Combined Patents (Class 422/187)
  • Patent number: 8551429
    Abstract: Methods of forming potassium sulfate include calcining polyhalite ore particles to convert the polyhalite ore particles to a water-soluble composition. At least a portion of the water-soluble composition is dissolved in an aqueous medium to form an aqueous solution comprising K+, Mg2+, and SO42? ions and a calcium-containing solid. The calcium-containing solid is separated from the aqueous solution to form a filtrate comprising K+, Mg2+, and SO42? ions. A potassium-containing salt is dissolved in the filtrate to increase the concentration of K+ and SO42? ions to from a concentrated liquor, and K2SO4 is crystallized from the concentrated liquor. A system for processing polyhalite ore includes a countercurrent leaching apparatus, a first mix tank, an evaporator, and at least one crystallizer.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: October 8, 2013
    Assignee: Intercontinental Potash Corp. (USA)
    Inventors: Thomas H. Neuman, Richard W. Chastain, Donial M. Felton, Daniel C. Neuman, Otto C. Schnauber
  • Publication number: 20130259764
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a second hydrocarbon stream in a hydrocracking unit. The hydrocracking unit and the hydrotreating unit may share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. The second hydrocarbon stream may be a diesel stream from the hydrotreating unit. The diesel stream may be a diesel and heavier stream from a bottom of a hydrotreating fractionation column.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventors: Paul R. Zimmerman, Peter Kokayeff
  • Publication number: 20130261366
    Abstract: Embodiments of methods and apparatuses for isomerization of paraffins are provided. In one example, a method comprises the steps of separating an isomerization effluent into a product stream that comprises branched paraffins and a stabilizer vapor stream that comprises HCl, H2, and C6-hydrocarbons. C6-hydrocarbons are removed from the stabilizer overhead vapor stream to form a HCl and H2-rich stream. An isomerization catalyst is activated using at least a portion of the HCl and H2-rich stream to form a chloride-promoted isomerization catalyst. A paraffin feed stream is contacted with the chloride-promoted isomerization catalyst in the presence of hydrogen for isomerization of the paraffins.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventor: Lynn H. Rice
  • Publication number: 20130259765
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a second hydrocarbon stream in a hydrocracking unit. The hydrocracking unit and the hydrotreating unit may share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. A hydrocracking separator separates recycle gas and hydrocarbons from the hydrocracking unit to be processed with effluent from the hydrotreating unit.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventors: Paul R. Zimmerman, Peter Kokayeff
  • Publication number: 20130261360
    Abstract: Methods and apparatuses for processing a renewable feedstock are provided herein. In an embodiment, a method for processing a renewable feedstock includes deoxygenating a stream of the renewable feedstock at a first pressure to form a stream of paraffins. The pressure of the stream of paraffins is reduced to a second pressure which is at least about 345 kPa less than the first pressure. Further, normal paraffins in the stream of paraffins are converted to form a stream of converted paraffins.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventors: Donald A. Eizenga, Daniel L. Ellig
  • Publication number: 20130256113
    Abstract: A modular plant, including at least one basic module is suitable for converting carbonaceous matrices (6) into fuel or useful products with no adverse environmental impact. The modular plant includes a rotary reactor (9) with a rotating drive mechanism (22) and a fixed stationary body (1). The inclination of the reactor (9) with rotating central longitudinal axis can vary from 0° to 45° with respect to horizontal. The reactor has a substantially cylindrical central body closed at a first entry end with a stationary fixed head (8), and at the exit end with a head fixed to the rotary reactor (9). The inlet end (8) contains one inlet (7) for the introduction of the carbonaceous matrix (6) into the rotary reactor and the other inlet (5) for introducing thermally conductive carriers (4). The rotary reactor (9) lacks internal components which provide rotation motion relative to the cylindrical body.
    Type: Application
    Filed: December 22, 2011
    Publication date: October 3, 2013
    Applicant: SEA MARCONI TECHNOLOGIES DI VANDER TUMIATTI S.A.S.
    Inventors: Vander Tumiatti, Michela Tumiatti, Shubhender Kapila, Francesco Lenzi, Carlo Roggero
  • Publication number: 20130259766
    Abstract: A process and apparatus is disclosed for recovering dichlorohydrins from a hydrochlorination reactor effluent stream comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts. The reactor effluent stream is distilled to produce a dichlorohydrin-rich vapor phase effluent stream. The dichlorohydrin-rich vapor phase effluent stream is cooled and condensed in two unit operations conducted at two different temperatures and a portion of the liquid phase effluent stream produced by the first unit operation is recycled to the distillation step for reflux. Product streams produced by the process and apparatus are suitable for further processing in a further unit operation, such as dehydrochlorination.
    Type: Application
    Filed: May 23, 2013
    Publication date: October 3, 2013
    Inventor: Anil Mehta
  • Publication number: 20130261358
    Abstract: Embodiments of methods and apparatuses for isomerization of paraffins are provided. In one example, a method comprises the steps of separating an isomerization effluent into a product stream that comprises branched paraffins and a stabilizer overhead vapor stream that comprises HCl, H2, and C6-hydrocarbons. C6-hydrocarbons are removed from at least a portion of the stabilizer overhead vapor stream to form a HCl and H2-rich stream. An isomerization catalyst is activated using at least a portion of the HCl and H2-rich stream to form a chloride-promoted isomerization catalyst. A paraffin feed stream is contacted with the chloride-promoted isomerization catalyst in the presence of hydrogen for isomerization of the paraffins.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventor: David James Shecterle
  • Publication number: 20130259796
    Abstract: The present invention provides a method for producing high-purity hydrogen chloride, comprising the steps of: purifying each of crude hydrogen and crude chlorine as raw materials to a purity of 99.999% or higher; reacting an excessive molar amount of the purified hydrogen with the purified chlorine at a temperature ranging from 1,200° C. to 1,400° C. to synthesize hydrogen chloride; converting the hydrogen chloride to a liquid state by compression; and purifying the hydrogen chloride and separating unreacted hydrogen by fractional distillation. The invention also provides a system for carrying out the method. According to the method and system, an environmentally friendly production process can be provided, which can easily produce a large amount of hydrogen chloride having a purity of 3 N (99.9%)-6 N (99.9999%) in a cost-effective manner and enables energy consumption to be significantly reduced.
