Including Specific Wind Box Or Particulate Matter Support Grid Patents (Class 422/143)
  • Patent number: 8038950
    Abstract: A fluidized-bed reactor for carrying out a gas-phase reaction, in which a gaseous reaction mixture flows from the bottom upward through a heterogeneous particulate catalyst forming a fluidized bed and internals are arranged in the fluidized bed, wherein the internals divide the fluidized bed into a plurality of cells arranged horizontally in the fluidized-bed reactor and a plurality of cells arranged vertically in the fluidized-bed reactor, with the cells having cell walls which are permeable to gas and have openings which ensure an exchange number of the heterogeneous particulate catalyst in the vertical direction in the range from 1 to 100 liters/hour per liter of reactor volume, is proposed.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: October 18, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Seidemann, Dieter Stuetzer, Thomas Grassler, Martin Karches, Christian Schneider
  • Patent number: 8034884
    Abstract: Gas-phase fluidized-bed reactor for polymerizing ethylenically unsaturated monomers, comprising a reactor chamber (1) in the form of a vertical tube, if desired a calming zone (2) following the upper section of the reactor chamber, a circulation gas line (3), a circulation gas compressor (4) and a cooling device (5), where, in the region of transition of the reaction gas from the circulation gas line into the reactor chamber and in the lower section of the reactor chamber itself, there is either no gas distributor plate at all or only a gas distributor plate the total surface area of whose gas orifices is more than 20% of the total surface area of said gas distributor plate.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: October 11, 2011
    Inventors: Rainer Karer, Kaspar Evertz, Wolfgang Micklitz, Hans-Jacob Feindt, Philipp Rosendorfer, Peter Kölle
  • Patent number: 8017083
    Abstract: A system of converting oxygenate-containing feedstock to light olefins comprises charging a reactor with catalyst, feeding the feedstock into the reactor, contacting the feedstock with the catalyst and converting the feedstock to olefins while depositing byproducts on catalyst resulting in spent catalyst, regenerating the spent catalyst by combustion gases, and stripping the regenerated catalyst of gases entrained in the regenerating step. The stripping step is accomplished using nitrogen gas to strip the entrained gases from the regenerate catalyst. In one embodiment, regenerated catalyst is passed through a regenerated catalyst stripper before it is returned to the reactor.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: September 13, 2011
    Assignee: UOP LLC
    Inventors: John J. Senetar, Richard A. Johnson, II
  • Patent number: 8007729
    Abstract: Hydrocarbon feed to a catalytic reactor can be heat exchanged with flue gas from a catalyst regenerator. This innovation enables recovery of more energy from flue gas thus resulting in a lower flue gas discharge temperature. As a result, other hot hydrocarbon streams conventionally used to preheat hydrocarbon feed can now be used to generate more high pressure steam.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 30, 2011
    Assignee: UOP LLC
    Inventors: Yunbo Liu, Xin X. Zhu, Daniel N. Myers, Patrick D. Walker
  • Patent number: 7993595
    Abstract: An apparatus for introducing fluids into a solids flow of a spouted bed apparatus is provided. The apparatus includes a spray nozzle which opens into a reaction space of the spouted bed apparatus. A lower region of the reaction space is provided with a rectangular cross section for the spouted bed apparatus and is limited in an axial direction by at least one inclined stream return flow wall and an oppositely inclined stream inlet wall with the formation of an axial gap through the reaction space for supplying inlet air. At least one nozzle is also provided for introducing fluid above the gap opens into the reaction space.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: August 9, 2011
    Assignee: Glatt Ingenieurtechnik GmbH
    Inventors: Michael Jacob, Karlheinz Rumpler, Mike Waskow
  • Patent number: 7972562
    Abstract: The present invention relates to a high-pressure fluidized bed reactor for preparing granular polycrystalline silicon, comprising (a) a reactor tube, (b) a reactor shell encompassing the reactor tube, (c) an inner zone formed within the reactor tube, where a silicon particle bed is formed and silicon deposition occurs, and an outer zone formed in between the reactor shell and the reactor tube, which is maintained under the inert gas atmosphere, and (d) a controlling means to keep the difference between pressures in the inner zone and the outer zone being maintained within the range of 0 to 1 bar, thereby enabling to maintain physical stability of the reactor tube and efficiently prepare granular polycrystalline silicon even at relatively high reaction pressure.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: July 5, 2011
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Hee Young Kim, Kyung Koo Yoon, Yong Ki Park, Won Choon Choi
  • Patent number: 7955566
    Abstract: In order to produce granules granulometrically polidispersed in a very little range, a fluid bed granulation process of the type comprising the steps of preparing a fluid bed of seeds (S1) of the substance to be granulated, having a free surface (P) substantially horizontal; and feeding a continuous flow (L) of a fluid comprising a growth liquid, provides in the fluid bed for a continuous vortex (V) with a substantially horizontal axis, in which an upper zone (Z1) of seeds wetting and evaporation of possible solvent contained in the flow (L) and a lower zone (Z2) of solidification/consolidation of the growth liquid are identified.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: June 7, 2011
    Assignee: Urea Casale S.A.
