Including Means To Strip Reaction Mass From, Or To Regenerate, The Particulate Matter (including Fluidized Bed Regenerators, Per Se) Patents (Class 422/144)
  • Publication number: 20120104322
    Abstract: Embodiments of a process for producing syngas comprising hydrogen and carbon monoxide from a gas stream comprising methane are provided. The process comprises the step of contacting the gas stream with a two-component catalyst system comprising an apatite component and a perovskite component at reaction conditions effective to convert the methane to the syngas.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 3, 2012
    Applicant: UOP LLC
    Inventors: Colleen Costello, Lisa King, Paul Barger, Deng-Yang Jan, Robert B. James, Kurt Vanden Bussche
  • Patent number: 8163247
    Abstract: A process is disclosed for contacting feed with mixed catalyst in a secondary reactor that is incorporated into an FCC reactor. The mixed catalyst used in the secondary reactor is regenerated catalyst from a regenerator that regenerates spent catalyst from an FCC reactor that is mixed with spent catalyst from either the FCC reactor or the secondary reactor. The mixing of spent and regenerated catalyst reduces the catalyst temperature and tempers catalyst activity to inhibit both thermal and catalytic cracking reactions.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: April 24, 2012
    Assignee: UOP LLC
    Inventors: David A. Lomas, Rusty M. Pittman
  • Patent number: 8137631
    Abstract: One exemplary embodiment can be a fluid catalytic cracking unit. The fluid catalytic cracking unit can include a first riser, a second riser, and a disengagement zone. The first riser can be adapted to receive a first feed terminating at a first reaction vessel having a first volume. The second riser may be adapted to receive a second feed terminating at a second reaction vessel having a second volume. Generally, the first volume is greater than the second volume. What is more, the disengagement zone can be for receiving a first mixture including at least one catalyst and one or more products from the first reaction vessel, and a second mixture including at least one catalyst and one or more products from the second reaction vessel. Typically, the first mixture is isolated from the second mixture.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: March 20, 2012
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Robert L. Mehlberg
  • Patent number: 8137632
    Abstract: A process is described including: contacting solid biomass with a first catalyst stream in a first reaction zone operated at a temperature T1 (from about 250 to about 400° C.), for conversion of a portion of the solid biomass and forming a first gaseous product stream; downwardly passing unconverted biomass to a second reaction zone for contact with a second catalyst stream charged to the second reaction zone operated at a temperature T2, for conversion to form a second gaseous product stream and a spent catalyst; burning coke off the spent catalyst in a regenerator to form a regenerated catalyst; charging a portion of the regenerated catalyst to each of the first and second reaction zones, as the first and second catalyst streams, respectively; upwardly passing the second gaseous product stream to the first reaction zone; and removing both first and second gaseous product streams from the first reaction zone.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 20, 2012
    Assignee: KiOR, Inc.
