Aluminum Containing Patents (Class 420/445)
  • Publication number: 20130095346
    Abstract: A Ni-based superalloy component includes a bond coat layer having a chemical composition not allowing interdiffusion to occur on a Ni-base superalloy substrate, and by allowing the bond coat layer to have Pt and/or Ir content equal to or higher than 0.2% but not exceeding 15% by mass, generation of an SRZ, which occurs at an interface between the Ni-base superalloy substrate and the bond coat layer in a high-temperature oxidizing atmosphere, can be suppressed, and at the same time adhesion at the interface between a ceramic thermal barrier coat layer and the bond coat layer is improved. Thus, a long-life Ni-based superalloy component with suppressed elemental interdiffusion between the Ni-base superalloy substrate and the bond coat layer even at temperatures exceeding 1100° C. is provided.
    Type: Application
    Filed: April 14, 2011
    Publication date: April 18, 2013
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Rudder Wu, Kyoko Kawagishi, Kazuhide Matsumoto, Hiroshi Harada
  • Publication number: 20130078136
    Abstract: Nickel-based alloy consisting of (in % by mass) Si 0.8-2.0%, Al 0.001-0.1%, Fe 0.01-0.2%, C 0.001-0.10%, N 0.0005-0.10%, Mg 0.0001-0.08%, O 0.0001-0.010%, Mn max. 0.10%, Cr max. 0.10%, Cu max. 0.50%, S max. 0.008%, balance Ni and the usual production-related impurities.
    Type: Application
    Filed: June 8, 2011
    Publication date: March 28, 2013
    Applicant: THYSSENKRUPP VDM GMBH
    Inventor: Heike Hattendorf
  • Publication number: 20130045129
    Abstract: A solder alloy including a base material, a solder, and an additive is provided. The solder alloy has the following formula: (1?x?y)*base material+x*solder+y*additive, where 0.2?x?0.8 and 0?y<0.8 and also (y<1?x)<(1?x). The base material includes chromium, cobalt, aluminum, and tungsten. The solder includes chromium, cobalt, aluminum, tungsten, germanium and/or gallium and nickel. The additive may include boron, zirconium, hafnium, niobium, and carbon.
    Type: Application
    Filed: April 12, 2010
    Publication date: February 21, 2013
    Inventors: Michael Ott, Sebastian Piegert
  • Publication number: 20130029171
    Abstract: A nickel-base alloy comprising: 12-40 wt % chromium; up to 13 wt % copper; up to 8% aluminium; balance nickel and incidental impurities is disclosed. Such alloys show an improved carbon corrosion resistance at high temperatures. Such an alloy could therefore be utilised in chemical processing or conveying apparatus, such as steam reforming, syngas production, fertilizer production, ammonia production or coal gasification, or more generally where gases with high carbon potentials are present. The alloy may further comprise one or more rare earth elements, up to a combined total of 1 wt %.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 31, 2013
    Inventors: Philip Johann Meinrad Speck, David J. Young
  • Publication number: 20130028783
    Abstract: A solder alloy including a base material, a solder, and an additive is provided. The solder alloy has the following formula: (1?x?y)*base material+x*solder+y*additive, where 0.2?x?0.8 and 0?y<0.8 and also (y<1?x). The base material includes chromium, nickel, aluminum, and tungsten. The solder includes chromium, cobalt, aluminum, tungsten, germanium and/or gallium, and nickel. The additive may include boron, zirconium, and carbon.
    Type: Application
    Filed: April 12, 2010
    Publication date: January 31, 2013
    Inventors: Michael Ott, Sebastian Piegert
  • Patent number: 8354176
    Abstract: A metallic coating for protecting a substrate from high temperature oxidation and hot corrosion environments comprising about 2.5 to about 13.5 wt. % cobalt, about 12 to about 27 wt. % chromium, about 5 to about 7 wt. % aluminum, about 0.0 to about 1.0 wt. % yttrium, about 0.0 to about 1.0 wt. % hafnium, about 1.0 to about 3.0 wt. % silicon, about 0.0 to about 4.5 wt. % tantalum, about 0.0 to about 6.5 wt. % tungsten, about 0.0 to about 2.0 wt. % rhenium, about 0.0 to about 1.0 wt. % molybdenum and the balance nickel.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: January 15, 2013
    Assignee: United Technologies Corporation
    Inventors: Michael Minor, Paul M. Pellet, Michael L. Miller, Brian S. Tryon
  • Patent number: 8334056
    Abstract: An alloy including: about 10 at % to about 30 at % of a Pt-group metal; less than about 23 at % Al; about 0.5 at % to about 2 at % of at least one reactive element selected from Hf, Y, La, Ce and Zr, and combinations thereof; a superalloy substrate constituent selected from the group consisting of Cr, Co, Mo, Ta, Re and combinations thereof; and Ni; wherein the Pt-group metal, Al, the reactive element and the superalloy substrate constituent are present in the alloy in a concentration to the extent that the alloy has a solely ??-Ni3Al phase constitution.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 18, 2012