    Inventor: Gianfranco Bedetti
  • Patent number: 7955565
    Abstract: The gas-phase fluidized-bed reactor conducting reaction by feeding a gas, through a gas-distribution plate located at the lower part of a reaction vessel, into a fluidized bed formed on the gas-distribution plate, wherein the reaction vessel is made up so as to have a narrowed part at a specified position of the gas flow passage above the gas-distribution plate, and the fluidized bed is formed in the area from below the narrowed part to above the narrowed part. The gas-phase fluidized bed rector of the present invention allows manufacturing polymers having excellent homogeneity of polymer structure in gas-phase polymerization.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: June 7, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Masashi Hamba
  • Patent number: 7951739
    Abstract: An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 31, 2011
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Chris Santner, Eusebius Gbordzoe, Harvey McQuiston
  • Patent number: 7947230
    Abstract: Disclosed is a catalyst distributor and process for spreading catalyst over a regenerator vessel. Nozzles disposed angular to a header of the distributor spread catalyst throughout a full cross section of the catalyst bed.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: May 24, 2011
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Lawrence A. Lacijan, Sujay R. Krishnamurthy, Mohammad-Reza Mostofi-Ashtiani, Paul S. Nishimura, Lisa M. Wolschlag
  • Patent number: 7939025
    Abstract: A gas distribution plate for fluidized-bed, olefin polymerization reactors is provided. In addition to holes for distributing a fluidizing gas, the plate comprises a plurality of hollow projections for introducing a fluid into the fluidized-bed reactor. The hollow projections, which can be tubes or pipes, extend above the plate towards the fluidized bed and serve a number of purposes. The projections can break apart or penetrate fallen polymer agglomerates or sheets. They can be equipped with flow or pressure sensors to detect a decrease in flow rate or an increase in pressure drop across the projections, which is an indicator of the presence and/or size of fallen polymer agglomerates or sheets. The projections can also break apart the agglomerates or sheets into smaller pieces by delivering blasts of fluid directly into the agglomerates or sheets.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: May 10, 2011
    Assignee: Westlake Longview Corp.