    Inventors: Robert Bartek, Steve Yanik, Paul O'Connor
  • Patent number: 8128895
    Abstract: Processing schemes and arrangements are provided for obtaining propylene and propane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the propylene into cumene without separating the propane from the propane/propylene feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of propylene from propane produced by a FCC process prior to using the combined propane/propane stream as a feed for a cumene alkylation process. A bottoms stream from the cumene column of the cumene alkylation process can be used and an absorption solvent in the FCC process thereby eliminating the need for a transalkylation reactor and a DIPB/TIPB column.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventor: Michael A. Schultz
  • Patent number: 8114352
    Abstract: The present invention relates to a high-pressure fluidized bed reactor for preparing granular polycrystalline silicon, comprising (a) a reactor tube, (b) a reactor shell encompassing the reactor tube, (c) an inner zone formed within the reactor tube, where a silicon particle bed is formed and silicon deposition occurs, and an outer zone formed in between the reactor shell and the reactor tube, which is maintained under the inert gas atmosphere, and (d) a controlling means to keep the difference between pressures in the inner zone and the outer zone being maintained within the range of 0 to 1 bar, thereby enabling to maintain physical stability of the reactor tube and efficiently prepare granular polycrystalline silicon even at relatively high reaction pressure.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 14, 2012
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Hee Young Kim, Kyung Koo Yoon, Yong Ki Park, Won Choon Choi
  • Patent number: 8097216
    Abstract: A process and apparatus for fluidizing a population of catalyst particles having a low catalyst fines content includes a fluidized bed reactor which includes a plurality of catalyst particles in the reactor wherein the catalyst particles having a d2 value of greater than about 40 microns. The catalyst particles are contacted with a fluidizing medium under conditions to fluidize the particles, the reactor includes a continuous reaction zone and separation zone and the fluidized of the catalyst particles are situated within the reaction and both the reaction zone and the separation zone include obstructing members which obstruct the flow of particles such that the catalyst particles can be maintained at an axial gas Peclet number from about 10 to about 20.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: January 17, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Nicolas P. Coute, Jeffrey S. Smith, Michael Peter Nicoletti
  • Patent number: 8092756
    Abstract: Catalyst withdrawal apparatuses and methods for regulating catalyst inventory in one or more units are provided. In one embodiment, a catalyst withdrawal apparatus for removing catalyst from a FCC unit includes a vessel coupled to a flow control circuit. Another embodiment of a catalyst withdrawal apparatus includes a vessel, a delivery line, and control valve. The control valve is configured to control the amount of gas to the delivery line and entrained with the catalyst. Another embodiment of catalyst withdrawal apparatus includes a vessel coupled to a heat exchanger. The heat exchanger includes a first conduit; a housing confining a coolant volume around a portion of the first conduit; and a sliding seal sealing the housing to the first conduit in manner that allows longitudinal expansion. A fluid catalyst cracking system coupled to a catalyst withdrawal apparatus and method for withdrawing catalyst from a unit are also disclosed.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: January 10, 2012
    Assignee: Intercat Equipment, Inc.
    Inventors: Martin Evans, Charles Radcliffe
  • Patent number: 8088335
    Abstract: A conversion apparatus for catalytic cracking a hydrocarbon feed to light hydrocarbon comprises at least one riser reactor, a dense bed reactor, a disengager, and a stripper. A dense bed reactor which is separated from disengage, is employed to enforce further cracking hydrocarbon to light olefins, with low methane yield. Moreover, the spent catalysts discharged from the outlet of the dense bed reactor can be introduced into the stripper via a specific catalyst transporting channel, to maintain catalyst concentration in the dense bed reactor that can be advantageous to deeper cracking of the intermediate products to produce more light olefins, particularly propylene.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 3, 2012
    Assignees: China Petroleum and Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Kejia Xu, Shuandi Hou, Zhijian Da, Chaogang Xie, Jiushun Zhang, Zhanzhu Zhang
  • Patent number: 8083838
    Abstract: Systems and methods for the separation of a particulate-fluid suspension are provided. An apparatus for the separation of a particulate-fluid suspension can include an enclosed vessel having two or more sections disposed coaxially along a common longitudinal centerline, wherein a first section has a first cross sectional area, and a second section has a second cross sectional area. A plurality of apertures can be disposed about the second section. The apparatus can have a cylindrical surface, parallel to the longitudinal centerline of the apparatus, disposed within the first section. A fluid distribution channel having a plurality of apertures can be disposed either about an exterior surface or an interior of the apparatus. A plurality of fluid conduits can provide fluid communication between the fluid distribution channel and the plurality of apertures distributed about the second section.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: December 27, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Yong-Lin Yang, Eusebius Gbordzoe