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Brian M. Gleeson, Daniel J. Sordelet, Wen Wang
  • Publication number: 20120308428
    Abstract: A thermo-mechanical treatment process is disclosed. A nickel-base alloy workpiece is heated in a first heating step to a temperature greater than the M23C6 carbide solvus temperature of the nickel-base alloy. The nickel-base alloy workpiece is worked in a first working step to a reduction in area of 20% to 70%. The nickel-base alloy workpiece is at a temperature greater than the M23C6 carbide solvus temperature when the first working step begins. The nickel-base alloy workpiece is heated in a second working step to a temperature greater than 1700° F. (926° C.) and less than the M23C6 carbide solvus temperature of the nickel-base alloy. The nickel-base alloy workpiece is not permitted to cool to ambient temperature between completion of the first working step and the beginning of the second heating step. The nickel-base alloy workpiece is worked to a second reduction in area of 20% to 70%. The nickel-base alloy workpiece is at a temperature greater than 1700° F. (926° C.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Christopher D. Rock
  • Publication number: 20120288400
    Abstract: An austenitic heat resistant alloy consisting of, by mass percent, C: 0.15% or less, Si: 2% or less, Mn: 3% or less, Ni: 40 to 60%, Co: 0.03 to 25%, Cr: 15% or more and less than 28%, either one or both of Mo: 12% or less and W: less than 4%, the total content thereof being 0.1 to 12%, Nd: 0.001 to 0.1%, B: 0.0005 to 0.006%, N: 0.03% or less, O: 0.03% or less, at least one selected from Al: 3% or less, Ti: 3% or less, and Nb: 3% or less, the balance being Fe and impurities. The contents of P and S in the impurities being P: 0.03% or less and S: 0.01% or less. The alloy satisfies 1?4×Al+2×Ti+Nb?12 and P+0.2×Cr×B?0.035, is excellent in weld crack resistance and toughness of HAZ, and is further excellent in creep strength at high temperatures.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 15, 2012
    Applicant: SUMITOMO METAL INDUSTRIES., LTD.
    Inventors: Hiroyuki Hirata, Hirokazu Okada, Hiroyuki Semba, Kazuhiro Ogawa, Atsuro Iseda, Mitsuru Yoshizawa
  • Publication number: 20120251840
    Abstract: Nickel-base alloys suitable for use as a weld material to weld high-temperature components (10), such as turbine blades and vanes of gas turbine engines. The nickel-base alloys consist essentially of, by weight, 5 to 10 percent chromium, 3 to 14 percent cobalt, up to 4 percent molybdenum, 3 to 7 percent tungsten, 5 to 9 percent tantalum, 5 to 8 percent aluminum, 0.1 to 2 percent hafnium, 0.005 to 0.03 percent boron, up to 0.15 percent carbon, the balance being nickel and incidental impurities and/or residual elements. Welds (12) formed with the alloys are capable of exhibiting desirable levels of strength and oxidation resistance, while containing little if any rhenium.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 4, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Michael Patrick Maly, Thomas Joseph Kelly
  • Patent number: 8273148
    Abstract: An alloy composition includes a blend of a first alloy and a second alloy, the first alloy having a first composition including about 17 wt %-25 wt % of chromium, about 6 wt %-12.5 wt % of aluminum, about 18 wt %-22 wt % of cobalt, up to 4 wt % of tantalum, up to about 8 wt % of tungsten, up to about 0.4 wt % of silicon, about 0.25 wt %-1 wt % of hafnium, about 0.1 wt %-1 wt % of yttrium, and a balance of nickel, and the second alloy having a second composition including about 21.25 wt %-22.75 wt % of chromium, about 5.7 wt %-6.3 wt % of aluminum, about 11.5 wt %-12.5 wt % of cobalt, about 5.7 wt %-6.3 wt % of silicon, boron in an amount no greater than 1.0 wt %, and a balance of nickel.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: September 25, 2012
    Assignee: Untied Technologies Corporation
    Inventor: Michael Minor
  • Patent number: 8268237
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Publication number: 20120213660
    Abstract: An alloy designed for use in gas turbine engines which has high strength and a low coefficient of thermal expansion is disclosed. The alloy may contain in weight percent 7% to 9% chromium, 21% to 24% molybdenum, greater than 5% tungsten, up to 3% iron, with a balance being nickel and impurities. The alloy must further satisfy the following compositional relationship: 31.95<R<33.45, where the R value is defined by the equation: R=2.66Al+0.19Co+0.84Cr?0.16Cu+0.39Fe+0.60Mn+Mo+0.69Nb+2.16Si+0.47Ta+1.36Ti+1.07V+0.40W The alloy has better hardness after being age-hardened at 1400° F. (760° C.) if tungsten is present from greater than 5% up to 10% and a preferred density if the alloy contains greater than 5% up to 7% tungsten.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 23, 2012
    Applicant: HAYNES INTERNATIONAL, INC.