    Inventors: Paul Keith Scherrer, Guy Glen Luneau, Kenneth Alan Dooley, Corey Emonn Shaw, Jeffrey James Vanderbilt, Matthew Howard Scott
  • Patent number: 7935857
    Abstract: A gas-solids reaction system is provided for improving product recovery in a multiple reactor reaction system. The solids of the product gas-solids flows from the multiple reactors are separated out in a separation vessel having a baffled transition zone. Additional product vapor is stripped from the solids as the solids pass through the baffled transition zone. The solids are then returned to the multiple reactors.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: May 3, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Richard E. Walter, Arun K. Sharma, Jeffrey S. Smith
  • Patent number: 7875685
    Abstract: Apparatus and methods for gas phase polymerization are provided. The method can include polymerizing one or more olefins at gas phase conditions in a reactor comprising one or more process exposed surfaces in the presence of a catalyst system; and treating at least a portion of the one or more process exposed surfaces prior to injecting the catalyst system to reduce the number of surface hydroxyls or access of the catalyst system to the surface hydroxyls on the process exposed surfaces.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: January 25, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kevin B. Stavens, Matthew W. Holtcamp, Gary D. Mohr, William A. Lamberti
  • Patent number: 7829030
    Abstract: The present invention relates to processes for fluidizing a population of catalyst particles that are depleted of catalyst fines. In one embodiment, the process includes providing a plurality of catalyst particles in the reactor, wherein the catalyst particles have a d2 value of greater than about 40 microns. The catalyst particles are contacted with a fluidizing medium under conditions effective to cause the catalyst particles to behave in a fluidized manner and form a fluidized bed. The particles are contacted with one or more primary obstructing members while in the fluidized bed. By fluidizing the catalyst particles in this manner, the catalyst particles can be maintained at an axial gas Peclet number of from about 10 to about 20.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: November 9, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Nicolas P. Coute, Jeffrey S. Smith, Michael Peter Nicoletti
  • Patent number: 7829750
    Abstract: The present invention relates to processes for fluidizing a population of catalyst particles that are depleted of catalyst fines. In one embodiment, the process includes providing a plurality of catalyst particles in the reactor, wherein the catalyst particles have a d2 value of greater than about 40 microns. The catalyst- particles are contacted with a fluidizing medium under conditions effective to cause the catalyst particles to behave in a fluidized manner and form a fluidized bed. The particles are contacted with one or more primary obstructing members while in the fluidized bed. By fluidizing the catalyst particles in this manner, the catalyst particles can be maintained at an axial gas Peclet number of from about 10 to about 20.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: November 9, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Nicolas Coute, Jeffrey S. Smith, Michael Peter Nicoletti
  • Patent number: 7807761
    Abstract: Process and apparatus for gas-phase polymerization of olefin(s), including a fluid or stirred bed reactor, a bed level controller, and at least one conduit for withdrawing polymer, provided with an isolation valve. The conduit connects the side wall of the reactor to at least one uplift conduit, at least one recovery gas lock hopper equipped with a discharge valve, and at least one degassing chamber. At least one flushing device is provided for flushing the at least one uplift conduit.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: October 5, 2010
    Assignee: Ineos Europe Limited
    Inventors: Jen-Louis Chamayou, Peter John Elstner
  • Patent number: 7807116
    Abstract: A shell-and-tube reactor is disclosed. Contact tubes are disposed within a cylindrical housing and are secured to tube plates. Gas and liquid phases are received via a feed opening in a lower end cap and discharged via an upper end cap in the housing. A distributor device is disposed in the housing, such that the tube plates serve as a horizontal plate for the distributor device to back up the gas phase and form a gas cushion, and vertical elements extend from the contact tubes. The vertical elements are adapted to conduct the liquid phase, are open in the upstream direction, and project outward in the direction of the feed opening through the gas cushion. The vertical elements further include at least one first opening on the circumference for the gas phase and at least one second opening for the liquid phase.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: October 5, 2010
    Assignee: BASF SE
    Inventors: Wolfgang Gerlinger, Torsten Mattke, Oliver Bey
  • Publication number: 20100242353
    Abstract: A method, apparatus, and system for a solar-driven bio-refinery that may include a entrained-flow biomass feed system that is feedstock flexible via particle size control of the biomass. Some embodiments include a chemical reactor that receives concentrated solar thermal energy from an array of heliostats. The entrained-flow biomass feed system can use an entrainment carrier gas and supplies a variety of biomass sources fed as particles into the solar-driven chemical reactor. Biomass sources in a raw state or partially torrified state may be used, as long as parameters such as particle size of the biomass are controlled. Additionally, concentrated solar thermal energy can drive gasification of the particles. An on-site fuel synthesis reactor may receive the hydrogen and carbon monoxide products from the gasification reaction use the hydrogen and carbon monoxide products in a hydrocarbon fuel synthesis process to create a liquid hydrocarbon fuel.