  • Patent number: 8062599
    Abstract: A catalyst cooled is employed for converting oxygenates to light olefins. The catalyst becomes spent as deposits from the reaction clog up pores on the catalyst surface. A portion of the spent catalyst is regenerated in a regenerator and a portion is circulated back to contact more of the oxygenate feedstream. A catalyst cooler attached to the reactor can cool the spent catalyst circulated through the cooler before the spent catalyst contacts more of the oxygenate feedstream. In an embodiment, all of the spent catalyst that enters the catalyst cooler is withdrawn from the bottom of the catalyst cooler.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: November 22, 2011
    Assignee: UOP LLC
    Inventor: Lawrence W. Miller
  • Patent number: 8062507
    Abstract: A process for stripping gases from catalyst material in which catalyst travels down baffles at a first acute angle and then at a second acute angle on the same baffle. Traveling down the baffle at the second angle assures the catalyst will cross a downcomer channel and land on an adjacent baffle.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 22, 2011
    Assignee: UOP LLC
    Inventors: Jason P. Lambin, Keith A. Couch, Paolo Palmas, Giovanni Spinelli
  • Patent number: 8052935
    Abstract: A system for removing sulfur from a gaseous stream includes (a) a reaction bed for receiving the gaseous stream and for reacting sulfur dioxide and at least some of the hydrogen sulfide of the gaseous stream into elemental sulfur to provide an elemental sulfur stream and a first product stream; and (b) a circulating fluidized bed comprising (i) a first region for receiving the first product stream and using a sulfur adsorption material to adsorb and remove any remaining hydrogen sulfide from the first product stream to generate saturated sulfur adsorption material and a second product stream substantially free of sulfur; and (ii) a second region for receiving a regeneration stream and for using the regeneration stream to regenerate the saturated sulfur adsorption material and to generate the sulfur dioxide.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: Thomas Frederick Leininger, Ke Liu, Wei Wei, Rizeq George Rizeq
  • Publication number: 20110257005
    Abstract: Catalyst regenerators and methods for using same. The regenerator can include a regenerator housing containing a dense phase catalyst bed for receiving a catalyst to be regenerated. A heater can be disposed in the regenerator and can have a fuel nozzle configured to eject a mixture of fuel and an oxygen-lean gas for combustion to supplement the heat to satisfy the reactor heat demand when a light feedstock cracked that may not provide sufficient coke formation on the catalyst to fully satisfy the reactor heat demand.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: KELLOGG BROWN & ROOT LLC
    Inventor: Phillip K. Niccum
  • Patent number: 8034896
    Abstract: The present invention relates to a method for degassing polymer powder comprising flushing the polymer powder in a first chamber with a first flow of flushing gas, transferring the polymer powder into a second chamber and flushing the polymer powder with a second flow of flushing gas in said second chamber. The present invention also relates to a system suitable for carrying out this method.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: October 11, 2011
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Eric Damme, Marc Moers, Lieven Van Looveren
  • Patent number: 8030420
    Abstract: An olefin polymerization reaction unit includes a multistage gas phase polymerization reactor which is divided into two or more polymerization stages, in which polyolefin particles move from an initial stage to a final stage, and in which an olefin monomer-containing gas is fed from the final stage toward the initial stage. The reaction unit also includes first circulating means for feeding to the final stage a gas that is discharged from the initial stage and then cooled with a first heat exchanger, and second circulating means for feeding to one of the polymerization stages a condensate formed by condensing, with a second heat exchanger different from the first heat exchanger, a gas removed from one of the polymerization stages.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: October 4, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hiroyuki Ogawa, Hideki Sato
  • Patent number: 8012422
    Abstract: A preferred embodiment of a system for loading catalyst and/or additives into a fluidized catalytic cracking unit includes a bin for storing at least one of the catalyst and/or additives, and a loading unit in fluid communication with the storage bin and the fluidized catalytic cracking unit on a selective basis. The loading unit is capable of being evacuated so that a resulting vacuum within the loading unit draws the catalyst and/or additive from the bin. The loading unit is also capable of being pressurized so that the catalyst and/or additive is transferred from the loading unit to the fluidized catalytic cracking unit.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: September 6, 2011
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: George Yaluris, Lenny Lee Albin, Alfred Ferdinand Jordan
  • Publication number: 20110211996
    Abstract: Solvent extraction is used to remove wax and contaminants from an iron-based Fischer-Tropsch catalyst in a natural circulation continuous-flow system. The wax-free catalyst is then subjected to controlled oxidation to convert the iron to its initial oxidized state, Fe2O3. Reactivation of the oxide catalyst precursor is carried out by addition of synthesis gas.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 1, 2011
