With Heat Exchange Means Affecting Reaction Chamber Or Reactants Located Therein Patents (Class 422/146)
  • Patent number: 7892498
    Abstract: A polyester production system employing a vertically elongated esterification reactor. The esterification reactor of the present invention is an improvement over conventional CSTR esterification reactors because, for example, in one embodiment, the reactor requires little or no mechanical agitation. Further, in one embodiment, the positioning of the inlets and outlets of the reactor provides improved operational performance and flexibility over CSTRs of the prior art.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: February 22, 2011
    Assignee: Eastman Chemical Company
    Inventor: Bruce Roger DeBruin
  • Publication number: 20110036272
    Abstract: A system and method for treating tailings from a bitumen froth treatment process such as TSRU tailings. The tailings are dewatered and then combusted to convert kaolin in the tailings into metakaolin. Calcined fines and heavy minerals may be recovered from the combustion products, namely from the flue gas and bottom ash.
    Type: Application
    Filed: June 29, 2010
    Publication date: February 17, 2011
    Inventors: Payman Esmaeili, Mainak Ghosh, Brian C. Speirs
  • Publication number: 20110027132
    Abstract: A gasification furnace 2 is divided into a plurality of gasification furnace units 2a and 2b each of which has an inlet 15a, 15b on a lower portion at a longitudinally upstream end in a direction of travel of raw and bed materials and has an outlet 16a, 16b on an upper portion at a longitudinally downstream end in the direction of travel. The outlet 16a is connected to the inlet 15b. The inlet 15a is fed with a raw material and a hot bed material from a materials separator 8. The inlet 15b is also fed with the hot bed material from the material separator 8. The outlet 16b is connected to a combustion furnace 5.
    Type: Application
    Filed: March 18, 2009
    Publication date: February 3, 2011
    Applicant: IHI Corporation
    Inventors: Hisanori Nukumi, Toshiyuki Suda, Tomoya Muramoto
  • Patent number: 7871449
    Abstract: The invention provides an improved process and apparatus for integrating the heat transfer zones of spiral-wound, plate fin, tube and finned tube exchangers thus increasing the overall effectiveness of the process.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: January 18, 2011
    Assignee: Linde Process Plants, Inc.
    Inventors: Ronald Dean Key, Maqsudur Rahman Khan
  • Publication number: 20100322836
    Abstract: The present invention discloses a continuous calcination vessel which can be used to prepare calcined chemically-treated solid oxides from solid oxides and chemically-treated solid oxides. A process for the continuous preparation of calcined chemically-treated solid oxides is also provided. Calcined chemically-treated solid oxides disclosed herein can be used in catalyst compositions for the polymerization of olefins.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel
  • Patent number: 7842261
    Abstract: The invention pertains to a process for preparing resorbable polyesters by bulk polymerization, wherein the reaction components are melted and homogenized in a reactor, the reaction mixture is then transferred into a polymerization reactor having a lumen defined by a reaction wall, wherein said reactor wall comprises at least two components which are releasably fitted to each other and wherein the shortest distance of any point within said lumen to the reaction wall is less than 8 cm, the reaction mixture is polymerized and the resulting polymer is removed from the polymerization reactor by releasing the components of the reactor wall exposing the resulting polymer lengthwise. The invention further relates to a polymerization reactor having a lumen defined by a reaction wall for performing said process.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: November 30, 2010
    Assignee: Purac Biochem BV
    Inventors: Albert Van Der Wal, Arie Cornelis Mol
  • Patent number: 7807761
    Abstract: Process and apparatus for gas-phase polymerization of olefin(s), including a fluid or stirred bed reactor, a bed level controller, and at least one conduit for withdrawing polymer, provided with an isolation valve. The conduit connects the side wall of the reactor to at least one uplift conduit, at least one recovery gas lock hopper equipped with a discharge valve, and at least one degassing chamber. At least one flushing device is provided for flushing the at least one uplift conduit.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: October 5, 2010
    Assignee: Ineos Europe Limited
    Inventors: Jen-Louis Chamayou, Peter John Elstner
  • Patent number: 7799288
    Abstract: An apparatus for recovery power from an FCC product is described. Gaseous hydrocarbon product from an FCC reactor is heat exchanged with a heat exchange media which is delivered to an expander to generate power. Cycle oil from product fractionation may be added to the gaseous FCC product to wash away coke precursors.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventor: John A. Petri
  • Publication number: 20100226844
    Abstract: Silicon granules are produced by chemical vapor deposition on seed particles inside a chamber within a fluidized bed reactor. The chamber contains an obstructing member, or bubble breaker, which is sized and shaped to restrict the growth of bubbles inside the chamber and which has interior passageways through which a heated fluid passes to transfer heat to gas inside the chamber.