    Inventors: Lee Pike, S. Krishna Srivastava
  • Publication number: 20120128526
    Abstract: A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases ?/?? at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, Werner Stamm
  • Publication number: 20120114520
    Abstract: A nickel-molybdenum-iron alloy with high corrosion resistance with respect to reducing media at high temperatures, consisting of (in % by mass): 61 to 63% nickel, 24 to 26% molybdenum, 10 to 14% iron, 0.20 to 0.40% niobium, 0.1 to 0.3% aluminum, 0.01 to 1.0% chromium, 0.1 to 1.0% manganese, at most 0.5% copper, at most 0.01% carbon, at most 0.1% silicon, at most 0.02% phosphorus, at most 0.01% sulphur, at most 1.0% cobalt, and further smelting-related impurities.
    Type: Application
    Filed: July 19, 2010
    Publication date: May 10, 2012
    Applicant: THYSSENKRUPP VDM GMBH
    Inventors: Rainer Behrens, Helena Alves
  • Publication number: 20120070303
    Abstract: The present invention provides a Ni-based single crystal superalloy which has the following composition by weight: 0.1 wt % or more and 9.9 wt % or less of Co, 5.1 wt % or more and 10.0 wt % or less of Cr, 1.0 wt % or more and 4.0 wt % or less of Mo, 8.1 wt % or more and 11.0 wt % or less of W, 4.0 wt % or more and 9.0 wt % or less of Ta, 5.2 wt % or more and 7.0 wt % or less of Al, 0.1 wt % or more and 2.0 wt % or less of Ti, 0.05 wt % or more and 0.3 wt % or less of Hf, 1.0 wt % or less of Nb and less than 3.0 wt % of Re with the remainder including Ni and unavoidable impurities. This Ni-based single crystal superalloy has a low Re content and also has excellent high-temperature strength, mainly creep strength.
    Type: Application
    Filed: August 9, 2010
    Publication date: March 22, 2012
    Inventors: Yasuhiro Aoki, Akihiro Sato
  • Publication number: 20110274579
    Abstract: A welding additive is provided. A component including a welding additive is also provided. The welding additive improves the weldability of a few nickel-based superalloys and includes the following contents (in wt %): 10.0%-20.0% chromium, 5.0%-15.0% cobalt, 0.0%-10.0% molybdenum, 0.5-3.5% tantalum, 0.0%-5.0% titanium, 1.5%-5.0% aluminum, 0.3%-0.6% boron, remainder nickel.
    Type: Application
    Filed: September 10, 2009
    Publication date: November 10, 2011
    Inventor: Nikolai Arjakine
  • Publication number: 20110262299
    Abstract: Provided is an Ni-based single crystal superalloy wherein the ingredients have a composition containing, as ratio by mass, from 5.0% by mass to 7.0% by mass of Al, from 4.0% by mass to 8.0% by mass of Ta, from 0% by mass to 2.0% by mass of Mo, from 3.0% by mass to 8.0% by mass of W, from 3.0% by mass to 8.0% by mass of Re, from 0% by mass to 0.50% by mass of Hf, from 3.0% by mass to 6.0% by mass of Cr, from 0% by mass to 9.9% by mass of Co, from 1.0% by mass to 14.0% by mass of Ru, and from 0.1% by mass to 4.0% by mass of Nb, with the balance of Ni and inevitable impurities. The alloy prevents TCP phase precipitation at high temperatures, therefore having improved strength at high temperatures and having oxidation resistance at high temperatures. Specifically, the invention is to provide a high-performance Ni-based single crystal superalloy having well balanced high-temperature strength and high-temperature oxidation resistance in practical use.
    Type: Application
    Filed: June 26, 2009
    Publication date: October 27, 2011
    Inventors: Hiroshi Harada, Yutaka Koizumi, Toshiharu Kobayashi, Tadaharu Yokokawa, Masao Sakamoto, Kyoko Kawagishi, Tomonori Kitashima, An-chou Yeh
  • Publication number: 20110256421
    Abstract: A metallic coating for use in a high temperature application is created from a nickel base alloy containing from 5.0 to 10.5 wt % aluminum, from 4.0 to 15 wt % chromium, from 2.0 to 8.0 wt % tungsten, from 3.0 to 10 wt % tantalum, and the balance nickel. The metallic coating has particular utility in protecting single crystal superalloys used in high temperature applications such as turbine engine components.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Sudhangshu Bose, Alan D. Cetel, David A. Litton, Michael J. Maloney, Venkatarama K. Seetharaman, Shiela Woodard
  • Publication number: 20110236252
    Abstract: A Ni based alloy, which consists of by mass percent, C?0.03%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.0%, P?0.03%, S?0.01%, Cr: not less than 20% to less than 30%, Ni: more than 40% to not more than 60%, Cu: more than 2% to not more than 5.0%, Mo: 4.0 to 10%, Al: 0.005 to 0.5% and N: more than 0.02% to not more than 0.3%, with the balance being Fe and impurities, and the expression of “0.5 Cu+Mo?6.5” is satisfied, has excellent corrosion resistance equivalent to that of Ni based alloys having high Mo contents, such as Hastelloy C22 and Hastelloy C276, in severe corrosive environments containing reducing acids, such as hydrochloric acid and sulfuric acid, together with excellent workability. Therefore, it can be suitably used as a low-cost material for various kinds of structural members.