    Inventors: Belma Demirel, Mark S. Bohn, Charles B. Benham, James E. Siebarth, Mark D. Ibsen
  • Patent number: 8007729
    Abstract: Hydrocarbon feed to a catalytic reactor can be heat exchanged with flue gas from a catalyst regenerator. This innovation enables recovery of more energy from flue gas thus resulting in a lower flue gas discharge temperature. As a result, other hot hydrocarbon streams conventionally used to preheat hydrocarbon feed can now be used to generate more high pressure steam.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 30, 2011
    Assignee: UOP LLC
    Inventors: Yunbo Liu, Xin X. Zhu, Daniel N. Myers, Patrick D. Walker
  • Patent number: 8007728
    Abstract: One exemplary embodiment can be a fluid catalytic cracking system. The fluid catalytic cracking system can include a reaction zone including a riser having a top and a bottom adapted to receive spent catalyst at a first elevation and regenerated catalyst at a second elevation. Typically, the first elevation is lower than the second elevation. Additionally, the fluid catalytic cracking system can include a gas distributor contained near the bottom of the riser in communication with a hydrocarbon feed.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 30, 2011
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Robert Mehlberg, Keith Allen Couch, Paul Nishimura
  • Patent number: 7998421
    Abstract: A method of processing a fluid and/or a particulate material, the method comprising the steps of: (a) introducing the particulate material into a chamber; (b) providing a flow of fluid into said chamber for entraining the particulate material; and (c) removing processed fluid and/or particulate material from the chamber; wherein the chamber comprises a processing zone having a substantially circular transverse cross-section, the fluid flow being introduced into the processing zone at an angle of between 10° and 75° with respect to a tangent of the substantially circular transverse cross-section of the processing zone to establish a fluid flow following a substantially helical path in the processing chamber.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: August 16, 2011
    Assignee: Mortimer Technology Holdings Limited
    Inventor: Christopher Edward Dodson
  • Publication number: 20110195016
    Abstract: A process for producing calcine products includes dead roasting a metal sulfide concentrate having a low sulfur content. The concentrate is roasted in a circulating fluidized bed at a temperature of about 950 to 1050° C. A waste gas of the fluidized bed is passed through at least one of a recuperator and a Venturi drier so as to respectively provide at least one of a preheating of at least a portion of air fluidizing the fluidized bed and a drying of at least a portion of the concentrate to be roasted. The calcine product obtained in the fluidized bed with a sulfur content of less than 1 wt-% is provided for further processing.
    Type: Application
    Filed: July 10, 2009
    Publication date: August 11, 2011
    Applicant: OUTOTEC OYJ
    Inventors: Joerg Hammerschmidt, Bernd Kerstiens, Peter Sturm
  • Patent number: 7993594
    Abstract: The present application provides multistage and multilayer reactors useful for the efficient and continuous production of carbon nanotubes and methods of using the apparatus in the preparation of carbon nanotubes. In one aspect, the multistage reactors include an array of interconnected fluidized-bed reactors. The multilayer reactors include a plurality of reaction zones.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: August 9, 2011
    Assignee: Tsinghua University
    Inventors: Fei Wei, Yi Liu, Weizhong Qian, Guohua Luo
  • Patent number: 7972565
    Abstract: An apparatus for stripping gases from catalyst material comprises baffles having a second face that extends toward a downcomer channel between baffles to spread catalyst out on adjacent baffles for better contact with stripping gas.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 5, 2011
    Assignee: UOP LLC
    Inventors: Jason P. Lambin, Keith A. Couch, Paolo Palmas, Giovanni Spinelli
  • Patent number: 7967897
    Abstract: The present invention relates to a system for the separation of suspensions of spent catalysts and hydrocarbons formed in an FCC unit with multiple ascending flow reaction tubes, comprising interconnections between each of the ascending flow reaction tubes and the separator vessel, each interconnection also comprises two sections. The outside sections of the separator vessel are inclined and are connected to a single vertical section, which penetrates into the interior of the separator vessel, and which has at its lower end an open device for draining the spent catalyst from the suspensions separated in this sector. In the same vertical section, at the end of its internal part at the separator vessel, a series of two sets of cyclones are installed, the first set containing cyclones without sealing legs, and the second set containing conventional cyclones of the first stage.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: June 28, 2011
    Assignee: Petróleo Brasileiro S.A. - Petrobras
    Inventors: Wilson Kenzo Huziwara, Emanuel Freire Sandes, Luiz Carlos Casavechia, José Geraldo Furtado Ramos, Andrea De Rezende Pinho, Shelton Rolim Cercal, Aurelio Medina Dubois, Paulo Sergio Freire, Nelson Patricio Junior
  • Patent number: 7964156
    Abstract: Solvent extraction is used to remove wax and contaminants from an iron-based Fischer-Tropsch catalyst in a natural circulation continuous-flow system. The wax-free catalyst is then subjected to controlled oxidation to convert the iron to its initial oxidized state, Fe203. Reactivation of the oxide catalyst precursor is carried out by addition of synthesis gas.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: June 21, 2011
    Assignee: Rentech, Inc.