    Type: Application
    Filed: January 11, 2010
    Publication date: September 9, 2010
    Inventors: Michael V. Spangler, Glen Stucki
  • Publication number: 20100221152
    Abstract: Inexpensive heating fuel is used to generate heat required for completion of reformation of raw material to be reformed such as hydrocarbon gas, heavy oil or oil refining pitch so that the raw material may be reformed economically and stably. A reformer has a raw material feeder that feeds a predetermined amount of raw material to be reformed to a fluidized-bed reforming furnace; a fuel feeder feeds heating fuel to a fluidized-bed combustion furnace; and a controller regulates the fuel to be fed to the combustion furnace so as to impart heat to the circulating particles in the combustion furnace such that the raw material fed to the reforming furnace can be completely reformed in the reforming furnace.
    Type: Application
    Filed: November 12, 2008
    Publication date: September 2, 2010
    Applicant: IHI CORPORATION
    Inventors: Toshiyuki Suda, Tetsuya Hirata, Toshiro Fujimori, Hideto Ikeda
  • Patent number: 7776285
    Abstract: A heat exchange reactor for carrying out endothermic or exothermic reactions comprising: a housing defining an external reactor wall (1), a plurality of heat transfer tubes (2) arranged within said housing for the supply or removal of heat in catalyst beds (3, 3?) disposed at least outside (3) said heat transfer tubes (2), and built-in elements (4) disposed in the outer periphery of said catalyst bed (3).
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: August 17, 2010
    Assignee: Haldor Topsøe A/S
    Inventors: Søren Gyde Thomsen, Michael Boe, Niels Erikstrup, Olav Holm-Christensen
  • Patent number: 7771687
    Abstract: The present invention relates to a method for mass preparation of granular polycrystalline silicon in a fluidized bed reactor, comprising (a) a reactor tube, (b) a reactor shell encompassing the reactor tube, (c) an inner zone formed within the reactor tube, where a silicon particle bed is formed and silicon deposition occurs, and an outer zone formed in between the reactor shell and the reactor tube, which is maintained under an inert gas atmosphere, and (d) a controlling means to keep the pressure difference between the inner zone and the outer zone being maintained within the range of 0 to 1 bar, thereby capable of maintaining physical stability of the reactor tube and efficiently preparing granular polycrystalline silicon even at a relatively high reaction pressure.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: August 10, 2010
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Hee Young Kim, Kyung Koo Yoon, Yong Ki Park, Won Choon Choi
  • Publication number: 20100187161
    Abstract: For refining oil-containing solids, in particular oil sand or oil shale, there is proposed a process with the following steps: supplying the oil-containing solids to a reactor and expelling an oil-containing vapor at a temperature of 300 to 1000° C., supplying the oil-containing vapor expelled in the reactor to a cracker, in which the heavy oil components are broken down, separating the products obtained in the cracker and withdrawing the product streams, introducing the solids left in the reactor including the unevaporated fraction of heavy hydrocarbons into a furnace, burning the heavy hydrocarbons left in the solids in the furnace at a temperature of 600 to 1500° C., preferably 1050 to 1200° C., recirculating hot solids from the furnace into the reactor, wherein the oxidizing atmosphere of the furnace is separated from the atmosphere of the reactor by a blocking device.
    Type: Application
    Filed: June 24, 2008
    Publication date: July 29, 2010
    Applicant: OUTOTEC OYJ
    Inventors: Nikola Anastasijevic, Guenter Schneider, Michael Missalla
  • Patent number: 7763088
    Abstract: A cost-effective biomass gasification method and system for converting biomass materials into gaseous fuel. The system and method are capable of converting at least about 50-70% of the carbon in a biomass material into gaseous carbon at a temperature lower than about 1300° F. Also provided is a highly-efficient, cost-effective biomass gasification system comprising a combustor and a gasifier with an inside diameter of at least about 36 inches and a height of at least about 40 feet.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 27, 2010
    Assignee: Rentech, Inc.
