Including Specific Wind Box Or Particulate Matter Support Grid Patents (Class 422/143)
  • Patent number: 10525426
    Abstract: A gas distribution system for a polysilicon deposition reactor eliminates or mitigates the problems associated with prior art distribution systems employs at least two segments which are gas-tightly connected to one another by readily detachable fasteners, with at least one gas inlet opening and one gas outlet opening, the gas distributor of the system being mounted by readily detachable fasteners to the polysilicon reactor.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: January 7, 2020
    Assignee: Wacker Chemie AG
    Inventors: Friedrich Popp, Christian Kutza, Martin Roeckl, Tobias Weiss
  • Patent number: 10507447
    Abstract: Device for distributing a light fluid phase (2) in a heavy phase (4) in the fluidized state in a reaction chamber (5), comprising: a pipe (1) for transporting the light fluid phase; first and second windows (7, 8) created in the pipe, the second windows opening into the reaction chamber; and branches (6) extending each first window and splitting into: a central passage opening into the reaction chamber via an intermediate window (9) created in the upper wall of the branch (6); and at least two distinct lateral branches forming two lateral passages (10) opening into the reaction chamber via end-of-branch windows (11).
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: December 17, 2019
    Assignee: IFP Energies nouvelles
    Inventors: Benjamin Amblard, Sina Tebianian, Ludovic Raynal, Thierry Gauthier, Jean-Francois Le Coz
  • Patent number: 9851156
    Abstract: A body of heat transfer fluid circulates in a first loop through an indirect screw-type thermal processor, a rundown tank, a pump, a heater and a fill tank, continuously heating the processor. With the pump operating, a first vertical distance between the fill tank bottom and the processor under the influence of gravity sets a minimum fluid pressure at the processor; a stem pipe opening in the fill tank at a second vertical distance above the processor sets a maximum pressure. With the pump inactive, the entire body of fluid passively drains to the rundown tank. Supplying the fluid may entail melting a salt, hydrating a salt, or both; such may be done in the rundown tank before circulation through the processor begins. A hydrated salt may be circulated, then heated and dehydrated, to gradually warm the processor. A dehydrated salt may be rehydrated and then stored; this may be done in the rundown tank after ceasing circulation through the processor.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: December 26, 2017
    Inventors: John Potee Whitney, Preston Ochas Whitney
  • Patent number: 9592481
    Abstract: A gas mixing device capable of safely mixing flammable gas containing, for example, methane or the like and combustion supporting gas such as oxygen-containing gas, and a synthesis gas producing device using this gas mixing device. Flammable gas containing methane or the like and combustion supporting gas such as oxygen-containing gas are supplied into a mixing vessel via a first gas supplying section and a second gas supplying section respectively, and these gases are mixed within a combustion range in the vessel to be discharged via a discharge section. In the mixing vessel, packings for forming a large number of narrow gas flow passages in the vessel are packed so that velocity of the mixed gas flowing in the vessel becomes higher than burning velocity of the flammable gas and the combustion supporting gas.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: March 14, 2017
    Inventors: Takeshi Oohara, Shuichi Oguro, Yoshiyuki Watanabe
  • Patent number: 9370759
    Abstract: Embodiments include a reactor and feed distribution assembly. The reactor and feed distribution assembly can include a reactor vessel, a gaseous feed conduit, a catalyst feed conduit, a catalyst feed conduit housing, and a catalyst backflow diverter.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: June 21, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Matthew Pretz, Don F. Shaw, Richard E. Walter, Mark Stewart
  • Patent number: 9352293
    Abstract: Regenerator for catalytic cracking unit comprising a first part occupied by a dense fluidized bed of catalyst and a second part positioned above the first part and occupied by a fluidized bed of low solid particles density, the said second part comprising one internal device covering, by projection onto the plane of the cross section of the said vessel of the regenerator, at least 80% of the said cross section, the said regenerator being equipped with at least one cyclone for separating gases/solids in the mixture derived from the low-density bed, the said cyclone being placed outside the vessel of the regenerator.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: May 31, 2016
    Inventors: Juan-David Llamas, Guillaume Berric
  • Patent number: 9182182