    Type: Application
    Filed: June 8, 2010
    Publication date: September 30, 2010
    Applicant: SUNDROP FUELS, INC.
    Inventors: Zoran Jovanovic, Bryan Schramm, Christopher Perkins, Courtland Hilton, Wayne Simmons
  • Patent number: 7794670
    Abstract: Method and apparatus of producing polymers in a gas phase polymerization reactor, which has an elongated reactor body, and an essentially vertically disposed central axis. The reactor comprises an upper part and a lower part, which are separated by a distribution plate, which promotes distribution into the fluidized bed of monomers flowing from the lower part into the upper part. According to the invention, at least a part of the gas stream fed into the lower part of the reactor is conducted along the inside of the reactor walls past the distribution plate to prevent the formation of stagnant zones in the fluidized bed at the reactor walls in the vicinity of the distribution plate.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: September 14, 2010
    Assignee: Borealis Technology Oy
    Inventors: Timo Heino, Sami Karvinen
  • Patent number: 7780928
    Abstract: An improved radial or cross flow moving bed regenerator or reactor, in which the solid particle residence time in the vessels can be changed in different section of the regenerator or reactor. The improvement results from the placement of one or multiple screen inserts which divides the radial or cross flow bed into separate solid flow channels. The residence time of the solid in each solid flow channels are optimized based on the regeneration or reaction requirement by changing the location, orientation and geometry of the screen inserts. As a result of the optimization of solid residence time in different section in the radial flow bed, the efficiency of a regenerator or a reactor is improved.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 24, 2010
    Inventor: Leon Yuan
  • Patent number: 7771668
    Abstract: A vertical multi-stage fluidized bed apparatus including a plurality of horizontal perforated partitioning plates disposed therein so as to partition the apparatus is provided, wherein an upper horizontal perforated partitioning plate is set to have a larger aperture rate than a lower horizontal perforated partitioning plate. From a lower part of the apparatus, feed carbon and fluidizing gas are continuously supplied so as to provide a gas superficial velocity in the fluidized bed which is 2-4 times a minimum fluidizing velocity of the feed carbon, thereby subjecting the feed carbon to fluidization with the fluidizing gas and activation with steam at 750-950° C. simultaneously to discharge activated carbon continuously from an upper part of the apparatus. As a result, activated carbon of even a high degree of activation is produced at a high yield comparable to that obtained in a batchwise operation.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: August 10, 2010
    Assignee: Kureha Corporation
    Inventors: Hiroaki Ohashi, Yasuyoshi Yamanobe
  • Patent number: 7767870
    Abstract: A gas-solids reaction system with termination devices to connect a riser with one or more separation devices. The termination devices have a radius of curvature that is at least 1.0 times as great as the diameter of the conduit forming the termination device. The termination devices can be openly or closely coupled to the separation devices.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rutton D. Patel, Arun K. Sharma, E. Nicholas Jones, James H. Beech, Jr., Richard E. Walter, Donald F. Shaw, Kenneth R. Clem, Nicolas P. Coute
  • Patent number: 7754159
    Abstract: A fluidized bed reactor configured for reduced backflow of fluid is provided. The fluidized bed reactor comprises a vessel configured to contain a level of fluid, a feed conduit positioned to deliver feed into the vessel from an elevation above the level of fluid and a vacuum relief valve coupled to said feed conduit to introduce gas into the feed conduit.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: July 13, 2010
    Assignee: Envirogen Technologies, Inc.