    Inventor: Herman Feldmann
  • Publication number: 20100158794
    Abstract: A heat pipe and a method for operating a heat pipe of said type are provided, which heat pipe remains active over a relatively long period of time in particular when used in pressurized gasification atmosphere, that is to say in a hydrogen-rich environment. Also specified is a heat pipe reformer having a heat pipe of said type. By providing a hydrogen extractor in the region of the heat-dissipating end of the heat pipe, the hydrogen which has penetrated into the heat pipe and accumulated there is conducted out of the heat pipe again, such that the heat-exchanging capacity of the heat pipe is maintained. The hydrogen extractor generates a hydrogen concentration gradient or a hydrogen partial pressure gradient between the interior and the exterior of the pipe casing, such that hydrogen which has penetrated into the interior of the heat pipe is diffused into the hydrogen extractor and can be extracted from there.
    Type: Application
    Filed: April 4, 2007
    Publication date: June 24, 2010
    Inventor: Thomas Steer
  • Publication number: 20100158767
    Abstract: One exemplary embodiment can be a fluid catalytic cracking system. The system can include a reaction zone operating at conditions to facilitate olefin production and including at least one riser. The at least one riser can receive a first feed having a boiling point of about 180-about 800° C., and a second feed having more than about 70%, by weight, of one or more C4+ olefins.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Robert L. Mehlberg, Keith Allen Couch, Brian W. Hedrick, Zhihao Fei
  • Patent number: 7736598
    Abstract: The invention relates to a reactor and a process for preparing chlorine from hydrogen chloride by gas-phase oxidation by means of oxygen in the presence of a heterogeneous catalyst in a fluidized bed, with gas-permeable plates being located in the fluidized bed. The gas-permeable plates are connected in a thermally conductive manner to a heat exchanger located in the fluidized bed.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: June 15, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Seidemann, Olga Schubert, Martin Sesing, Eckhard Stroefer, Martin Fiene, Christian Walsdorff, Klaus Harth
  • Patent number: 7727380
    Abstract: Disclosed is a process for combusting dry gas to heat the air supplied to an FCC regenerator to increase its temperature and minimize production of undesirable combustion products. Preferably, the dry gas is a selected FCC product gas. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: June 1, 2010
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Xin X. Zhu, James P. Glavin
  • Patent number: 7727486
    Abstract: Disclosed is an apparatus for combusting dry gas to heat the air fed to an FCC regenerator to increase its temperature and minimize production of undesirable combustion products. Preferably, the dry gas is a selected FCC product gas. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: June 1, 2010
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Xin X. Zhu, James P. Glavin
  • Publication number: 20100129264
    Abstract: A process of producing magnetite with a high purity of greater than 90% magnetite, more typically greater than 98% magnetite, by reducing powdered hematite into magnetite under maximum temperatures of about 700 to 1300° C. against a counter-current of or concurrent with methane or natural gas in a heating device. The amount of methane used to reduce the hematite may be about 0.18 and 1.8 standard cubic feet of methane per pound of hematite. A product of high purity methane produced from the process is also provided, where the magnetite is below 1 ?M in diameter and has a magnetic saturation greater than 90.0 emu/g. Corresponding apparatus using an improved feeder system for powdered hematite is provided.
    Type: Application
    Filed: January 29, 2010
    Publication date: May 27, 2010
    Applicant: PITTSBURGH IRON OXIDES, LLC
    Inventors: Dale L. Nickels, Michael E. Sawayda, Thomas E. Weyand
  • Patent number: 7708952
    Abstract: The present invention relates to a reaction or separation device, wherein the materials circularly flow in a container and a pipe. Said device contains a container and an external circular pipe, wherein the container is a double-chamber structure. The inner chamber consists of an outer cylinder and an inner cylinder with the latter being jacketed by the former, and there is a space between the walls of the outer cylinder and the inner cylinder. The lower end of the outer cylinder is open and higher than the bottom of the container, and the outer cylinder is fixed to the wall or bottom of the container. The upper end of the inner cylinder is open and its lower end connects with the external circular pipe through the feed outlet.
