combining a self-lubricating power into aluminum raw material powder prior to compression and forging. As an alternative to and in conjunction with the foregoing, temperatures during preform heating and in the die for forging are controlled to be in respective ranges of 300.degree. to 500.degree. C. and 150.degree. to 500.degree. C. Aluminum alloy fine powder preferably has a particle diameter no larger than 350 .mu.m. The self-lubricating powder preferably forms 1 to 25% of the mix by volume, and contains at least one member selected from the group consisting of graphite, BN, and MoS.sub.2.
    Type: Grant
    Filed: May 23, 1988
    Date of Patent: June 13, 1989
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Kiyoaki Akechi
  • Patent number: 4834917
    Abstract: Waste material such as toxic compounds, radioactive waste materials and spent nuclear fuel rods are encapsulated in a container system which is subjected to a hot pressure process to cause a protective powder material located around the waste material to form a dense matrix and function as a highly corrosion resistant and protective shroud. Embodiments include hot isostatic pressing and hot uniaxial pressing, the use of metal powder such as copper powder for the protective powder material or alternatively ceramic powder and, depending upon the embodiment chosen, the use of a single container or dual container system in which a first container is located within an outer container. Either or both of such containers may be cylindrical with a bellows-like side wall to facilitate compression thereof in an axial direction.
    Type: Grant
    Filed: June 23, 1987
    Date of Patent: May 30, 1989
    Assignees: Australian Nuclear Science & Technology Organization, The Australian National University
    Inventors: Eric J. Ramm, Albert E. Ringwood