    Abstract: A water spray nozzle (3) for cooling tower is provided. Wherein, the nozzle (3) or the upper connection section of the nozzle (3) has an upward extension section in a water distribution groove (1). Several layers of water inlet holes or slots (4) are opened around the extension section at different heights, or several tapered water inlets (5) with downward taper tips are distributed around the extension section. The nozzle (3) far from a water distribution port can still get the uniformly distributed water even when the water quantity of the cooling tower is low, the efficiency of the cooling tower thereby will not be reduced.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: November 10, 2015
    Inventors: Fangliang Ning, Hongxing Zhang, Shangchao Ning
  • Patent number: 9174153
    Abstract: Process for separating gases from a fluidized gas/solid mixture, comprising at least one injection of gas and optionally at least one injection of solids into and at least one discharge of solids from said fluidized bed, a discharge for gas from the mixture characterized in that it comprises a step of separating the solids entrained by the gas by means of an internal placed in that portion of the fluidized mixture where the voidage is greater than 0.7, occupying less than 10% of the free cross section of the bed.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 3, 2015
    Inventors: Juan-David Llamas, Patrick Leroy, Celine Derouin, Nicolas Lenepveu
  • Publication number: 20150147236
    Abstract: A process for producing an anti-erosion coating on an inner or outer metal wall of a chamber of a fluid catalytic cracking unit, comprising: (i) the shaping of a honeycomb metal anchoring structure, said anchoring structure being formed from a plurality of strips connected in pairs by joining assembly portions of these strips so as to form a plurality of cells between two adjacent strips, (ii) the fastening of said anchoring structure by welding to said metal wall, so that each cell of the anchoring structure is welded to the wall of the chamber at least at the junctions between the contiguous assembly portions of two adjacent strips, and (iii) the insertion of a composite material into the cells from the metal wall and at least up to the upper longitudinal edge of each strip.
    Type: Application
    Filed: June 27, 2013
    Publication date: May 28, 2015
    Inventors: Hubert Simon, Marc Bories
  • Publication number: 20150098877
    Abstract: A system and method suitable for the removal of pollutants from gases with a circulating dry scrubber system having a circulating dry scrubber reactor containing a fluidized bed adapted to contact the gas with a dry reagent within the fluidized bed. The system includes a housing fluidically coupled to the reactor, a filter array within the housing, and an internal hopper within the housing and adapted to return at least some of the particulates to the fluidized bed within the circulating dry scrubber reactor. The scrubbed gas stream exits the circulating dry scrubber reactor and flows upward between an interior of the housing and an exterior of the internal hopper before contacting the filter array. The exterior of the internal hopper is exposed to the scrubbed gas stream, and the scrubbed gas stream is not recirculated to the circulating dry scrubber reactor to maintain the fluidized bed therein.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Inventor: Rodney Alan Hendricksen
  • Publication number: 20150064089
    Abstract: Embodiments of a fluidized bed fluorination reactor are provided, as are embodiments of a fluidized bed reactor and embodiments of a fluorination method carried-out utilizing a fluidized bed fluorination reactor. In one embodiment, the fluidized bed fluorination reactor includes a source of fluorine gas, a reaction vessel, a windbox fluidly coupled to the source of fluorine gas, and a conical gas distributor fluidly coupled between the reaction vessel and the windbox. The conical gas distributor has a plurality of gas flow openings directing fluorine gas flow from the windbox into the fluorination reaction vessel during the fluorination process.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Inventors: Terris Yang, Robert Johnson, Hsueh Sung Harry Tung
  • Publication number: 20140360919
    Abstract: The invention concerns a fluid distribution device (1) comprising: at least one inlet tube (2) comprising openings (7) and having a first and a second end (3, 4); a cap (5) comprising a principal body (6) with a lenticular shape and with a circular section elongated by a skirt (8) extending in the direction of the second end (4) towards the first end (3) of the inlet tube (2), said cap (5) having an outer surface and an inner surface, the cap being integral with the second end (4) of the tube via the inner surface and the principal body (6) being provided with a plurality of holes (10); and in which the cap (5) comprises at least one deflection means (14) disposed on its outer surface and configured to direct or maintain the gas towards or at the periphery of said cap (5).