    Type: Grant
    Filed: January 2, 2004
    Date of Patent: May 4, 2010
    Assignees: China Petroleum & Chemical Corporation, Sinopec Shanghai Petrochemical Corporation Limited, China Textile Academy
    Inventors: Zhenxin Chen, Mingkang Yu, Shaopeng Wang
  • Publication number: 20100092382
    Abstract: A gas generator includes a high pressure gas-generation system that is capable of generating a product gas stream at a non-ambient, elevated nominal pressure. A thermal swing absorber has a first configuration and a second configuration relative to being connected with the product gas stream. In the first configuration, the thermal swing absorber is connected with the high pressure gas-generation system to receive the product gas stream and remove a constituent gas from the stream. In the second configuration, the thermal swing absorber is disconnected from the product gas stream and releases the constituent gas at a pressure that is substantially equal to the elevated nominal pressure. In the second configuration, the thermal swing absorber is an input source to provide the released constituent gas into the high pressure gas-generation system, which permits more efficient use of materials within the system.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 15, 2010
    Inventors: Albert E. Stewart, Jeffrey A. Mays
  • Patent number: 7686944
    Abstract: Disclosed is a process for recovering power from an FCC product. The dry gas is combusted and combined with FCC regenerator flue gas to raise the power recovery capability of the flue gas. The flue gas can be used to generate electrical power or steam. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventors: Xin X. Zhu, Keith A. Couch, James P. Glavin
  • Publication number: 20100074805
    Abstract: A plant for the heat treatment of solids containing titanium includes a fluidized bed reactor. The reactor includes at least one gas supply tube being at least partly surrounded by an annular chamber in which a stationary annular fluidized bed is located, and a mixing chamber being located above the upper orifice region of the gas supply tube. The gas flowing through the gas supply tube entrains solids from the stationary annular fluidized bed into the mixing chamber when passing through the upper orifice region of the gas supply system. The plant further includes a solids separator downstream of the reactor. The solids separator includes a solids conduit leading to the annular fluidized bed of the reactor.
    Type: Application
    Filed: December 1, 2009
    Publication date: March 25, 2010
    Applicant: OUTOTEC OYJ
    Inventors: Dirk Nuber, Michael Stroeder, Werner Stockhausen, Ali-Naghi Beyzavi, Lothar Formanek, Martin Hirsch
  • Patent number: 7682576
    Abstract: Disclosed is an apparatus for recovering power from an FCC product. The dry gas is combusted and combined with FCC regenerator flue gas to raise the power recovery capability of the flue gas. The flue gas can be used to generate electrical power or steam. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: March 23, 2010
    Assignee: UOP LLC
    Inventors: Xin X. Zhu, Keith A. Couch, James P. Glavin
  • Publication number: 20100047147
    Abstract: A circulating fluidized bed power plant 100 includes; a circulating fluidized bed boiler 110 which generates flue gases, a flash dry absorber scrubber 140 configured to receive the flue gases from the circulating fluidized bed boiler 110, and a lime feed 150 configured to introduce lime into the flash dry absorber scrubber 140.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 25, 2010
    Inventors: Lawrence H. Gatton, JR., George D. Mylchreest
  • Publication number: 20100038082
    Abstract: The Portable Renewable Energy System for Enhanced Oil Recovery (“PRESEOR”) is a truck mobile system that reforms biomass into CO2 and hydrogen, following which the gases are separated, with the CO2 sequestered underground for enhanced oil recovery (EOR) and the hydrogen used to generate several megawatts of carbon-free electricity. In contrast to large central power plants that are generally not well-located to support EOR, the small PRESEOR can go directly to the oilfields where it is needed, and do so in a timely manner. The PRESEOR sequesters more biomass-derived carbon than is released by the burning of the oil it yields, thereby producing not only carbon-free electricity but carbon-free oil. Using PRESEOR, over 80 billion barrels of U.S. oil would be made recoverable, without the need to drill new wells in pristine areas.
    Type: Application
    Filed: July 1, 2009
    Publication date: February 18, 2010
    Inventors: Robert M. Zubrin, Mark H. Berggren
  • Publication number: 20100040511
    Abstract: A fuel gas-steam reformer assembly, preferably an autothermal reformer assembly, for use in a fuel cell power plant, includes a mixing station for intermixing a relatively high molecular weight fuel and an air-steam stream so as to form a homogeneous fuel-air-steam mixture for admission into a catalyst bed. The catalyst bed includes catalyzed alumina pellets, or a monolith such as a foam or honeycomb body which is preferably formed from a high temperature material such as a steel alloy, or from a ceramic material. The catalyst bed is contained in a shell which is preferably formed from stainless steel or some other high temperature alloy. The shell includes an internal peripheral thermal insulation layer of zirconia (ZrO2), either in a felt form, or in a rigidified foam.