    Type: Application
    Filed: September 23, 2010
    Publication date: September 29, 2011
    Applicant: Sumitomo Metal Industries, Ltd.
    Inventors: Masaki Ueyama, Masaaki Terunuma, Satoshi Matsumoto
  • Publication number: 20110200843
    Abstract: A welding material, to be used for welding a base metal made of an austenitic alloy comprising C?2.0%, Si?4.0%, Mn: 0.01 to 3.0%, P: more than 0.03% to not more 0.3%, S?0.03%, Cr: 12 to 35%, Ni: 6 to 80%, sol. Al: 0.001 to 1% and N?0.3%, with the balance being Fe and impurities to a base metal made of another austenitic alloy, which comprises C: more than 0.3% to 3.0%, Si?4.0%, Mn?3.0%, P?0.03%, S?0.03%, Cr: more than 22% to 55%, Ni: more than 30% to not more than 70%, sol. Al: 0.001 to 1% and N?0.3%, with the balance being Fe and impurities can suppress the weld solidification cracking which occurs in an austenitic alloy having a high P content and showing fully austenitic solidification. Therefore, the said welding material can be widely used in such fields where a welding fabrication is required. The said welding material may contain a specific amount or amounts of one or more elements selected from Cu, Mo, W, V, Nb, Ti, Ta, Zr, Hf, Co, B, Ca, Mg and REM.
    Type: Application
    Filed: April 25, 2011
    Publication date: August 18, 2011
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hirokazu Okada
  • Publication number: 20110192501
    Abstract: It is an object of the present invention to provide an Ni based alloy for forging having high forging-related characteristics with a wide temperature range for high-temperature forging and high upper forging temperature limit. An Ni based alloy for forging, containing Cr at 12 to 20%, Al at 3.5 to 5%, Co at 15 to 23%, W at 5 to 12%, C at 0.001 to 0.05%, and Nb, Ti and Ta at a total content of 0.5 to 1.0%, all percentages by mass, and a steam turbine plant component using the same.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 11, 2011
    Inventors: Shinya IMANO, Hiroyuki Doi, Jun Sato
  • Publication number: 20110165012
    Abstract: A nickel-based superalloy particularly suitable for the fabrication of mechanical components for a piece of turbomachinery that it comprises the following elements in percentage by weight: chromium between 3% and 7%; tungsten between 3% and 15%; tantalum between 4% and 6%; aluminium between 4% and 8%; carbon less than 0.8%; the remaining percentage of nickel plus impurities.
    Type: Application
    Filed: July 27, 2010
    Publication date: July 7, 2011
    Inventors: Marco Innocenti, Pasquale Maresca, Oriana Tassa, Andrea Carosi, Barbara Giambi, Claudio Testani
  • Publication number: 20110154947
    Abstract: A brazing composition for the brazing of superalloys including a base material with at least one initial phase is provided. The initial phase has a solidus temperature that is below the solidus temperature of the base material and, above a certain temperature, forms with the base material and/or with at least one further initial phase at least one resultant phase, the solidus temperature of which is higher that the solidus temperature of the initial phases. Heat treatment takes place in two stages, wherein the temperature of the second heat treatment is preferably 800-1200° C. The brazing composition may likewise be of the type MCrAlX, and the power particles of the initial phase may be in the form of nanoparticles.
    Type: Application
    Filed: March 9, 2011
    Publication date: June 30, 2011
    Inventors: Brigitte Heinecke, Volker Vosberg
  • Publication number: 20110142714
    Abstract: Provided is an Ni-based single crystal superalloy wherein the ingredients have a composition containing, as ratio by mass, from 5.0% by mass to 7.0% by mass of Al, from 4.0% by mass to 8.0% by mass of Ta, from 0% by mass to 2.0% by mass of Mo, from 3.0% by mass to 8.0% by mass of W, from 3.0% by mass to 8.0% by mass of Re, from 0% by mass to 0.50% by mass of Hf, from 3.0% by mass to 7.0% by mass of Cr, from 0% by mass to 9.9% by mass of Co and from 1.0% by mass to 10.0% by mass of Ru, with the balance of Ni and inevitable impurities. The alloy prevents TCP phase precipitation at high temperatures, therefore having improved strength at high temperatures and having oxidation resistance at high temperatures.