    Type: Application
    Filed: June 10, 2014
    Publication date: December 11, 2014
    Applicant: AXENS
    Inventors: Jean Francois LE COZ, Daniel FERRE, Cyril COLLADO
  • Patent number: 8906313
    Abstract: Gas distribution units of fluidized bed reactors are configured to direct thermally decomposable compounds to the center portion of the reactor and away from the reactor wall to prevent deposition of material on the reactor wall and process for producing polycrystalline silicon product in a reactor that reduce the amount of silicon which deposits on the reactor wall.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 9, 2014
    Assignee: SunEdison, Inc.
    Inventors: Milind S. Kulkarni, Puneet Gupta, Balaji Devulapalli, Jameel Ibrahim, Vithal Revankar, Kwasi Foli
  • Patent number: 8894940
    Abstract: A process and apparatus for fluid catalytic cracking feeds catalyst to a chamber of a riser. The catalyst exits the chamber and passes through a plenum and into a reaction zone through a plurality of tubes which distribute the catalyst uniformly over a cross section of the reaction zone of the riser. A hydrocarbon feed is fed to the plenum. The hydrocarbon feed passes from the plenum into the reaction zone through a plate comprising a multiplicity of openings which distribute the hydrocarbon feed uniformly over a cross section of the reaction zone of the riser. The feed is contacted with the catalyst in a reaction zone of the riser.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 25, 2014
    Assignee: UOP LLC
    Inventor: Sujay R. Krishnamurthy
  • Patent number: 8888899
    Abstract: Systems and methods for gasifying a feedstock are provided. A gasifier can include a transfer line having a first leg and a second leg. A first end of the first leg can be adapted to be coupled to a cyclone and a second end of the first leg can be coupled to a first end of the second leg. The second end of the second leg can be adapted to be coupled to a standpipe. A centerline through the first leg can be oriented at an angle with a centerline through the second leg of from about 40° to about 140°.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: November 18, 2014
    Assignee: Kellogg Brown & Root LLC
    Inventors: Iwan H. Chan, Yongchao Li
  • Patent number: 8877132
    Abstract: Fluid catalytic cracking units having risers with improved hydrodynamics through the use of baffles are described. The baffles break up the high concentration of catalyst in the slower moving outer annulus and redistribute it into the faster moving, more dilute center of the riser flow.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Daniel R. Johnson, Lev Davydov
  • Publication number: 20140294685
    Abstract: A process and device for the flow of catalyst in a reactor is presented. The device includes a series of grids within a reactor vessel, where each grid includes small openings for the passage of gas and some catalyst particles, and larger openings for the more continuous passage of catalyst.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 2, 2014
    Applicant: UOP LLC
    Inventors: Richard A. Johnson, II, Paolo Palmas, John J. Senetar, Daniel A. Kauff, Michael Stine
  • Patent number: 8840846
    Abstract: An apparatus for catalytic cracking of feedstock includes a first channel in which a feedstock is treated with an adsorbent to obtain a treated intermediate. The apparatus further comprises a separator-reactor vessel. The separator-reactor vessel includes an adsorbent separating region to remove the adsorbent from the treated intermediate. The separator-reactor vessel further includes a second channel connected to the adsorbent separating region. The treated intermediate is contacted with a catalyst in the second channel to produce a cracking yield. The second channel terminates in a catalyst separating region of the separator-reactor vessel. The catalyst is removed from the cracking yield in the catalyst separating region. The separator-reactor vessel further includes a physical partition disposed between the adsorbent separating region and the catalyst separating region to separate the two regions.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: September 23, 2014
    Assignee: Indian Oil Corporation Ltd.
    Inventors: Debasis Bhattacharyya, Gadari Saidulu, Arumugam Velayutham Karthikeyani, Pankaj Kasliwal, Bandaru Venkata Hari Prasad Gupta, Ram Mohan Thakur, Jagdev Kumar Dixit, Sudipta Roy, Ganga Shanker Mishra, Satyen Kumar Das, Santanam Rajagopal
  • Patent number: 8828324
    Abstract: Fluidized bed reactor systems and distributors are disclosed as well as processes for producing polycrystalline silicon from a thermally decomposable silicon compound such as trichlorosilane. The processes generally involve reduction of silicon deposits on reactor walls during polycrystalline silicon production by use of a silicon tetrahalide.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: September 9, 2014
    Assignee: SunEdison, Inc.