    Type: Application
    Filed: October 27, 2004
    Publication date: February 18, 2010
    Inventor: Roger R. Lesieur
  • Patent number: 7662351
    Abstract: The present invention relates to a process for producing metal oxide from metal compounds, in particular metal hydroxide or metal carbonate, in which the metal compound is conveyed into a reactor (25) with fluidized bed, heated there to a temperature of 650 15 to 1150° C. by combustion of fuel, and metal oxide is generated, as well as to a corresponding plant. To improve the utilization of energy, it is proposed to introduce a first gas or gas mixture from below through a gas supply tube (26) into a mixing chamber (20) of the reactor (25), the gas supply tube (26) being at least partly surrounded by a stationary annular fluidized bed (27) which is fluidized by supplying fluidizing gas, and 20 to adjust the gas velocities of the first gas or gas mixture and of the fluidizing gas for the annular fluidized bed (27) such that the Particle-Froude numbers in the gas supply tube (26) lie between 1 and 100, in the annular fluidized bed (27) between 0.02 and 2, and in the mixing chamber (20) between 0.3 and 30.
    Type: Grant
    Filed: December 13, 2003
    Date of Patent: February 16, 2010
    Assignee: Outotec Oyj
    Inventors: Martin Hirsch, Werner Stockhausen, Michael Ströder
  • Patent number: 7655589
    Abstract: Disclosed is an improved regeneration process and system for the regeneration of a spent FCC catalyst in a regenerator without vertical partitions by introducing different fluidization gas streams to different regions of a dense phase catalyst zone at the lower end of the regenerator such as a high velocity central region and a low velocity annular zone are formed, positioned below a common dilute catalyst phase.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: February 2, 2010
    Assignee: Shell Oil Company
    Inventors: Ye Mon Chen, David Jon Brosten, Benjamin Karl Bussey
  • Patent number: 7651668
    Abstract: A material gas and a catalyst are introduced through a material supplying tube path and a catalyst supplying tube path together with a carrier gas into a reactor equipped on its outer periphery with a heat applicator for thermally decomposing the material gas. The reactor has a convention regulator fitted to the discharge end of the catalyst supplying tube path. The convection regulator covers an edge side of the reactor to regulate gas flow in the reactor so that the flow does not reach the edge side. Due to this, a convection state can be efficiently produced in a reaction region. Consequently, it becomes possible to prevent contamination defect caused by accumulation/adherence of concretion of catalyst, which was generated by aggregation of cooled catalyst in the low-temperature region of the reactor and a decomposition product of the material gas. Thus the efficiency of carbon nanostructure production can be improved.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: January 26, 2010
    Assignees: Japan Science and Technology Agency, Public University Corporation Osaka Prefecture University, Taiyo Nippon Sanso Corporation, Otsuka Chemical Co., Ltd., Nissin Electric Co., Ltd.
    Inventors: Yoshikazu Nakayama, Hiroyuki Tsuchiya, Yugo Higashi, Toshiki Goto, Keisuke Shiono, Takeshi Nagasaka, Nobuharu Okazaki
  • Patent number: 7651565
    Abstract: A gypsum dryer/calciner (1) includes a calcining space (2), a first pipe (4) exhibiting an inlet connected to a source of hot gases (3) and an outlet emerging in the calcining space (2); a second pipe (5) exhibiting an inlet connected to a source of gypsum (8) and an outlet emerging in the calcining space, the second pipe being concentric with the first pipe; a force-feeding screw (6) positioned at least partially in the second pipe, the said screw carrying the gypsum along in the calcining space. A process for calcining gypsum and to the plaster capable of being obtained by this process.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: January 26, 2010
    Assignee: Lafarge Platres
    Inventor: Charles Falinower
  • Patent number: 7645428
    Abstract: A reaction vessel which includes internally placed temperature controlling mixing baffles in which liquid is boiled, resulting in an isothermal heat sink. The energy of vaporization is supplied by the reaction vessel contents. The vapor produced by the boiling may be directed to channel coils which surround the outside of the reaction vessel wall. The channel coils contact the outside wall of the reaction vessel perpendicularly, and provide mechanical support for the reaction vessel. The mechanical support from the channel coils allows for a decrease in the thickness of the reaction vessel wall and corresponding increased heat transfer efficiency between the channel coil contents and the reaction vessel contents. The entire above described apparatus is enclosed within an evacuated shell to provide additional insulation.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: January 12, 2010
    Inventor: José P. Arencibia, Jr.