    Type: Application
    Filed: June 26, 2009
    Publication date: June 16, 2011
    Inventors: Hiroshi Harada, Yutaka Koizumi, Toshiharu Kobayashi, Tadaharu Yokokawa, Masao Sakamoto, Kyoko Kawagishi, Tomonori Kitashima, An-chou Yeh
  • Publication number: 20110120597
    Abstract: Low rhenium nickel base superalloy compositions and articles formed from the superalloy composition are provided. The nickel base superalloy composition includes in percentages by weight: about 5-8 Cr; about 6.5-9 Co; about 1.3-2.5 Mo; about 4.8-6.8 W; about 6.0-7.0 Ta; if present, up to about 0.5 Ti; about 6.0-6.4 Al; about 1-2.3 Re; if present, up to about 0.6 Hf; if present, up to about 0-1.5 C; if present, up to about 0.015 B; the balance being nickel and incidental impurities. Exemplary compositions are characterized by an Re ratio defined as the weight % of Re relative to the total of the weight % of W and the wt % of Mo, of less than about 0.3. Exemplary articles include airfoils for gas turbine engine blades or vanes, nozzles, shrouds, and splash plates.
    Type: Application
    Filed: December 26, 2007
    Publication date: May 26, 2011
    Inventors: Kevin Swayne O'Hara, Laura Jill Carroll
  • Publication number: 20110097599
    Abstract: Platinum-modified nickel-based superalloys and turbine engine components are provided. The platinum-modified nickel-based superalloy includes, by weight, aluminum, in a range of about 7.8 percent to about 8.2 percent, tantalum, in a range of about 5.0 percent to about 6.0 percent, rhenium, in a range of about 1.6 percent to about 2.0 percent, platinum, in a range of about 0.8 percent to about 1.4 percent, hafnium, in a range of about 0.20 percent to about 0.40 percent, silicon, in a range of about 0.30 percent to about 0.60 percent, about 0.02 percent carbon, about 0.01 percent boron, and a balance of nickel. The platinum-modified a nickel-based superalloy may also include, by weight, chromium in a range of about 4.0 percent to about 5.0 percent.
    Type: Application
    Filed: October 22, 2009
    Publication date: April 28, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Yiping Hu
  • Publication number: 20110076179
    Abstract: A nickel-base superalloy composition including (measured in % by weight) from about 6.8 to about 7.5% aluminum, from about 4 to about 8% tantalum, from about 4 to about 10% chromium, from about 2 to about 7% tungsten, from 0 to about 6% rhenium, from 0 to about 5% cobalt, from 0 to about 0.2% silicon, optionally, from about 0.15 to about 0.7% hafnium, from 0 to about 0.5% titanium, from 0 to about 4% molybdenum, from 0 to about 0.005% boron, from 0 to about 0.06% carbon, from 0 to about 0.03% of a rare earth addition selected from the group consisting of yttrium, lanthanum, cesium, and combinations thereof, balance nickel and incidental impurities. The nickel-base superalloy composition may be used in single-crystal or directionally solidified superalloy articles such as high pressure turbine blades for a gas turbine engine.
    Type: Application
    Filed: March 24, 2009
    Publication date: March 31, 2011
    Inventors: Kevin Swayne O'Hara, Laura Jill Carroll
  • Publication number: 20110076180
    Abstract: Rhenium-free nickel based alloys are provided. More particularly, the alloys comprise preferred levels and ratios of elements so as to achieve good high temperature strength of both gamma matrix phase and gamma prime precipitates, as well as good environmental resistance, without using rhenium. When cast and directionally solidified into single crystal form, the alloys exhibit creep and oxidation resistance substantially equivalent to or better than rhenium-bearing single-crystal alloys. Further, the alloys can be processed by directional solidification into articles in single crystal form or columnar structure comprising fine dendrite arm spacing, e.g., less than 400 ?m, if need be, so that further improvements in mechanical properties in the articles can be seen.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Michael Francis Xavier Gigliotti, JR., Shyh-Chin Huang, Pazhayannur Ramanathan Subramanian
  • Publication number: 20110076181
    Abstract: Rhenium-free nickel based alloys are provided. More particularly, the alloys comprise preferred levels and ratios of elements so as to achieve good high temperature strength of both gamma matrix phase and gamma prime precipitates, as well as good environmental resistance, without using rhenium. When cast and directionally solidified into single crystal form, the alloys exhibit oxidation resistance better than or comparable to rhenium-bearing single-crystal alloys, and creep rupture life comparable to rhenium-bearing single-crystal alloys. Further, the alloys can be processed by directional solidification into articles in single crystal form or columnar structure comprising fine dendrite arm spacing, e.g., less than 400 ?m, if need be, so that further improvements in mechanical properties in the articles can be seen.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Michael Francis Xavier Gigliotti, Jr., Shyh-Chin Huang, Pazhayannur Ramanathan Subramanian
  • Publication number: 20110064569
    Abstract: In one embodiment, a nickel-base alloy for forging or rolling contains, in weight %, carbon (C): 0.05 to 0.2, silicon (Si) 0.01 to 1, manganese (Mn): 0.01 to 1, cobalt (Co): 5 to 20, iron (Fe): 0.01 to 10, chromium (Cr): 15 to 25, and one kind or two kinds or more of molybdenum (Mo), tungsten (W) and rhenium (Re), with Mo+(W+Re)/2: 8 to 25, the balance being nickel (Ni) and unavoidable impurities.