    Inventor: Henry F. Erk
  • Publication number: 20140186225
    Abstract: A fluid distribution apparatus is disposed in a fluidized bed reactor and includes a distributor pipe configured to carry a fluid and a centerpipe fluidly connected to the distributor pipe and enclosing an annular space for receiving the fluid from the distributor pipe. The annular space is defined by an interior radius including a cylindrical plug disposed concentrically within the centerpipe, an exterior radius including the centerpipe, an upper end including an upper circular plate, and a lower end including a lower circular plate. The fluid distribution apparatus further includes a plurality of inlet nozzles fluidly connected to the annular space and disposed through the centerpipe for distributing the fluid from the annular space to a bed of the fluidized bed reactor.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: UOP LLC
    Inventor: Robert T. Sprague
  • Patent number: 8728574
    Abstract: Gas distribution units of fluidized bed reactors are configured to direct thermally decomposable compounds to the center portion of the reactor and away from the reactor wall to prevent deposition of material on the reactor wall and process for producing polycrystalline silicon product in a reactor that reduce the amount of silicon which deposits on the reactor wall.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: May 20, 2014
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Milind S. Kulkarni, Puneet Gupta, Balaji Devulapalli, Jameel Ibrahim, Vithal Revankar, Kwasi Foli
  • Patent number: 8722565
    Abstract: A method for applying a washcoat suspension to a support structure. To provide coatings with largely uniform thickness starting from washcoat suspensions, the method uses a device (10) set up to produce, by means of a process gas (40), a fluid bed of support structures in which the support structures circulate elliptically or toroidally, the method comprising the steps of: a) charging the device (10) with support structures and producing a support-structure fluid bed by means of a process gas (40), wherein the support structures circulate in the fluid bed elliptically or toroidally, preferably toroidally; b) impregnating the support structures with a washcoat suspension by spraying the support structures circulating elliptically or toroidally in the fluid bed with the washcoat suspension; c) drying the support structures sprayed with the washcoat suspension; and d) optionally calcining the support structures loaded with the solids contents of the washcoat suspension.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: May 13, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Gerhard Mestl, Christian Gückel, Marvin Estenfelder, Bastian Käding
  • Patent number: 8691155
    Abstract: Embodiments of a hydrocarbon conversion apparatus are provided, as are embodiments of a hydroprocessing conversion process. In one embodiment, the hydrocarbon conversion apparatus includes a reaction vessel having a reaction chamber and a feed distribution chamber. A riser fluidly couples the feed distribution chamber to the reaction chamber, and a catalyst recirculation standpipe fluidly couples the reaction chamber to the feed distribution chamber. The catalyst recirculation standpipe forms a catalyst recirculation circuit with the reaction chamber, the feed distribution chamber, and the riser. A catalyst is circulated through the catalyst recirculation circuit during operation of the hydrocarbon conversion apparatus.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 8, 2014
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Daniel Robert Johnson, Clayton C. Sadler
  • Patent number: 8668823
    Abstract: This invention relates to methods and units for mitigation of carbon oxides during hydrotreating hydrocarbons including mineral oil based streams and biological oil based streams. A hydrotreating unit includes a first hydrotreating reactor for receiving a mineral oil based hydrocarbon stream and forming a first hydrotreated product stream, and a second hydrotreating reactor for receiving a biological oil based hydrocarbon stream and forming a second hydrotreated product stream.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: March 11, 2014
    Assignee: BP Corporation North America Inc.