    Inventors: Belma Demirel, Mark S. Bohn, Charles B. Benham, James E. Siebarth, Mark D. Ibsen
  • Patent number: 7964699
    Abstract: Process for heating a polymer-containing stream being transferred from a polymerization reactor to a degassing vessel operating at a pressure between 6 bara and 12 bara. The process includes passing the stream through a heater having a transfer line for the stream and a device for heating the transfer line. The pressure drop in the heater is between 5% and 50% of the total pressure drop between the polymerization reactor and the entry to the degassing vessel. The pressure drop across the length of the heater is less than 0.5 barh per tonne of polymer, and the average Reynolds number across the cross-section of the stream at any point along the length of the transfer line of the heater is greater than 500,000, such that at least 90 mol% of the hydrocarbon fluids withdrawn from the polymerization reactor operation are vaporized before entry into the degassing vessel.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: June 21, 2011
    Assignee: Ineos Manufacturing Belgium NV
    Inventors: Daniel Marissal, Brent R Walworth
  • Patent number: 7951739
    Abstract: An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 31, 2011
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Chris Santner, Eusebius Gbordzoe, Harvey McQuiston
  • Patent number: 7947230
    Abstract: Disclosed is a catalyst distributor and process for spreading catalyst over a regenerator vessel. Nozzles disposed angular to a header of the distributor spread catalyst throughout a full cross section of the catalyst bed.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: May 24, 2011
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Lawrence A. Lacijan, Sujay R. Krishnamurthy, Mohammad-Reza Mostofi-Ashtiani, Paul S. Nishimura, Lisa M. Wolschlag
  • Publication number: 20110116978
    Abstract: An improved process and system for the endothermic dehydrogenation of an alkane stream is described. The process and system of the present invention comprise a back-mixed fluidized bed reactor. The alkane stream is dehydrogenated in a single reactor stage by contacting the alkane stream with a back-mixed fluidized bed of catalyst. Deactivated catalyst is withdrawn from the back-mixed fluidized reactor and heated to produce hot regenerated catalyst. The hot regenerated catalyst is returned to the back-mixed fluidized bed reactor at a rate sufficient to maintain the back-mixed fluidized bed reactor at substantially isothermal conditions.