    Type: Application
    Filed: August 11, 2010
    Publication date: March 17, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masayuki YAMADA, Kiyoshi Imai, Kuniyoshi Nemoto, Shigekazu Miyashita, Takeo Suga
  • Publication number: 20110058978
    Abstract: A nickel base alloy includes: by mass, 0.001 to 0.1% of carbon; 12 to 23% of chromium; 15 to 25% of cobalt; 3.5 to 5.0% of aluminum; 4 to 12% of molybdenum; 0.1 to 7.0% of tungsten; and a total amount of Ti, Ta and Nb being not more than 0.5%. A parameter Ps represented by a formula (1) shown below is 0.6 to 1.6, Ps=?7×[C]?0.1×[Mo]+0.5×[Al]??(1) where [C] indicates an amount of carbon; [Mo] indicates an amount of molybdenum; and [Al] indicates an amount of aluminum, by mass percent.
    Type: Application
    Filed: March 22, 2010
    Publication date: March 10, 2011
    Inventors: Jun SATO, Shinya Imano, Hiroyuki Doi
  • Publication number: 20110058977
    Abstract: A Ni based cast alloy consisting essentially of C: 0.01 to 0.2% by weight, Si: 0.5 to 4.0% by weight, Cr: 14 to 22% by weight, Mo+W: 4.0 to 10% by weight, B: 0.001 to 0.02% by weight, Co: up to 10% by weight, Al: up to 0.5% by weight, Ti: up to 0.5% by weight, Nb: up to 5.0% by weight, Fe: up to 10% by weight, the balance being Ni and incidental impurities, wherein a ?? phase precipitates in a matrix phase thereof.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 10, 2011
    Inventors: Jun Sato, Shinya Imano, Hiroyuki Doi
  • Publication number: 20100329921
    Abstract: A superalloy composition comprising, in weight percent: about 6.2-6.6 Al, about 6.5-7.0 Ta, about 6.0-7.0 Cr, about 6.25-7.0 W, about 1.5-2.5 Mo, about 0.15-0.60 Hf, 0.0-1.0 Re, 6.5-9.0 Co, optionally, 0.03-0.06 C, optionally, up to about 0.004 B, optionally up to about 0.03 total of one or more rare earth elements selected from yttrium (Y), lanthanum (La), or cerium (Ce), balance nickel, such that the superalloy composition exhibits a stress rupture capability improvement of at least 15% over a base stress rupture capability of a base composition nominally comprising, in weight percent: 6.5 Al, 6.6 Ta, 6.0 Cr, 6.25 W, 1.5 Mo, 0.15 Hf, 0.0 Re, 7.5 Co. Articles incorporating the superalloy composition include a gas turbine engine component such as a high pressure turbine nozzle or nozzle segment.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 30, 2010
    Inventors: JOSHUA LEIGH MILLER, Brian Thomas Hazel, Douglas Gerard Konitzer, Paul John Fink
  • Publication number: 20100296962
    Abstract: A nickel-base superalloy is provided which includes in a weight percentage:: Co+Fe+Mn 0-20, Al 4-6, Cr >12-20, Ta >7.5-15, Ti 0-<0.45, V 0-1, Nb 0-<0.28, Mo 0-2.5, Mo+W+Re+Rh 2-8, Ru+Os+Ir+Pt+Pd 0-4, Hf 0-1.5, C+B+Zr 0-0.5, Ca+Mg+Cu 0-0.5, Y+La+Sc+Ce+Actinides+Lanthanides 0-0.5 Si 0-0.5 Ni balance and unavoidable impurities. Also provided are a conventional cast component, a directionally solidified component and a single crystal component which include the superalloy.
    Type: Application
    Filed: September 20, 2007
    Publication date: November 25, 2010
    Applicant: Siemens Aktiengesellschaft
    Inventors: Magnus Hasselqvist, Gordon McColvin
  • Publication number: 20100279148
    Abstract: Nickel-based alloys and turbine components are provided. In an embodiment, by way of example only, a nickel-based alloy includes, by weight, about 29.5 percent to about 31.5 percent aluminum, about 0.20 percent to about 0.60 percent hafnium, about 0.08 percent to about 0.015 percent yttrium, and a balance of nickel. In another embodiment, by way of example only, a nickel-based alloy includes, by weight, about 9.7 percent to about 10.3 percent of cobalt, about 15.5 percent to about 16.5 percent of chromium, about 6.6 percent to about 7.2 percent of aluminum, about 5.7 percent to about 6.3 percent of tantalum, about 2.7 percent to about 3.3 percent of tungsten, about 1.8 percent to about 2.3 percent of rhenium, about 0.20 percent to about 1.2 percent of hafnium, about 0.20 percent to about 0.60 percent of silicon, and a balance of nickel.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Yiping Hu
  • Patent number: 7824606
    Abstract: The invention provides nickel-based alloys that are useful in the preparation of articles for applications requiring high mechanical and physical properties, such as high strength and high heat stability, while simultaneously reducing the cost of preparation of the alloys. The invention further provides articles, such as turbine wheels, prepared using the inventive alloys.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: November 2, 2010
    Assignee: Honeywell International Inc.