    Inventors: Nicholas J. Gudde, John W. Shabaker
  • Patent number: 8603406
    Abstract: An apparatus and process are presented for drying a catalyst in a reactor-regenerator system. The process includes a continuous operating system with catalyst circulating between a reactor and regenerator, and the catalyst is dried before returning the catalyst to the reactor. The process uses air that is split between the drying stage and the combustion stage without adding equipment outside of the regenerator, minimizing energy, capital cost, and space requirements.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: December 10, 2013
    Assignee: UOP LLC
    Inventors: David N. Myers, Daniel N. Myers, Paolo Palmas, Laura E. Leonard, Wolfgang A. Spieker
  • Patent number: 8561557
    Abstract: A system for feeding a primary oxidant to an oxy-fired circulating fluidized bed (CFB) boiler. The system includes a plurality of bubble cap assemblies each comprising a stem and a bubble cap with at least one exit hole, each bubble cap connected via a stem to at least one windbox, the windbox containing at least one manifold. A plurality of pipes are provided, each pipe located within a bubble cap assembly with an open end located either at, above or below the exit holes of the bubble caps and an opposite end connected to the manifold located inside each windbox. Recycle gas is piped into the windbox, to the stem, and exiting from the exit holes located in the bubble cap into the CFB. Oxygen is piped into the manifold, through the pipes and exiting through the exit holes located in the bubble cap.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: October 22, 2013
    Assignee: Babcock & Wilcox Power Generation Group, Inc.
    Inventors: Mikhail Maryamchik, Kiplin C. Alexander, Mark C. Godden, David L. Kraft
  • Patent number: 8496898
    Abstract: A pneumatic conveying system for conveying hydrated lime is provided with ambient air for the pneumatic conveying system from a scrubber that removes carbon dioxide from the ambient air used in the conveying system. The scrubber includes a bed of hydrated lime through which ambient air is passed, to react carbon dioxide in the air with the hydrated lime in a reaction that forms limestone and water. The air that has passed through the fluidized bed, which is essentially carbon dioxide free, is also passed through a filter to remove particles suspended in the carbon dioxide free air. The carbon dioxide free air from the filter is provided to the pneumatic conveying system. The use of carbon dioxide free air ensures that the hydrated lime being transported in the conveying system will not react in the various conduits and ducts of the pneumatic conveying system to cause problems.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 30, 2013
    Assignee: Nol-Tec Systems, Inc.
    Inventor: Michael John Mooney
  • Patent number: 8486339
    Abstract: There is provided a hydrogen chrolide gas ejecting nozzle 1 used in a reaction apparatus for producing trichlorosilane in which metal silicon powder is reacted with hydrogen chloride gas to generate trichlorosilane. The member is provided with a shaft portion extending in the longitudinal direction and a head portion that is provided on an end of the shaft portion and extends in a direction intersecting the longitudinal direction of the shaft portion. A supply hole extending in the longitudinal direction is formed in the shaft portion, a plurality of ejection holes are formed in the head portion, and each of the ejection holes is communicatively connected to the supply hole and opened on the outer surface of the head portion toward a direction intersecting the direction to which the supply hole extends.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 16, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventor: Chikara Inaba
  • Patent number: 8349753
    Abstract: An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: January 8, 2013
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Chris Santner, Eusebius Gbordzoe, Harvey McQuiston
  • Patent number: 8333928
    Abstract: Provided is an apparatus for producing carbon nanotubes. The apparatus includes a reaction chamber and a rotating member. The reaction chamber provides a reaction space in which metal catalysts and a source gas react with one another to produce carbon nanotubes. The rotating member increases fluidizing of the metal catalysts in the reaction space to increase productivity and raise the gas conversion rate, thereby reducing the price of carbon nanotubes and preventing adhering of metal catalysts to the sidewall of the reaction chamber.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: December 18, 2012
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Suk-Won Jang, Chung-Heon Jeong, Jong-Kwan Jeon, Ho-Soo Hwang
  • Patent number: 8299314