    Type: Application
    Filed: January 25, 2011
    Publication date: May 19, 2011
    Applicant: UOP LLC
    Inventors: Bryan K. Glover, Julie A. Zarraga, Michael A. Schultz
  • Patent number: 7943727
    Abstract: Process for heating a polymer-containing stream being transferred from a polymerization reactor to a degassing vessel operating at a pressure between 6 bara and 12 bara. The process includes passing the stream through a heater comprising a transfer line for the stream and a device for heating the transfer line. The ratio of the stream velocity at the outlet of the heater to that at the inlet, Vo/Vi, is at least 1.1, typically between 1.2 and 4, and the total specific heat transfer area of the transfer line is at least 0.5 m2 per tonne/h of production of polymer. The pressure drop across the length of the heater is less than 0.5 bar per tonne/h of polymer, such that at least 90 mol % of the hydrocarbon fluids withdrawn from the polymerization reactor operation are vaporized before entry into the degassing vessel.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: May 17, 2011
    Assignee: Ineos Manufacturing Belgium NV
    Inventors: Daniel Marissal, Brent R Walworth
  • Patent number: 7935857
    Abstract: A gas-solids reaction system is provided for improving product recovery in a multiple reactor reaction system. The solids of the product gas-solids flows from the multiple reactors are separated out in a separation vessel having a baffled transition zone. Additional product vapor is stripped from the solids as the solids pass through the baffled transition zone. The solids are then returned to the multiple reactors.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: May 3, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Richard E. Walter, Arun K. Sharma, Jeffrey S. Smith
  • Patent number: 7935314
    Abstract: An apparatus for mixing regenerated and carbonized catalyst involves obstructing upward flow of catalyst by one or more baffles between a catalyst inlet and a feed distributor. Each catalyst stream may be passed to opposite sides of a riser. Baffles obstruct upward flow to effect mixing of regenerated and carbonized catalyst to obtain a more uniform temperature and catalyst mixture before contacting the feed.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: May 3, 2011
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Kelly D. Seibert, Robert L. Mehlberg, Daniel R. Johnson
  • Publication number: 20110068047
    Abstract: This invention relates to methods and units for mitigation of carbon oxides during hydrotreating hydrocarbons including mineral oil based streams and biological oil based streams. A hydrotreating unit includes a first hydrotreating reactor for receiving a mineral oil based hydrocarbon stream and forming a first hydrotreated product stream, and a second hydrotreating reactor for receiving a biological oil based hydrocarbon stream and forming a second hydrotreated product stream.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicant: BP CORPORATION NORTH AMERICA INC.
    Inventors: Nicholas J. Gudde, John W. Shabaker
  • Patent number: 7906077
    Abstract: Disclosed is an FCC apparatus and process in which spent catalyst is recycled to the base of the riser to contact fresh feed through a passage disposed within the riser.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: March 15, 2011
    Assignee: UOP LLC
    Inventor: Michael S. Sandacz
  • Publication number: 20110058989
    Abstract: An apparatus for distributing a deflecting media into an axial center of a riser to push catalyst outwardly toward the feed injectors ensures better contacting between hydrocarbon feed and catalyst.
    Type: Application
    Filed: September 9, 2009
    Publication date: March 10, 2011
    Applicant: UOP LLC
    Inventors: Keith A. Couch, Paolo Palmas, Jason P. Lambin, Giovanni Spinelli
  • Patent number: 7902416
    Abstract: An improved process and system for the endothermic dehydrogenation of an alkane stream is described. The process and system of the present invention comprise a back-mixed fluidized bed reactor. The alkane stream is dehydrogenated in a single reactor stage by contacting the alkane stream with a back-mixed fluidized bed of catalyst. Deactivated catalyst is withdrawn from the back-mixed fluidized reactor and heated to produce hot regenerated catalyst. The hot regenerated catalyst is returned to the back-mixed fluidized bed reactor at a rate sufficient to maintain the back-mixed fluidized bed reactor at substantially isothermal conditions.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: March 8, 2011
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Julie A. Zarraga, Michael A. Schultz
  • Patent number: 7896951
    Abstract: A system for reducing carbon dioxide emissions from gasses generated in burning fossil fuel, includes a vessel, separator and reheater. The upper portion of the vessel receives downward flowing, first type solid particles capable of absorbing heat from upward flowing gasses and second type solid particles capable of capturing carbon dioxide from the gasses. The separator separates the second type solid particles with the captured carbon dioxide from the gasses discharged from the first vessel discharge, and directs the separated second type solid particles with the captured carbon dioxide to a separator discharge. The reheater directs the first type solid particles and the second type solid particles with the captured carbon dioxide in a downwardly flow to a first reheater discharge, such that heat from the first type solid particles causes the captured carbon dioxide to be released from the second type solid particles.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: March 1, 2011
    Assignee: ALSTOM Technology Ltd
    Inventors: Herbert E. Andrus, Jr., Glen D. Jukkola, Michael S. McCartney
  • Patent number: 7879294
    Abstract: A fine solids recycle apparatus for a fluidized bed reactor comprises an eductor connected to a dipleg extending from a cyclone connected to the reactor, wherein the fine solids particles are removed from the dipleg, mixed with an eductor gas to form an eductor gas-fine solids particles mixture, which allows the return of the fine solids particles to the fluidized bed region, whereby the fine solids is further reacted in the fluidized region to improve reaction efficiency.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: February 1, 2011
    Assignee: Synthesis Energy Systems, Inc.