  • Patent number: 7641878
    Abstract: A system and method for beneficiation of fly ash particles which at least partially reduces sulfur emissions includes at least one mixing reactor with a chamber and at least one exhaust, at least one fly ash source connected to provide fly ash particles to the chamber, at least one sorbent source, and at least one fluid supply system. The sorbent source provides at least one type of sorbent particles to be mixed with the fly ash particles to reduce sulfur emissions. A mass of the fly ash particles in the chamber is greater than a mass of the sorbent particles in the chamber. The fluid supply system provides at least one fluid to the chamber during a beneficiation of at least a portion of the fly ash particles in the chamber.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: January 5, 2010
    Assignee: PMI Ash Technologies, LLC
    Inventors: Joseph W. Cochran, S. Frank Kirkconnell
  • Patent number: 7638038
    Abstract: A method for controlling the pseudo-isothermicity of a chemical reaction in a respective reaction zone. (9) in which the use of heat exchangers (6) is foreseen having an operating heat exchange fluid flowing through them and in which heat exchange critical areas (9a) are identified, the method being distinguished by the fact that it reduces and controls, in the critical areas (9a) of the reaction zone, the value of the heat exchange coefficient between the operating fluid and the zone (9), through thermal insulation of the portions (6a, 6b) of such exchangers extending in such areas (9a).
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: December 29, 2009
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Patent number: 7638101
    Abstract: This invention relates to regeneration of coked catalyst by combustion so that the catalyst can be reused in a hydrocarbon conversion reaction. The completion of coke burn is generally measured with a combination of temperature or change in oxygen concentration. Dropping outlet temperatures require time to wait for increases in inlet temperature to correspondingly move down the regenerator. Faster response times might be expected from increasing oxygen concentration, but a small increase in concentration can lead to a significant increase in peak burn temperature which negatively impacts catalyst life. Controlled peak burning is difficult over the entire bed by merely controlling inlet and outlet oxygen concentrations. The invention accordingly combines a measured lag time for temperature travel with an inlet temperature ramping step to ensure complete coke combustion with high oxygen efficiency, thus providing a rapid regeneration that permits more time for operation at desired reaction conditions.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Leon Yuan, James L. Bixby, Kyle P. Austin, Brian D. Nabozny
  • Patent number: 7632778
    Abstract: An apparatus for producing hydrogen, which comprises: a. a heated steam reforming stage (1) with a reforming catalyst to convert gaseous or vaporizable hydrocarbons and water into hydrogen, carbon monoxide and further reformer products; b. at least one stage downstream of the steam reforming stage for the catalytic conversion of the mixture of hydrogen, carbon monoxide and excess steam leaving the steam reforming stage (shift stage) (2); and c. a fine purification stage (3) downstream of the shift stage(s) for the catalytic lowering of the residual carbon monoxide content of the conversion products by selective methanization, is described. In the apparatus, the shift stage (2) and the fine purification stage (3) are configured as a unitary hollow body (exothermic catalyst stage).
    Type: Grant
    Filed: January 17, 2005
    Date of Patent: December 15, 2009
    Assignee: Süd-Chemie AG
    Inventors: Klaus Wanninger, Peter Britz, Nicolas Zartenar
  • Publication number: 20090274589
    Abstract: A plant for producing metal oxide from metal compounds includes a fluidized-bed reactor in which the metal compounds are heated by a combustion of a fuel to produce metal oxide. The fluidized-bed-reactor reactor includes at least one gas supply tube at least partly surrounded by an annular chamber in which a stationary annular fluidized bed is disposed, and a mixing chamber disposed above an orifice region of the gas supply tube. A gas flowing through the gas supply tube entrains solids from the stationary annular fluidized bed when passing through the orifice region.