    Inventor: Mark Heazle
  • Publication number: 20100266865
    Abstract: An article of manufacture for reducing susceptibility of a metal pipe to metal dusting degradation. The article includes a multi-layer tubing having an alloy layer and a copper layer. The alloy layer can include a Ni based, an Al based and an Fe based alloy layer. In addition, layers of chrome oxide, spinel and aluminum oxide can be used.
    Type: Application
    Filed: November 20, 2007
    Publication date: October 21, 2010
    Inventors: Krishnamurti Natesan, Zuotao Zeng
  • Publication number: 20100254822
    Abstract: A nickel-base superalloy composition including (measured in % by weight) from about 6.5 to about 7.5% aluminum, from about 4 to about 8% tantalum, from about 3 to about 10% chromium, from about 2 to about 7% tungsten, from 0 to about 4% molybdenum, from 0 to about 6% rhenium, from 0 to less than about 0.001% niobium, from 0 to about 5% cobalt, from 0 to about 0.2% silicon, from 0 to about 0.06% carbon, optionally, from 0 to about 0.5% titanium, from 0 to about 0.005% boron, from about 0.15 to about 0.7% hafnium, from 0 to about 0.03% of a rare earth addition selected from the group consisting of yttrium, lanthanum, cesium, and combinations thereof, balance nickel and incidental impurities. The nickel-base superalloy composition may be used in single-crystal or directionally solidified superalloy articles such as high pressure turbine blades for a gas turbine engine.
    Type: Application
    Filed: September 30, 2009
    Publication date: October 7, 2010
    Inventors: Brian Thomas Hazel, Kevin Swayne O'Hara, Laura Jill Carroll
  • Publication number: 20100247324
    Abstract: The invention provides a Ni—Fe-based alloy which is preferable for a welding of a joint between different materials such as a steel material and a Ni-based alloy, and a rotor for a steam turbine which is manufactured by using the same. The invention employs a Ni—Fe-based alloy comprising Cr: 14 to 18%, Al: 1.0 to 2.5%, Mo+W: 2.5 to 5.0%, C: 0.01 to 0.10%, B: 0.001 to 0.03%, and Fe: 15 to 20%, in mass, in which the remaining portion is constructed by an unavoidable impurity and Ni, as a welding metal. As a result, it is possible to provide a rotor for a steam turbine which can hold down a reduction of a ductility and a toughness generated in the case of welding the different materials, and is excellent in a strength and the ductility.
    Type: Application
    Filed: February 4, 2010
    Publication date: September 30, 2010
    Applicant: HITACHI, LTD.
    Inventors: Jun SATO, Shinya IMANO, Hiroyuki DOI
  • Publication number: 20100247950
    Abstract: An alloy material having high-temperature corrosion resistance, which exhibits excellent oxidation resistance and ductility and can be applied to gas turbines used at ultra high temperatures, and a thermal barrier coating, a turbine member and a gas turbine each comprising the alloy material. An alloy material having high-temperature corrosion resistance, comprising, by weight, Co: 15 to 30%, Cr: 10 to 30%, Al: 4 to 15%, Y: 0.1 to 3%, and Re: 0.1 to 1%, with the balance being substantially Ni. Also, an alloy material having high-temperature corrosion resistance, comprising, by weight, Ni: 20 to 40%, Cr: 10 to 30%, Al: 4 to 15%, Y: 0.1 to 3%, and Re: 0.1 to 5%, with the balance being substantially Co.
    Type: Application
    Filed: March 13, 2009
    Publication date: September 30, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Taiji Torigoe, Hidetaka Oguma, Ikuo Okada, Tomoaki Yunomura, Soji Kasumi
  • Patent number: 7803237
    Abstract: A wear and oxidation resistant nickel-base alloy, exhibiting resistance to thermal cracking in high-stress elevated temperature environments, comprises, in weight percentages based on total alloy weight: 53 to 67 nickel; 20 to 26 chromium; and 12 to 18 tungsten. The alloy optionally further comprises, in weight percentages based on total alloy weight, at least one of: up to 3 cobalt; up to 3 molybdenum; up to 6 iron; 0.1 to 0.5 manganese; 0.1 to 0.7 silicon; 0.1 to 0.6 aluminum; and less than 0.05 carbon. Components of a seamless tube manufacturing apparatus fabricated from the alloy also are provided. The components may be, for example, tools for one of a piercing mill, a high mill, and a rotary expander, such as piercer points, piercing mill guide shoes, rotary expander guide shoes, reeler guide shoes, and high-mill plugs.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: September 28, 2010
    Assignee: Damascus Steel Casting Company
    Inventors: Thomas W. Cokain, Behram M. Kapadia, Charles J. Stein
  • Patent number: 7785532
    Abstract: A nickel-molybdenum-chromium alloy, capable of withstanding both strong oxidizing and strong reducing 2.5% hydrochloric acid solutions at 121° C., contains 20.0 to 23.5 wt. % molybdenum and 13.0 to 16.5 wt. % chromium with the balance being nickel plus impurities and residuals of elements used for control of oxygen and sulfur.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: August 31, 2010
    Assignee: Haynes International, Inc.