    Abstract: The present invention is directed to a method and system for integrating a catalyst regeneration system with a plurality of hydrocarbon conversion apparatuses, preferably, a plurality of multiple riser reactor units. One embodiment of the present invention is a reactor system including a plurality of reactor units, at least one reactor unit preferably comprising a plurality of riser reactors. The system also includes a regenerator for converting an at least partially deactivated catalyst to a regenerated catalyst. A first conduit system transfers the at least partially deactivated catalyst from the reactor units to the regenerator, and a second conduit system transfers regenerating catalysts from the regenerator to the plurality of reactor units. Optionally, catalysts from a plurality of hydrocarbon conversion apparatuses may be directed to a single stripping unit and/or a single regeneration unit.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: October 30, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Michael Peter Nicoletti, James R. Lattner, Dennis George Alexion, Peter K. Paik
  • Patent number: 8292977
    Abstract: The invention has its object to arbitrarily adjust an amount of particles to be circulated without changing a flow rate of a gasification agent to thereby enhance gasification efficiency in a fluidized bed gasification furnace. The fluidized bed gasification furnace 107 comprises first and second chambers 113 and 114 in communication with each other in a fluidized bed 105. The hot particles 102 separated in the separator 104 and raw material M are introduced into the first chamber 113. The particles 102 introduced from the first chamber 113 through interior in the fluidized bed 105 to the second chamber 114 are supplied in an overflow manner to the fluidized bed combustion furnace 100.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 23, 2012
    Assignee: IHI Corporation
    Inventors: Toshiyuki Suda, Yoshiaki Matsuzawa, Toshiro Fujimori
  • Patent number: 8282885
    Abstract: An FCC apparatus may include a distributor disposed in a recess in a wall of the riser for distributing gaseous hydrocarbon feed to a riser. The distributor may be shielded from upwardly flowing catalyst by a shield. An array of nozzles from the distributor may extend through openings in the shield.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Paul S. Nishimura
  • Publication number: 20120251433
    Abstract: An industrial process and an apparatus for fabricating carbon nanotubes (CNTs) is provided, comprising synthesis of the carbon nanotubes by decomposing a carbon source brought into contact, in a fluidized-bed reactor, whereby the carbon nanotubes synthesized in the reactor and fixed onto the grains of catalytic substrate in the form of an entangled three-dimensional network, forming agglomerates constituting the CNT powder, are recovered sequentially by discharging them while hot, that is to say at the reaction temperature for synthesizing the CNTs, at the foot of the reactor, the sequence in which the discharges are carried out corresponding to the frequency of filling of the reactor.
    Type: Application
    Filed: March 20, 2012
    Publication date: October 4, 2012
    Applicant: Arkema France
    Inventors: Patrice Gaillard, Serge Bordere
  • Patent number: 8241583
    Abstract: A process for cracking a hydrocarbon feed in a reactor assembly comprising: a reactor vessel; a solid catalyst inlet by which catalyst is introduced and a solid catalyst outlet by which catalyst is removed from the reactor vessel; a plurality of feed nozzles by which feed is introduced at the bottom of the vessel; a product outlet for removing a product mixture of gas and solid catalyst at the upper part of the reactor; at least one partition plate, that divides the interior of the reactor vessel into two or more compartments, wherein the partition plate intersects the solid catalyst inlet.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: August 14, 2012
    Assignee: Shell Oil Company
    Inventors: Hubertus Wilhelmus Albertus Dries, Rene Samson
  • Patent number: 8226895
    Abstract: A reaction apparatus for producing trichlorosilane in which metal silicon powder M is reacted with hydrogen chloride gas, thus generating trichlorosilane, includes: an apparatus body into which the metal silicon powder is supplied; and an ejection port for ejecting the hydrogen chloride gas into the apparatus body from the bottom part of the apparatus body, wherein a plurality of holed pieces having a through hole penetrating in the thickness direction and a plurality of pellets interposed between these holed pieces are stacked in a mixed state on the upper side of the ejection port.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 24, 2012
    Assignee: Mitsubishi Materials Corporation
    Inventor: Chikara Inaba
  • Patent number: 8221674
    Abstract: A distributor bottom, particularly a nozzle-type distributor bottom, for steadily introducing process gas, especially process gas loaded with solid particles, into a process chamber, optionally to create a fluidized bed. The process chamber is disposed above the distributor bottom and is formed by walls of a reactor used for metallurgically, particularly thermally, treating feedstock. The distributor bottom is provided with a plurality of holes. Holes are arranged near the walls to prevent substances from attaching to the reactor walls. Special arrangements relate to nozzles and ducts.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 17, 2012