    Inventor: Gouhai Liu
  • Publication number: 20110017639
    Abstract: The present invention provides a compact riser separation system for Fluid Catalytic Cracking reactors possessing an external riser system wherein the riser enters the reactor from outside the reactor vessel.
    Type: Application
    Filed: July 22, 2009
    Publication date: January 27, 2011
    Applicant: STONE & WEBSTER PROCESS TECHNOLOGY, INC.
    Inventors: Eusebius Anku Gbordzoe, Chris Robert Santner
  • Patent number: 7867321
    Abstract: An improved cyclone system for disengaging solid and gaseous particles in fluid catalytic cracking (FCC) processes with reduced coke formation in disengager vessels, without favoring release of the disengaged catalyst into cyclones in subsequent stages, said system comprising legless cyclones 42 fitted with external collector pipes 43, is described. The collector pipes 43 optimize the purge of gases coming from the disengager vessel 49, reducing the time the hydrocarbons remain inside the disengager vessel 49, thus preventing overcracking and subsequent coke formation. Positioning of the external collector pipes 43 prevents release of the disengaged catalyst into cyclones in subsequent stages.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: January 11, 2011
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventors: Emanuel Freire Sandes, Paulo Sérgio Freire, José Geraldo Furtado Ramos, Aurélio Medina Dubois, José Mozart Fusco, Eduardo Cardoso de Melo Guerra, Wilson Kenzo Huziwara
  • Publication number: 20100310431
    Abstract: Processing schemes and arrangements are provided for obtaining ethylene and ethane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the ethylene into ethyl benzene without separating the ethane from the feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of ethylene from ethane produced by a FCC process prior to using the combined ethylene/ethane stream as a feed for an ethyl benzene process. Further, heat from the alkylation reactor is used for one of the strippers of the FCC process and at least one bottoms stream from alkylation process is used as an absorption solvent in the FCC process.
    Type: Application
    Filed: July 29, 2010
    Publication date: December 9, 2010
    Applicant: UOP LLC
    Inventor: Michael A. Schultz
  • Publication number: 20100310432
    Abstract: Processing schemes and arrangements are provided for obtaining propylene and propane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the propylene into cumene without separating the propane from the propane/propylene feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of propylene from propane produced by a FCC process prior to using the combined propane/propane stream as a feed for a cumene alkylation process. A bottoms stream from the cumene column of the cumene alkylation process can be used and an absorption solvent in the FCC process thereby eliminating the need for a transalkylation reactor and a DIPB/TIPB column.
    Type: Application
    Filed: July 29, 2010
    Publication date: December 9, 2010
    Applicant: UOP LLC
    Inventor: Michael A. Schlutz
  • Patent number: 7846399
    Abstract: A preferred embodiment of a system for loading catalyst and/or additives into a fluidized catalytic cracking unit includes a bin for storing at least one of the catalyst and/or additives, and a loading unit in fluid communication with the storage bin and the fluidized catalytic cracking unit on a selective basis. The loading unit is capable of being evacuated so that a resulting vacuum within the loading unit draws the catalyst and/or additive from the bin. The loading unit is also capable of being pressurized so that the catalyst and/or additive is transferred from the loading unit to the fluidized catalytic cracking unit.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: December 7, 2010
    Assignee: W.R. Grace & Co.-Conn.