    Inventor: Paul Crook
  • Publication number: 20100215984
    Abstract: A Ni-based brazing composition at least containing, in mass %, 1.0% or more and 1.3% or less of B, 4.0% or more and 6.0% or less of Si, and the balance consisting of Ni and unavoidable impurities, wherein the brazing composition forms wherein the brazing composition forms dispersed phase containing B or Si in a metal texture after the brazing, and a maximum length of the dispersed phase is 30 ?m or less.
    Type: Application
    Filed: September 2, 2008
    Publication date: August 26, 2010
    Inventors: Naoki Oiwa, Sadao Nishikiori, Tsukasa Wakabayashi, Junji Tsuji
  • Publication number: 20100172789
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Publication number: 20100158695
    Abstract: A composition of matter comprises, in combination, in weight percent: a largest content of nickel; at least 16.0 percent cobalt; and at least 3.0 percent tantalum. The composition may be used in power metallurgical processes to form turbine engine turbine disks.
    Type: Application
    Filed: November 23, 2009
    Publication date: June 24, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: Paul L. Reynolds
  • Patent number: 7740719
    Abstract: A cutter is composed of a Ni—Cr alloy containing from 32 to 44 mass percent of Cr, from 2.3 to 6.0 mass percent of Al, the balance being Ni, impurities, and additional trace elements and having a Rockwell C hardness of 52 or more. This Ni—Cr alloy provides a cutter produced with a superior workability and by a significantly simplified process, having a low deterioration in the hardness even when heated in use, having excellent corrosion resistance and low-temperature embrittlement resistance, and satisfactorily maintaining the cutting performance for a long time.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: June 22, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohisa Arai, Takashi Rokutanda, Tadaharu Kido
  • Patent number: 7731809
    Abstract: The present invention provides a low-melt nickel-based alloy powder applied in an activated diffusion brazing repair on gas turbine components. In one embodiment, and by way of example only, the low-melt alloy powder comprises between about 6.7% and about 9.2% by weight Cr, between about 9.7% and about 10.3% by weight Co, between about 3.7% and about 4.7% by weight W, between about 3.3% and about 6.3% by weight Ta, between about 3.6% and about 5.2% by weight Al, between about 1.3% and about 4.0% by weight Hf, between about 0.02% and about 0.06% by weight C, between about 1.0% and about 3.2% by weight B, and Ni. Optionally, the low-melt alloy powder may include between about 1.4% and about 3.2% by weight Re.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: June 8, 2010
    Assignee: Honeywell International Inc.
    Inventor: Yiping Hu
  • Publication number: 20100135846
    Abstract: A first embodiment of a nickel based alloy consists essentially of from 3.0 to 5.2 wt % chromium, from 1.5 to 3.0 wt % molybdenum, from 6.0 to 12.5 wt % tungsten, from 5.0 to 11 wt % tantalum, from 5.5 to 6.5 wt % aluminum, from 11 to 14 wt % cobalt, from 0.001 to 1.75 wt % rhenium, from 0.2 to 0.6 wt % hafnium, up to 0.05 wt % yttrium, up to 3.0 wt % ruthenium, and the balance nickel. Another embodiment of a nickel based alloy consists essentially of from 1.0 to 3.0 wt % chromium, up to 2.5 wt % molybdenum, from 11 to 16 wt % tungsten, from 4.0 to 8.0 tantalum, from 5.7 to 6.5 wt % aluminum, from 11 to 15 wt % cobalt, from 2.0 to 4.0 wt % rhenium, from 0.2 to 0.6 wt % hafnium, up to 0.05 wt % yttrium, up to 3.0 wt % ruthenium, and the balance nickel.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 3, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Alan D. Cetel, Dilip M. Shah
  • Patent number: 7699944
    Abstract: Intermetallic braze alloys and methods of repairing an engine component are provided. In an embodiment, by way of example only, an intermetallic braze material includes between about 10% to about 15% chromium, by weight, between about 1% to about 3% aluminum, by weight, between about 0.1% to about 0.5% zirconium, by weight, between about 18% to about 25% hafnium, by weight, and a balance of nickel. In another embodiment, by way of example only, an intermetallic braze material includes between about 10% to about 15% chromium, by weight, between about 1% to about 3% aluminum, by weight, between about 10% to about 13% zirconium, by weight, between about 0.3% to about 0.7% hafnium, by weight, and a balance of nickel.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: April 20, 2010
    Assignee: Honeywell International Inc.
    Inventor: Yiping Hu