    Type: Application
    Filed: July 10, 2009
    Publication date: November 5, 2009
    Applicant: Outotec Oyj
    Inventors: Martin Hirsch, Werner Stockhausen, Michael Stroeder
  • Patent number: 7611676
    Abstract: In a method for producing gas turbine fuel through the step of modifying heavy fuel oil with the use of an asphaltene-insoluble solvent, the utilization factor of the heavy fuel oil usable as gas turbine fuel is increased by making asphaltene selectively removable. A solvent having a specific inductive capacity in the range of 1.4 to 2.0 is used as the asphaltene-insoluble solvent. In particular, water controlled in temperature and pressure so as to have a specific inductive capacity in the above range is used as the asphaltene-insoluble solvent. By using such a solvent, an asphaltene component contained in the heavy fuel oil can be selectively removed and power generation can be performed while utilizing 95% or more of the heavy fuel oil.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: November 3, 2009
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Shinichi Inage, Hirokazu Takahashi, Koji Nishida, Akinori Hayashi, Nobuyuki Hokari, Osami Yokota, Shinsuke Kokubo, Tetsuo Sasada, Tsunemasa Nishijima, Toshifumi Sasao
  • Patent number: 7611678
    Abstract: A reaction device includes staged zones making it possible to implement strongly endothermic or exothermic reactions. The device reduces the differences in catalytic activity between these zones using an addition of fresh or regenerated catalyst at the inlet of each reaction zone and provides an integrated heat exchanger. A process of chemical conversion employs the device for gas-phase and/or liquid-phase exothermic or endothermic reactions, and in particular for the oligomerization reaction of C2 to C12 fractions for the purpose of producing a diesel fraction.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: November 3, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Sylvain Louret, Patrice Font, Sylvie Lacombe, Eric Sancheż, Laurent Simon
  • Publication number: 20090257939
    Abstract: [Problems] To provide a treatment method having excellent purification effect, in which impurities having high ionicity in a silica powder can be removed in a short time, a apparatus thereof, and a purified silica powder. [Means for Solving the Problems] A purification method of a silica powder comprises: making a silica powder into a fluid state; contacting a purified gas to the silica powder in the fluid state at high temperature; and thereby removing impurity components of the silica powder. In the method, the silica powder in the fluid state is positioned in a magnetic field region. Further, the silica powder is contacted with the purified gas, while applying voltage to the silica powder by an electric field generated by moving of the silica powder. Preferably, the silica powder in a fluid state is positioned in the magnetic region of 10 gausses or more, and contacted with the purification gas at a temperature of 1000° C. or more.
    Type: Application
    Filed: October 25, 2006
    Publication date: October 15, 2009
    Applicant: JAPAN SUPER QUARTZ CORPORATION
    Inventors: Minoru Kanda, Yoshiyuki Tsuji
  • Patent number: 7601303
    Abstract: Gas-phase fluidized-bed reactor for polymerizing ethylenically unsaturated monomers, comprising a reactor chamber (1) in the form of a vertical tube, if desired a calming zone (2) following the upper section of the reactor chamber, a circulation gas line (3), a circulation gas compressor (4) and a cooling device (5), where, in the region of transition of the reaction gas from the circulation gas line into the reactor chamber and in the lower section of the reactor chamber itself, there is either no gas distributor plate at all or only a gas distributor plate the total surface area of whose gas orifices is more than 20% of the total surface area of said gas distributor plate.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: October 13, 2009
    Assignee: Elenac GmbH
    Inventors: Rainer Karer, Kaspar Evertz, Wolfgang Micklitz, Hans-Jacob Feindt, Philipp Rosendorfer, Peter Kölle
  • Publication number: 20090220389
    Abstract: A bubble column-type slurry bed reaction system is provided in which an operating system, which synthesizes liquid hydrocarbons by the Fischer-Tropsch (FT) synthesis reaction and separates and derives a catalyst and liquid hydrocarbon products from a slurry composed of gas, liquid and solid phases, can be simplified, and deterioration of catalyst particles caused by attrition and so forth can be reduced.
    Type: Application
    Filed: December 14, 2005
    Publication date: September 3, 2009
    Applicants: NIPPON STEEL ENGINEERING CO., LTD., SEKIYUSHIGEN KAIHATSU KABUSHIKI KAISHA
    Inventors: Yasuhiro Onishi, Kenichiro Fujimoto, Masaru Ihara, Yoshifumi Suehiro, Yasumasa Morita, Kiyoshi Inaba, Toshio Shimizu, Osamu Iwamoto
  • Patent number: 7575725
    Abstract: An apparatus for controlling space velocity in a fluidized catalytic conversion reactor is described. The catalyst flux rate can be adjusted during the process of the reaction to adjust the space velocity and maintain a fast fluidized flow regime therein. The set parameter in the reactor may be pressure drop which is proportional to catalyst density.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: August 18, 2009
    Assignee: UOP LLC
    Inventors: David A. Lomas, Lawrence W. Miller
  • Patent number: 7569086
    Abstract: A fluid bed reactor is configured to process a reactive material to form one or more products. The reactor includes a reaction vessel defining a compartment configured to receive the reactive material. A first cluster of heating conduits at least partially occupies the compartment and extends over a first vertical extent within the compartment. A second cluster of heating conduits partially occupies the compartment and extends over a second vertical extent within the compartment. The first cluster of heating conduits is vertically below the second cluster of heating conduits and spaced apart therefrom by a first separation distance. Feedstock inlets are configured to introduce the reactive material into a region that is vertically between the first and second clusters of heating conduits. The heating conduits in the first cluster have a first thickness while the heating conduits in the second cluster have a second thickness.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: August 4, 2009
    Assignee: ThermoChem Recovery International, Inc.