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Franz Hauzenberger, Karl Zehetbauer, Jun Hyuk Lee, Myoung Kyun Shin, Won Namkung, Minyoung Cho, Sun-Kwang Jeong, Nag Joon Choi, Hang Goo Kim
  • Patent number: 8173567
    Abstract: Disclosed is a catalyst distributor and process for spreading catalyst over a regenerator vessel. Nozzles disposed angular to a header of the distributor spread catalyst throughout a full cross section of the catalyst bed.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: May 8, 2012
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Lawrence A. Lacijan, Sujay R. Krishnamurthy, Mohammad-Reza Mostofi-Ashtiani, Paul S. Nishimura, Lisa M. Wolschlag
  • Patent number: 8157899
    Abstract: A particulate material processing apparatus has a vessel and a processing tank. The vessel has a charging port for charging a particulate material into the vessel. The processing tank receives the particulate material charged from the charging port. The processing tank is shaped so as to narrow towards the bottom. At least the lower part of the processing tank is made of a gas-permeable material that allows the process gas for processing the particulate material to pass through. The upper part of the processing tank has lower gas permeability than the lower part of the processing tank.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: April 17, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Tomohiro Isogai, Katsuya Nakai, Tatsuo Suzuki, Taku Hirakawa, Hiroyuki Shimada
  • Patent number: 8128895
    Abstract: Processing schemes and arrangements are provided for obtaining propylene and propane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the propylene into cumene without separating the propane from the propane/propylene feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of propylene from propane produced by a FCC process prior to using the combined propane/propane stream as a feed for a cumene alkylation process. A bottoms stream from the cumene column of the cumene alkylation process can be used and an absorption solvent in the FCC process thereby eliminating the need for a transalkylation reactor and a DIPB/TIPB column.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventor: Michael A. Schultz
  • Patent number: 8129482
    Abstract: A process for preventing or reducing polymer agglomeration and/or accumulation on or around the gas distribution grid in an olefin polymerization, fluidized-bed reactor. The process involves introducing one or more scouring balls into the reactor above the gas distribution grid, and carrying out olefin polymerization in the presence of the scouring balls. Also disclosed is a process for polymerizing olefins in a fluidized-bed reactor with reduced polymer agglomeration and/or accumulation on the gas distribution grid.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: March 6, 2012
    Assignee: Westlake Longview Corporation
    Inventor: Larry Allen Noble
  • Patent number: 8124697
    Abstract: A method for preventing or reducing agglomeration and/or accumulation on or around the gas distribution grid in a fluidized-bed vessel. The method involves introducing one or more scouring balls into the vessel above the gas distribution grid, and carrying out a fluidized-bed process in the presence of the scouring balls.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: February 28, 2012
    Assignee: Westlake Longview Corporation
    Inventor: Larry Allen Noble
  • Patent number: 8114352
    Abstract: The present invention relates to a high-pressure fluidized bed reactor for preparing granular polycrystalline silicon, comprising (a) a reactor tube, (b) a reactor shell encompassing the reactor tube, (c) an inner zone formed within the reactor tube, where a silicon particle bed is formed and silicon deposition occurs, and an outer zone formed in between the reactor shell and the reactor tube, which is maintained under the inert gas atmosphere, and (d) a controlling means to keep the difference between pressures in the inner zone and the outer zone being maintained within the range of 0 to 1 bar, thereby enabling to maintain physical stability of the reactor tube and efficiently prepare granular polycrystalline silicon even at relatively high reaction pressure.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 14, 2012
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Hee Young Kim, Kyung Koo Yoon, Yong Ki Park, Won Choon Choi
  • Patent number: 8105541
    Abstract: A reactor system includes a fluidized bed reactor with a fluidized zone having sorbent particles and catalyst particles. The sorbent particles are sized to become entrained in a product stream from the fluidized zone and the catalyst particles are sized to gravimetrically stay within the fluidized zone.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: January 31, 2012
    Assignee: Pratt & Whitney Rocketdyne, Inc.