    Inventor: Lenny Lee Albin
  • Publication number: 20100290970
    Abstract: A multi-stage fluidized bed synthesizer and process for synthesizing trichlorosilane wherein silicon particles can be fed into one of multiple intercommunicating fluidizing zones in a fluidized bed reactor supplied with fluidizing gas comprising hydrogen chloride. The fluidizing zones can be disposed laterally adjacent one to another, for example side-by-side, or in a horizontal line. Useful embodiments include: feeding the fluidizing gas at different rates and/or compositions to the different fluidizing zones; filtration apparatus to filter the gaseous product and return silicon particles to the reactor and cooling systems for cooling the fluidized bed and the gas volumes above the fluidized beds, if present.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 18, 2010
    Inventors: H. Kenneth STAFFIN, Thomas R. Parr
  • Publication number: 20100284890
    Abstract: In a gas generator for gasifying solid granular fuels to obtain combustible gaseous compounds for producing synthesis gas or H2-suitable raw gas, a fluidized bed formed of the fuels moves through a closed reaction vessel with a sluice mounted at the top for continuously introducing the fuels and with a closure mounted below the funnel-shaped constriction of the bottom for discharging the ash formed into an ash sluice, wherein above the funnel-shaped constriction of the bottom a revolving grate is arranged, through which the gasifying medium can be introduced from below into the fluidized bed, and through which the ash formed can be discharged into the ash sluice via the funnel-shaped constriction and an adjoining tubular portion. To achieve a continuous operation of the revolving grate, a bulk-material slide valve is mounted in the tubular portion.
    Type: Application
    Filed: August 16, 2008
    Publication date: November 11, 2010
    Applicant: LURGI CLEAN COAL TECHNOLOGY (PTY) LTD
    Inventor: Gerhard Schmitt
  • Patent number: 7829030
    Abstract: The present invention relates to processes for fluidizing a population of catalyst particles that are depleted of catalyst fines. In one embodiment, the process includes providing a plurality of catalyst particles in the reactor, wherein the catalyst particles have a d2 value of greater than about 40 microns. The catalyst particles are contacted with a fluidizing medium under conditions effective to cause the catalyst particles to behave in a fluidized manner and form a fluidized bed. The particles are contacted with one or more primary obstructing members while in the fluidized bed. By fluidizing the catalyst particles in this manner, the catalyst particles can be maintained at an axial gas Peclet number of from about 10 to about 20.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: November 9, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Nicolas P. Coute, Jeffrey S. Smith, Michael Peter Nicoletti
  • Patent number: 7816294
    Abstract: A catalyst regenerator (100) has a first section (110) and a second section (120) and is operated such that carbon from a carbon-contaminated catalyst (140) is converted to carbon monoxide in the first section (110) and that carbon monoxide is converted to carbon dioxide in the second section (120). The residence time of the oxygen-containing gas in the first and second sections (110, 120) is regulated in preferred configurations by the shape (e.g., diameter) of the first and second sections (110, 120).
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: October 19, 2010
    Assignee: Fluor Technologies Corporation
    Inventor: Humbert Chu
  • Patent number: 7807761
    Abstract: Process and apparatus for gas-phase polymerization of olefin(s), including a fluid or stirred bed reactor, a bed level controller, and at least one conduit for withdrawing polymer, provided with an isolation valve. The conduit connects the side wall of the reactor to at least one uplift conduit, at least one recovery gas lock hopper equipped with a discharge valve, and at least one degassing chamber. At least one flushing device is provided for flushing the at least one uplift conduit.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: October 5, 2010
    Assignee: Ineos Europe Limited
    Inventors: Jen-Louis Chamayou, Peter John Elstner
  • Patent number: 7799286
    Abstract: In an FCC apparatus in which swirl arms are used to discharge gas and catalyst from a riser, a baffle is used to direct descending catalyst away from a wall of a disengaging vessel proximate a stripping section comprising elongated strips of metal.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventor: Robert L. Mehlberg