    Inventor: Samuel Frisch
  • Patent number: 7745365
    Abstract: An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: June 29, 2010
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Chris Santner, Eusebius Gbordzoe, Harvey McQuiston
  • Publication number: 20100158765
    Abstract: An apparatus for contacting a bed of particulate material with a cross flowing fluid, which maintains the bed of particulate material within a retention volume. The apparatus includes partitions for retaining particles, with apertures disposed within the partitions. The apertures are covered by louvers that extend above the edges of the apertures to prevent solid particles from spilling through inlet apertures.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 24, 2010
    Applicant: UOP LLC
    Inventors: Bryan K. Glover, Guy B. Woodle, Joseph E. Zimmermann, John J. Senetar
  • Patent number: 7736598
    Abstract: The invention relates to a reactor and a process for preparing chlorine from hydrogen chloride by gas-phase oxidation by means of oxygen in the presence of a heterogeneous catalyst in a fluidized bed, with gas-permeable plates being located in the fluidized bed. The gas-permeable plates are connected in a thermally conductive manner to a heat exchanger located in the fluidized bed.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: June 15, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Seidemann, Olga Schubert, Martin Sesing, Eckhard Stroefer, Martin Fiene, Christian Walsdorff, Klaus Harth
  • Patent number: 7727380
    Abstract: Disclosed is a process for combusting dry gas to heat the air supplied to an FCC regenerator to increase its temperature and minimize production of undesirable combustion products. Preferably, the dry gas is a selected FCC product gas. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: June 1, 2010
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Xin X. Zhu, James P. Glavin
  • Patent number: 7727486
    Abstract: Disclosed is an apparatus for combusting dry gas to heat the air fed to an FCC regenerator to increase its temperature and minimize production of undesirable combustion products. Preferably, the dry gas is a selected FCC product gas. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: June 1, 2010
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Xin X. Zhu, James P. Glavin
  • Patent number: 7686944
    Abstract: Disclosed is a process for recovering power from an FCC product. The dry gas is combusted and combined with FCC regenerator flue gas to raise the power recovery capability of the flue gas. The flue gas can be used to generate electrical power or steam. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventors: Xin X. Zhu, Keith A. Couch, James P. Glavin
  • Patent number: 7687044
    Abstract: A chemical reaction is performed with separation of the product(s) and reactant(s) by pressure swing adsorption (PSA), using an apparatus having a plurality of adsorbers cooperating with first and second valve assemblies in a PSA module. The PSA cycle is characterized by multiple intermediate pressure levels between higher and lower pressures of the PSA cycle. Gas flows enter or exit the PSA module at the intermediate pressure levels as well as the higher and lower pressure levels, entering from compressor stage(s) or exiting into exhauster or expander stages, under substantially steady conditions of flow and pressure. The PSA module comprises a rotor containing the adsorbers and rotating within a stator, with ported valve faces between the rotor and stator to control the timing of the flows entering or exiting the adsorbers in the rotor. The reaction may be performed within a portion of the rotor containing a catalyst.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: March 30, 2010
    Assignee: Xebec Adsorption Inc.
    Inventors: Bowie G. Keefer, Denis J. Connor
  • Patent number: 7682576
    Abstract: Disclosed is an apparatus for recovering power from an FCC product. The dry gas is combusted and combined with FCC regenerator flue gas to raise the power recovery capability of the flue gas. The flue gas can be used to generate electrical power or steam. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: March 23, 2010
    Assignee: UOP LLC
    Inventors: Xin X. Zhu, Keith A. Couch, James P. Glavin
  • Patent number: 7658900
    Abstract: In a reactor for the decomposition of a silicon-containing gas, provision is made, to avoid silicon deposition on an inner wall of a reactor vessel, for at least one catalytically active mesh to be provided within a reaction chamber between at least one gas feed line and the inner wall (4). The mesh accelerates the thermal decomposition of the gas and reduces the deposition of silicon on the inner wall. Also described is a process for the preparation of silicon using the reactor according to the invention and the use in photovoltaics of the silicon prepared.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: February 9, 2010
    Assignee: Joint Solar Silicon GmbH & Co. KG
    Inventors: Rico Berthold, Christian Beyer, Armin Müller, Carsten Pätzold, Torsten Sill, Ute Singliar, Raymund Sonnenschein, Gerald Ziegenbalg
  • Publication number: 20100021354
    Abstract: A fluidized-bed reactor for carrying out a gas-phase reaction, in which a gaseous reaction mixture flows from the bottom upward through a heterogeneous particulate catalyst forming a fluidized bed and internals are arranged in the fluidized bed, wherein the internals divide the fluidized bed into a plurality of cells arranged horizontally in the fluidized-bed reactor and a plurality of cells arranged vertically in the fluidized-bed reactor, with the cells having cell walls which are permeable to gas and have openings which ensure an exchange number of the heterogeneous particulate catalyst in the vertical direction in the range from 1 to 100 liters/hour per liter of reactor volume, is proposed.