    Inventors: Albert E. Stewart, Jeffrey A. Mays
  • Patent number: 8097216
    Abstract: A process and apparatus for fluidizing a population of catalyst particles having a low catalyst fines content includes a fluidized bed reactor which includes a plurality of catalyst particles in the reactor wherein the catalyst particles having a d2 value of greater than about 40 microns. The catalyst particles are contacted with a fluidizing medium under conditions to fluidize the particles, the reactor includes a continuous reaction zone and separation zone and the fluidized of the catalyst particles are situated within the reaction and both the reaction zone and the separation zone include obstructing members which obstruct the flow of particles such that the catalyst particles can be maintained at an axial gas Peclet number from about 10 to about 20.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: January 17, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Nicolas P. Coute, Jeffrey S. Smith, Michael Peter Nicoletti
  • Patent number: 8043578
    Abstract: A flexible pressure containment coverplate has been invented for radial flow reactors. The coverplate is for a fixed bed reactor wherein the reactor undergoes significant thermal cycles. The coverplate provides flexibility for axial and radial thermal growth, while providing a sealing capability to prevent leakage of the fluid. The coverplate has a half toroidal structure, with a semi-circular cross-section.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: October 25, 2011
    Assignee: UOP LLC
    Inventor: Michael J. Vetter
  • Patent number: 8038950
    Abstract: A fluidized-bed reactor for carrying out a gas-phase reaction, in which a gaseous reaction mixture flows from the bottom upward through a heterogeneous particulate catalyst forming a fluidized bed and internals are arranged in the fluidized bed, wherein the internals divide the fluidized bed into a plurality of cells arranged horizontally in the fluidized-bed reactor and a plurality of cells arranged vertically in the fluidized-bed reactor, with the cells having cell walls which are permeable to gas and have openings which ensure an exchange number of the heterogeneous particulate catalyst in the vertical direction in the range from 1 to 100 liters/hour per liter of reactor volume, is proposed.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: October 18, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Seidemann, Dieter Stuetzer, Thomas Grassler, Martin Karches, Christian Schneider
  • Patent number: 8034884
    Abstract: Gas-phase fluidized-bed reactor for polymerizing ethylenically unsaturated monomers, comprising a reactor chamber (1) in the form of a vertical tube, if desired a calming zone (2) following the upper section of the reactor chamber, a circulation gas line (3), a circulation gas compressor (4) and a cooling device (5), where, in the region of transition of the reaction gas from the circulation gas line into the reactor chamber and in the lower section of the reactor chamber itself, there is either no gas distributor plate at all or only a gas distributor plate the total surface area of whose gas orifices is more than 20% of the total surface area of said gas distributor plate.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: October 11, 2011
    Inventors: Rainer Karer, Kaspar Evertz, Wolfgang Micklitz, Hans-Jacob Feindt, Philipp Rosendorfer, Peter Kölle
  • Patent number: 8017083
    Abstract: A system of converting oxygenate-containing feedstock to light olefins comprises charging a reactor with catalyst, feeding the feedstock into the reactor, contacting the feedstock with the catalyst and converting the feedstock to olefins while depositing byproducts on catalyst resulting in spent catalyst, regenerating the spent catalyst by combustion gases, and stripping the regenerated catalyst of gases entrained in the regenerating step. The stripping step is accomplished using nitrogen gas to strip the entrained gases from the regenerate catalyst. In one embodiment, regenerated catalyst is passed through a regenerated catalyst stripper before it is returned to the reactor.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: September 13, 2011
    Assignee: UOP LLC
    Inventors: John J. Senetar, Richard A. Johnson, II
  • Patent number: 8007729
    Abstract: Hydrocarbon feed to a catalytic reactor can be heat exchanged with flue gas from a catalyst regenerator. This innovation enables recovery of more energy from flue gas thus resulting in a lower flue gas discharge temperature. As a result, other hot hydrocarbon streams conventionally used to preheat hydrocarbon feed can now be used to generate more high pressure steam.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 30, 2011
    Assignee: UOP LLC
    Inventors: Yunbo Liu, Xin X. Zhu, Daniel N. Myers, Patrick D. Walker