    Inventor: Ravi Chandran
  • Publication number: 20090170967
    Abstract: A process for preparation of a synthesis gas and/or hydrogen by concurrently providing an oxidation reactant stream through an oxidation chamber and a reforming reactant stream through a steam, reforming chamber is described. Also provided is a reactor for conducting the reaction.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Inventors: Lixin You, Crutis Lee Krause, Kevin Hoa Nguyen
  • Publication number: 20090169465
    Abstract: Provided is an apparatus for producing carbon nanotubes. The apparatus includes a reaction chamber and a rotating member. The reaction chamber provides a reaction space in which metal catalysts and a source gas react with one another to produce carbon nanotubes. The rotating member increases fluidizing of the metal catalysts in the reaction space to increase productivity and raise the gas conversion rate, thereby reducing the price of carbon nanotubes and preventing adhering of metal catalysts to the sidewall of the reaction chamber.
    Type: Application
    Filed: November 4, 2008
    Publication date: July 2, 2009
    Inventors: Suk-Won Jang, Chung-Heon Jeong, Jong-Kwan Jeon, Ho-Soo Hwang
  • Publication number: 20090162268
    Abstract: A method for separating a reactive gas from a feed gas mixture is disclosed. The method includes reacting the reactive gas with a bed of reactive solid in an exothermic reaction to create a second solid and a product gas from which the reactive gas is depleted. The product gas is removed and the heat from the reaction is used to liberate the reactive gas from the second solid in an endothermic reaction which yields the reactive solid. The reactive gas is removed and sequestered. Heat reservoir material is included in the bed to retain the heat in support of the endothermic reaction. A device for executing the method having an insulated chamber holding the bed, as well as process units formed of multiple beds are also disclosed. The process units allow the method to be operated cyclically, providing a continuous flow of feed gas, reactive gas and product gas.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Robert Quinn, Vincent White, Rodney John Allam
  • Publication number: 20090163756
    Abstract: A reactor for converting a feedstream having one or more oxygenated compounds to a product containing olefins is provided. The reactor comprises a fluidized reaction zone defined by a reactor wall and a feedstream inlet located adjacent the reaction zone. The feedstream inlet is operative to feed the reaction zone with said feedstream. A riser extends from said reaction zone and carries a vaporized combination of said feedstream and said catalyst from said reaction zone to a disengaging zone fed by the riser. At least one cooling tube is disposed within the reactor and extends substantially vertically and substantially parallel to the reactor wall. The cooling tube is located adjacent the reactor wall and extends from an upper portion of the reaction zone towards a lower portion of the reaction zone. Also provided is a cooling system for a methanol to olefin reactor. Finally, a method of producing olefins from a feedstream having an oxygenate is provided.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Applicant: UOP LLC, a corporation of the State of Delaware
    Inventor: Peter R. Pujado
  • Patent number: 7524481
    Abstract: The present invention is related to an apparatus for the production of inorganic fullerene-like (IF) nanoparticles and nanotubes. The apparatus comprises a chemical reactor, and is further associated with a feeding set up and with a temperature control means for controlling the temperature along the reaction path inside the reactor so as to maintain the temperature to be substantially constant. The invention is further directed to a method for the synthesis of IF-WO3 nanoparticles having spherical shape and having a size up to 0.5 mu m and nanotubes having a length of up to several hundred mu m and a cross-sectional dimension of up to 200 nanometer.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: April 28, 2009
    Assignee: Yeda Research and Development Co., Ltd.
    Inventors: Reshef Tenne, Yishay Feldman, Alla Zak, Rita Rosentsveig