Aluminum Containing Patents (Class 420/445)
  • Patent number: 4671931
    Abstract: A yttrium-free, nickel-chromium-iron-aluminum alloy characterized by excellent oxidation resistance at very high temperatures. The alloy consists essentially of, by weight, from 14 to 18% chromium, from 4 to 6% aluminum, from 1.5 to 8% iron, up to 12% cobalt, up to 1% manganese, up to 1% molybdenum, up to 1% silicon, up to 0.25% carbon, up to 0.03% boron, up to 1% tungsten, up to 0.5% tantalum, up to 0.2% titanium, up to 0.5% hafnium, up to 0.2% zirconium, up to 0.2% rhenium, balance essentially nickel. The nickel plus the cobalt content is at least 66%.
    Type: Grant
    Filed: May 11, 1984
    Date of Patent: June 9, 1987
    Inventors: Robert B. Herchenroeder, Krishna V. Rao
  • Patent number: 4626408
    Abstract: An alloy prepared by reducing the sulfur content of ASTM UNS N06600 (Trademark Inconel Alloy 600) to an extremely small value and adding specified amounts of Nb and N, and an alloy prepared by reducing the oxygen content of Inconel Alloy 600 and adding specified amounts of Nb, N, B and Mg show a mechanical strength equivalent or superior to that of Inconel Alloy 600 and excellent hot workability, and further has intergranular corrosion resistance and integranular stress corrosion cracking resistance which are far more excellent than those of Inconel Alloy 600.
    Type: Grant
    Filed: September 20, 1984
    Date of Patent: December 2, 1986
    Assignees: Nippon Yakin Kogyo Kabushiki Kaisha, Babock-Hitachi Kabushiki Kaisha
    Inventors: Koichiro Osozawa, Rikio Nemoto, Yoshito Fujiwara, Tomoaki Okazaki, Yasuhiro Miura, Kiyoshi Yamauchi
  • Patent number: 4624832
    Abstract: New nickel alloys are described which are useful for eyeglass frames, which alloys in addition to good resistance to corrosion also have good workability properties. They contain 5 to 20 percent copper and 5 to 30 percent zinc. Optionally, they can also be alloyed in small amounts other metals such as manganese, silicon, beryllium, cobalt, aluminum, niobium, tantalum, or titanium.
    Type: Grant
    Filed: November 2, 1984
    Date of Patent: November 25, 1986
    Assignee: Degussa Aktiengesellschaft
    Inventors: Horst Heidsiek, Gernot Jackel, Horst Becker
  • Patent number: 4615865
    Abstract: Improved coating compositions are described for the protection of superalloys at elevated temperatures. The coatings of the NiCrAlY or NiCoCrAlY type are significantly improved by the use of higher levels of yttrium.
    Type: Grant
    Filed: July 12, 1983
    Date of Patent: October 7, 1986
    Assignee: United Technologies Corporation
    Inventors: David S. Duvall, Dinesh K. Gupta
  • Patent number: 4615864
    Abstract: Coatings for iron-, nickel- and cobalt-base superalloys. The coatings are applied in order to provide good oxidation and/or sulfidation and thermal fatigue resistance for the substrates to which the coatings are applied. The coatings consist essentially of, by weight, 10 to 50% chromium, 3 to 15% aluminum, 0.1 to 10% manganese, up to 8% tantalum, up to 5% tungsten, up to 5% reactive metal from the group consisting of lanthanum, yttrium and other rare earth elements, up to 5 percent of rare earth and/or refractory metal oxide particles, up to 12% silicon, up to 10% hafnium, and the balance selected from the group consisting of nickel, cobalt and iron, and combinations thereof. Additions of titanium up to 5% and noble metals up to 15% are also contemplated.
    Type: Grant
    Filed: April 23, 1982
    Date of Patent: October 7, 1986
    Assignee: Howmet Turbine Components Corporation
    Inventors: Louis E. Dardi, Srinivasan Shankar
  • Patent number: 4594104
    Abstract: The present invention provides a method for producing a consolidated article composed of a transition metal alloy. The method includes the step of selecting a rapidly solidified alloy which is at least about 50% glassy. The alloy is formed into a plurality of alloy bodies, and these alloy bodies are compacted at a pressing temperature of not more than about 0.6 Ts (solidus temperature in .degree.C.) to consolidate and bond the alloy bodies together into a glassy metal compact having a density of at least about 90% T.D. (theoretical density). The compacted glassy alloy bodies are then heat treated at a temperature generally ranging from about 0.55-0.85 Ts, but, in any case, above the alloy crystallization temperature, for a time sufficient to produce a fine grain crystalline alloy structure in the compacted article.