    Type: Application
    Filed: September 14, 2007
    Publication date: January 28, 2010
    Applicant: BASF SE
    Inventors: Lothar Seidemann, Dieter Stuetzer, Thomas Grassler, Martin Karches, Christian Schneider
  • Patent number: 7651668
    Abstract: A material gas and a catalyst are introduced through a material supplying tube path and a catalyst supplying tube path together with a carrier gas into a reactor equipped on its outer periphery with a heat applicator for thermally decomposing the material gas. The reactor has a convention regulator fitted to the discharge end of the catalyst supplying tube path. The convection regulator covers an edge side of the reactor to regulate gas flow in the reactor so that the flow does not reach the edge side. Due to this, a convection state can be efficiently produced in a reaction region. Consequently, it becomes possible to prevent contamination defect caused by accumulation/adherence of concretion of catalyst, which was generated by aggregation of cooled catalyst in the low-temperature region of the reactor and a decomposition product of the material gas. Thus the efficiency of carbon nanostructure production can be improved.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: January 26, 2010
    Assignees: Japan Science and Technology Agency, Public University Corporation Osaka Prefecture University, Taiyo Nippon Sanso Corporation, Otsuka Chemical Co., Ltd., Nissin Electric Co., Ltd.
    Inventors: Yoshikazu Nakayama, Hiroyuki Tsuchiya, Yugo Higashi, Toshiki Goto, Keisuke Shiono, Takeshi Nagasaka, Nobuharu Okazaki
  • Patent number: 7638038
    Abstract: A method for controlling the pseudo-isothermicity of a chemical reaction in a respective reaction zone. (9) in which the use of heat exchangers (6) is foreseen having an operating heat exchange fluid flowing through them and in which heat exchange critical areas (9a) are identified, the method being distinguished by the fact that it reduces and controls, in the critical areas (9a) of the reaction zone, the value of the heat exchange coefficient between the operating fluid and the zone (9), through thermal insulation of the portions (6a, 6b) of such exchangers extending in such areas (9a).
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: December 29, 2009
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Patent number: 7624691
    Abstract: An air nozzle has an attachment arrangement for solid fuel burners with fluidized beds. The air nozzle has a body having an inlet and an outlet defined therein. A pipe end is inserted into the inlet. The attachment arrangement secures the pipe end inside the body. The attachment arrangement has a first part engaging a through hole of the body and a second perpendicular part that engages a cavity of the pipe end.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: December 1, 2009
    Assignee: Metso Power AB
    Inventor: Lennart Nordh
  • Patent number: 7601303
    Abstract: Gas-phase fluidized-bed reactor for polymerizing ethylenically unsaturated monomers, comprising a reactor chamber (1) in the form of a vertical tube, if desired a calming zone (2) following the upper section of the reactor chamber, a circulation gas line (3), a circulation gas compressor (4) and a cooling device (5), where, in the region of transition of the reaction gas from the circulation gas line into the reactor chamber and in the lower section of the reactor chamber itself, there is either no gas distributor plate at all or only a gas distributor plate the total surface area of whose gas orifices is more than 20% of the total surface area of said gas distributor plate.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: October 13, 2009
    Assignee: Elenac GmbH
    Inventors: Rainer Karer, Kaspar Evertz, Wolfgang Micklitz, Hans-Jacob Feindt, Philipp Rosendorfer, Peter Kölle
  • Patent number: 7547418