    Type: Grant
    Filed: April 26, 1985
    Date of Patent: June 10, 1986
    Assignee: Allied Corporation
    Inventor: Derek Reybould
  • Patent number: 4582536
    Abstract: The present invention provides a method for consolidating rapidly solidified, transition metal alloys which includes the step of compacting a plurality of alloy bodies at a temperature ranging from about 0.90-0.99 Tm (melting temperature in .degree.C.) for a time period ranging from about 1 min to 24 hours. The alloy bodies contain at least two transition metal elements and consist essentially of the formula (Fe,Co and/or Ni).sub.bal (W, Mo, Nb and/or Ta).sub.a (Al and/or Ti).sub.b (Cr).sub.c (B and/or C).sub.d (Si and/or P).sub.e, wherein "a" ranges from about 0-40 at. %, "b" ranges from about 0-40 at. %, "c" ranges from about 0-40 at. %, "d" ranges from about 5-25 at. %, and "e" ranges from about 0-15 at. %. The alloy bodies also have a substantially homogeneous and optically featureless structure.
    Type: Grant
    Filed: December 7, 1984
    Date of Patent: April 15, 1986
    Assignee: Allied Corporation
    Inventor: Derek Raybould
  • Patent number: 4569824
    Abstract: Nickel base superalloys intended for use at low to moderate temperatures are provided with improved corrosion resistance by the addition of from 0.2 to 0.6% manganese. The manganese addition also improves the creep properties of the alloys. The manganese modified alloys are suited for use as elements in gas turbine engines for marine environments.
    Type: Grant
    Filed: January 22, 1982
    Date of Patent: February 11, 1986
    Assignee: United Technologies Corporation
    Inventors: David N. Duhl, Xuan Nguyen-Dinh
  • Patent number: 4556534
    Abstract: A nickel base casting alloy containing 10 to 25 percent chromium, 3 to 8 percent manganese, 3 to 10 percent niobium, 0 to 3.5 percent aluminum, 0.5 to 2.0 percent beryllium which exhibits lower melting characteristics allowing enhanced compatibility to gypsum bonded investments.
    Type: Grant
    Filed: December 20, 1983
    Date of Patent: December 3, 1985
    Assignee: Dentsply Research & Development Corp.
    Inventors: Arthur P. Burnett, Wayne C. Bollinger
  • Patent number: 4546047
    Abstract: Honeycomb structures, such as those used in turbine engine abradable seals, are provided with a uniform density filling of a suitable abradable material. The abradable material is prepared as a tape preform using an organic binder. The preform is forced into the honeycomb using a rubber tool.
    Type: Grant
    Filed: May 2, 1983
    Date of Patent: October 8, 1985
    Assignee: United Technologies Corporation
    Inventor: Edward J. Ryan
  • Patent number: 4543235
    Abstract: An improved eutectic superalloy composition is described. The eutectic composition upon solidification forms a gamma matrix, containing a substantial quantity of particles of the gamma prime phase, and containing about 12% by volume of aligned continuous chromium carbide fibers (Cr.sub.3 C.sub.2). Material of this composition is provided with significantly improved mechanical properties and surface stability through the addition of approximately one atomic percent of the material selected from the group consisting of manganese, technetium and rhenium. Directionally solidified articles of this composition have utility as gas turbine engine components.
    Type: Grant
    Filed: September 22, 1982
    Date of Patent: September 24, 1985
    Assignee: United Technologies Corporation
    Inventors: Franklin D. Lemkey, Irving Machlin
  • Patent number: 4537744
    Abstract: High-temperature protection layer of an alloy with a base of aluminum, chromium and nickel, particularly for structural gas-turbine elements of an austenitic material. The base material of the alloy contains at least 8 to 12 atom % aluminum and 28 to 28 atom % chromium with the remainder nickel, and at least silicon and titanium are admixed to the base material as additives such that at a temperature below 900.degree. C., a passive cover layer of chromium oxide, and at a temperature above 900.degree. C., a passive cover layer of aluminum oxide is developed on the applied alloy.
    Type: Grant
    Filed: November 30, 1983
    Date of Patent: August 27, 1985
    Assignee: BBC Aktiengesellschaft Brown, Boveri & Cie
    Inventors: Franz Gross, Georg Wahl, Andrew R. Nicoll
  • Patent number: 4500489
    Abstract: The invention refers to a high temperature protective coating which is formed by an alloy of chromium, silicon, boron, iron and nickel. According to the invention, a light metal is mixed into the alloy as an additive. The additive consists preferably of aluminum. In addition, the silicon content of the high temperature protective coating is limited to 1.1 to 3.5 percent in weight relative to the total weight of the alloy.