    Abstract: A fluidized-bed reactor comprising a chamber defining a hollow interior region and having a lower surface; a first input for introducing a contaminated gas into the hollow interior region; a plurality of catalyst nanoparticles within the hollow interior region and located on the lower surface, and a fluidizing input for introducing a fluidizing material into the hollow interior region, said fluidizing input having an outlet directed at the lower surface of the chamber, wherein the introduction of the fluidizing material directed at the lower surface fluidizes at least a portion of the catalyst nanoparticles located on the lower surface to create a gaseous dispersion of catalyst nanoparticles that reacts with the contaminated gas to produce a decontaminated gas.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: June 16, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: John T. Johnson, Daniel Dziedzic, Kenneth B. Gross
  • Patent number: 7531142
    Abstract: A device and a method for operating it for application in a vertical tube reactor with downward flow (downer), has the aim of ensuring the intimate mixing of the solid particulate catalyst with a reagent fluid. Homogeneous distribution of catalyst is due to the use of a plate having perforations. Said perforated plate normally allows the passage of a portion of the stream of catalyst. The other portion overflows the edge of the plate, flowing in the form of an annular curtain, near the inner surface of the surrounding tube of the device. After passing beyond the perforated plate, the curtain-flow undergoes a deflection produced by an annular screen, to be mixed with the stream originating from the orifices in the perforated plate. A hydrocarbon charge is injected below the perforated plate, forming a certain angle with respect to the direction of the downward flow of catalyst, by means of inlets distributed uniformly about cross sections of the surrounding tube.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: May 12, 2009
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventors: Wilson Kenzo Huziwara, Waldir Pedro Martignoni, Mauro Silva, José Geraldo Furtado Ramos, Aurelio Medina Dubois, Paulo Sergio Freire
  • Patent number: 7524481
    Abstract: The present invention is related to an apparatus for the production of inorganic fullerene-like (IF) nanoparticles and nanotubes. The apparatus comprises a chemical reactor, and is further associated with a feeding set up and with a temperature control means for controlling the temperature along the reaction path inside the reactor so as to maintain the temperature to be substantially constant. The invention is further directed to a method for the synthesis of IF-WO3 nanoparticles having spherical shape and having a size up to 0.5 mu m and nanotubes having a length of up to several hundred mu m and a cross-sectional dimension of up to 200 nanometer.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: April 28, 2009
    Assignee: Yeda Research and Development Co., Ltd.
    Inventors: Reshef Tenne, Yishay Feldman, Alla Zak, Rita Rosentsveig
  • Patent number: 7517500
    Abstract: A process and apparatus are disclosed contacting hydrocarbon feed with catalyst in a reactor vessel under conditions more vigorous than bubbling bed conditions and preferably fast fluidized flow conditions. The vigorous conditions assure thorough mixing of catalyst and feed to suppress formation of dry gas and the promotion of hydrogen transfer reactions.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: April 14, 2009
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 7442345
    Abstract: A new reactor apparatus that can be used to carry out chemical reactions in a fluidized catalyst bed at high temperatures with reduced afterburning or other undesirable downstream side reactions.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: October 28, 2008
    Assignee: Ineos USA LLC
    Inventors: Louis R. Trott, David R. Wagner, Steven J. Rowe, Robert A. Gustaferro, Gregory A. Norenberg, Kenneth P. Keckler, Robert P. Hepfer
  • Publication number: 20080260596
    Abstract: The invention relates to a fluidizing base comprising a flat sheet (1) with holes (2) produced using a laser or electron beam. A sheet of this type has good fluidizing properties and also good cleanability. The invention also provides a method for producing a fluidizing base of this type and a fluidizing device comprising a fluidizing base of this type.