    Type: Grant
    Filed: November 30, 1982
    Date of Patent: February 19, 1985
    Assignee: BBC Aktiengesellschaft Brown, Boveri & Cie
    Inventor: Andrew R. Nicoll
  • Patent number: 4478791
    Abstract: A method for achieving both improved high strength and improved ductility in intermediate phases is provided. The method, briefly stated, comprises the steps of providing a melt whose composition substantially corresponds to that of a preselected intermetallic phase having a crystal structure of the L1.sub.2 type, such as nickel aluminide, modified with from about 0.01 to 2.5 atomic percent boron, and rapidly solidifying the melt at a cooling rate of at least about 10.sup.3 .degree. C./second to form a solid body, the principal phase of which is of the L1.sub.2 type crystal structure in either its ordered or disordered state.
    Type: Grant
    Filed: November 29, 1982
    Date of Patent: October 23, 1984
    Assignee: General Electric Company
    Inventors: Shyh-Chin Huang, Keh-Minn Chang, Alan I. Taub
  • Patent number: 4430297
    Abstract: Disclosed is a hard wear resistant nickel based alloy including a carbide-former, preferably niobium, and essentially cobalt free but which has similar properties to cobalt, chromium, tungsten, carbon alloys. Typically the alloy has a composition, in parts by weight, Cr-34 C-1.2, Mo-10, Fe-3, Si-1, Nb-3, Ni-balance. The alloys of the invention are suitable for surface or welding consumables, and as articles for making hardfacing depositions.
    Type: Grant
    Filed: January 7, 1980
    Date of Patent: February 7, 1984
    Assignee: Cabot Corporation
    Inventor: Paul Crook
  • Patent number: 4415530
    Abstract: A welding alloy particularly directed to use as a wrought filler metal and contains selected percentages of chromium, molybdenum, manganese, columbium, magnesium, a number of trace elements and the balance essentially nickel.
    Type: Grant
    Filed: November 10, 1980
    Date of Patent: November 15, 1983
    Assignee: Huntington Alloys, Inc.
    Inventor: James P. Hunt
  • Patent number: 4410489
    Abstract: Disclosed is a nickel-base alloy which provides excellent corrosion resistance to a variety of severe environments, especially hot phosphoric acid. The alloy preferably contains, in weight percent: about 30 chromium, about 4 molybdenum, about 2 tungsten, about 1 Cb/Ta, about 1.5 copper, about 14 iron and the balance nickel plus the impurities and modifying elements usually found in alloy of this class. The alloy is eminently suited for use as articles in chemical processing apparatus in the manufacture and/or containment of phosphoric acid and sulfuric acid.
    Type: Grant
    Filed: July 17, 1981
    Date of Patent: October 18, 1983
    Assignee: Cabot Corporation
    Inventors: Aziz I. Asphahani, William L. Silence, Paul E. Manning
  • Patent number: 4400349
    Abstract: An alloy useful for manufacturing high strength oil-well casing, tubing and drill pipes for use in oil-well operations is disclosed. The alloy exhibits improved resistance to stress corrosion cracking in the H.sub.2 S--CO.sub.2 --Cl.sup.- environment, which comprises the following alloy composition:______________________________________ C: .ltoreq. 0.1% Si: .ltoreq. 1.0% Mn: 3-20% P: .ltoreq. 0.030% S: .ltoreq. 0.005% N: 0-0.30% sol. Al .ltoreq. 0.5% Ni: 20-60% Cr: 15-35% Mo: 0-12% W: 0-24% Cr(%) + 10 Mo(%) + 5 W(%) .gtoreq. 50% 1/2 Mn(%) + Ni(%) .gtoreq. 25% 1.5% .ltoreq. Mo(%) + 1/2 W(%) .ltoreq. 12% Cu: 0-2.0% Co: 0-2.0% Rare Earths: 0-0.10% Y: 0-0.20% Mg: 0-0.10% Ti: 0-0.5% Ca: 0-0.10% Fe and incidental impurities: balance.
    Type: Grant
    Filed: June 17, 1982
    Date of Patent: August 23, 1983
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Takeo Kudo, Yasutaka Okada, Taishi Moroishi, Akio Ikeda, Hiroo Ohtani, Kunihiko Yoshikawa
  • Patent number: 4340425
    Abstract: NiCrAl alloys are improved by the addition of zirconium. These alloys are in the .beta. or .gamma./.gamma.'+.beta. region of the ternary system.Zirconium is added in a very low amount between 0.06 and 0.20 weight percent. There is a narrow optimum zirconium level at the low value of 0.13 weight percent.Maximum resistance to cyclic oxidation is achieved when the zirconium addition is at the optimum value.
    Type: Grant
    Filed: October 23, 1980
    Date of Patent: July 20, 1982
    Inventors: Robert A. Administrator of the National Aeronautics and Space Administration, with respect to an invention of Frosch, Charles A. Barrett, Carl E. Lowell, Abdus S. Khan