    Type: Application
    Filed: December 22, 2005
    Publication date: October 23, 2008
    Inventor: Antonius Johannes Maria Bouman
  • Patent number: 7414166
    Abstract: This invention provides feed introduction devices, and processes for using same, which minimize catalyst clogging. In particular, the invention is to a feed introduction device having a first end in fluid communication with a feed source, a second end in fluid communication with a reactor and a deviation zone between the first end and the second end to deviate the flow of feed about a deviation angle from the first end toward the second end. According to the invention, the deviation angle is greater than 90 degrees.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: August 19, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Brian A. Cunningham, Christopher G. Smalley, Rathna P. Davuluri
  • Publication number: 20080193340
    Abstract: This invention relates to a sparger for injecting a gas-containing feed into a fluidized-bed, wherein the diffuser pipe is angled at least about 12.5° from vertical for gas velocities exiting the diffusers pipe at v less than 45.7 m/sec, and at least about 12.5° exp [0.00131 v] from vertical for gas velocities exiting the diffuser pipe at v equal to or greater than 45.7 m/sec.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 14, 2008
    Inventors: Raymond A. Cocco, Ping Cai, Eric B. Foger, Steve A. Smith, Philip P. Listak
  • Patent number: 7399450
    Abstract: A fluidized-bed reactor is disclosed. The fluidized-bed reactor steadies the gas flow through the fluidized bed chamber of the reactor. The swirl chamber of the reactor consists of a conical housing in which a conical insert is also situated. This creates an annular gap between the housing and the insert, which acts as the swirl chamber and which, according to the geometry of the two components, causes a velocity of the gas flow which remains the same along the height, which increases or which decreases. Such a reactor can also be called a constant annular-gap reactor.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: July 15, 2008
    Inventor: Sebastian Zimmer
  • Publication number: 20080056963
    Abstract: A nozzle arrangement for a fluidized bed gasifier or combustor. The nozzle arrangement includes a nozzle piece attached to a nozzle tube for forming one entity with the nozzle tube, which nozzle piece includes a nozzle chamber and a horizontally extending nozzle channel ending to a blow opening of the nozzle. The nozzle chamber and nozzle channel are limited from above by a lid. The nozzle arrangement further includes a protecting cover attached outside the lid for minimizing cooling of the outer surface of the nozzle piece due to fluidizing gas blown through the nozzle into the fluidized bed gasifier or combustor.
    Type: Application
    Filed: April 4, 2005
    Publication date: March 6, 2008
    Applicant: FOSTER WHEELER ENERGIA OY
    Inventor: Pekka Lehtonen
  • Publication number: 20080006290
    Abstract: A cartridge filter 7 is vertically movably placed in a processing vessel 1 having a cylindrical profile. An ultrasonic washer 55 is fitted to the lateral wall 3a of the spray casing of the processing vessel 1. Washing liquid 56 is injected into the processing vessel 1 and the filter 7 is moved downward and immersed in the washing liquid 56. The washer 55 is activated under this condition to wash the filter 7. Since the washer 55 is arranged near the filter 7, the ultrasonic oscillation is easily transmitted to the filter 7 to efficiently remove the foreign objects adhering to the filter 7. Thus, with this arrangement, it is possible to wash the filter 7 in the processing vessel 1 without removing the filter 7 from a fluidized bed apparatus. In a filter washing apparatus 101, a cartridge filter 103 is contained in a processing vessel 102 and immersed in washing liquid 110.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 10, 2008
    Inventors: Kuniaki Yamanaka, Shigemi Isobe, Kazuomi Unosawa, Narimichi Takei, Yuriko Hirai, Takashi Terada
  • Patent number: 7270791
    Abstract: An improved angled annular deflector for a gas-phase polymerization reactor and improved method for delivery of a stream of polymerizable fluid to a gas-phase polymerization reator. The angled annular deflector has an outer surface with a conical shape, an inner surface, and an inner cavity along a central axis, said cavity open at both ends, the inner surface having a first end and a second end, and the first end of the inner surface mated to the apex end of the outer surface: and an upper surface mated to the base end of the outer surface and to the second end of the inner surface; wherein the outer surface, the inner surface, and the upper surface form a substantially closed chamber. The angled annular deflector being adapted to associate with a cone-shaped bottom portion of a fluidized bed polymerization reactor vessel.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: September 18, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Mark Bradley Davis, Wesley James Perry
  • Patent number: 7262263
    Abstract: The present invention relates to a method for producing solid-state polycondensed polyesters by using crystallization with or without subsequent solid-state polycondensation for producing bottles, sheets, films, and high-tenacity technical filaments.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: August 28, 2007
    Inventors: Brigitta Otto, Hans Reitz, Gerd Alsheimer