    Type: Application
    Filed: March 9, 2012
    Publication date: October 3, 2013
    Applicants: HONG-IN CHEMICAL CO., LTD.
    Inventors: Jae Kun Lee, Bum Yong Lee
  • Patent number: 8545775
    Abstract: A reforming exchanger system for syngas production is provided. The reforming exchanger system can have a first and a second reforming exchanger, each with a shell-and-tube configuration, and a shift reactor located intermediate to the first and second reforming exchangers to reduce carbon monoxide concentration in the outlet gas. Processes for forming syngas using the reforming exchanger systems described herein are also provided.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: October 1, 2013
    Assignee: Kellogg Brown & Root LLC
    Inventors: Shashi Singh, Kamal Gursahani, Robert Burlingame, Tim Weeks, Jim Gosnell, Avinash Malhotra
  • Patent number: 8545793
    Abstract: A device for condensing, separating, and storing sulfur in a Claus plant. having a Claus furnace, waste heat boiler, and Claus reactor. Plant parts are supported on a floor or comparable device, and an immersion chamber is provided below the Claus plant and optionally also below a device arranged upstream for gas scrubbing. The immersion chamber receives the sulfur in a siphoning manner, wherein the excess sulfur flows at least 4.00 meters deeper from the immersion chamber into a ground-level container in which the immersion chamber is arranged. The invention further relates to a method, by means of which liquid sulfur is conducted into an immersion chamber, wherein the immersion chamber is arranged at a height level below the waste heat boiler and the Claus reactor so that the liquid sulfur reaches the immersion chamber without further pumping and overcomes a height difference of at least 4.00 meters.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: October 1, 2013
    Assignee: Thyssenkrupp UHDE GmbH
    Inventor: Holger Thielert
  • Publication number: 20130251613
    Abstract: A system for converting a first substance into a second substance, the system including a mixing reactor configured to provide a reactant mixture comprising a first reactant, a second reactant, and a solvent; and a high shear device fluidly connected to the mixing reactor, wherein the high shear device comprises at least one rotor/stator set comprising a rotor and a complementarily-shaped stator symmetrically positioned about an axis of rotation and separated by a shear gap, wherein the shear gap is in the range of from about 10 microns to about 250 microns; and a motor configured for rotating the rotor about the axis of rotation, whereby energy can be transferred from the rotor to the reactants thereby inducing reactions between the first reactant and the second reactant to form a product.
    Type: Application
    Filed: March 19, 2013
    Publication date: September 26, 2013
    Applicant: H R D Corporation
    Inventors: Abbas HASSAN, Aziz HASSAN, Rayford G. ANTHONY, Alishah HASSAN
  • Publication number: 20130247448
    Abstract: Generation of a liquid fuel product in an integrated multiple zone plant is discussed. Syngas components are supplied to a methanol (CH3OH) synthesis reactor from outputs of a first zone containing a torrefaction unit and a second zone containing a biomass gasifier that are combined in parallel and that thermally decompose biomass at different operating temperatures. Char particles of the biomass generated in the first zone are fed to the biomass gasifier in the second zone. Gasoline is produced via a methanol to gasoline process in a third zone, which receives its methanol derived from the syngas components fed to the methanol synthesis reactor. The gasoline derived from biomass is blended with condensable volatile materials including C5+ hydrocarbons collected during the pyrolyzation of the biomass in the torrefaction unit in the first zone in order to increase an octane rating of the blended gasoline.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Applicant: SUNDROP FUELS, INC.
    Inventors: Robert S. Ampulski, Timothy E. Laska, John T. Turner, Sidney P. White
  • Publication number: 20130253229
    Abstract: Disclosed are a process and an apparatus for using an olefin as an azeotropic entrainer to isolate a target organic compound from a waste stream. The olefin may be, for example, 1-decene, 1-dodecene, or 1-tetradecene. The target organic compound may be 1,3-dichloro-2-propanol in waste stream comprising a 2,2?-oxybis(1-chloropropane).
    Type: Application
    Filed: December 7, 2011
    Publication date: September 26, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Mahesh Ratnakar Sawant, Edward D. Daugs, Mark R. Smit
  • Publication number: 20130253216
    Abstract: An apparatus for producing a catalyst comprising a tank configured to prepare an aqueous mixed solution containing a Mo compound, a V compound and a Nb compound, a dryer configured to spray-dry the aqueous mixed solution, and a pipe for connecting the tank with the dryer so that the aqueous mixed solution can be supplied from the tank to the dryer, wherein a heater configured to heat the aqueous mixed solution is provided in the tank and/or the pipe, and a filter configured to filtrate the aqueous mixed solution is provided in the pipe.
    Type: Application
    Filed: December 13, 2011
    Publication date: September 26, 2013
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Takaaki Kato, Satoshi Endo, Minoru Kadowaki
  • Publication number: 20130248420
    Abstract: One exemplary embodiment can be a process for fluid catalytic cracking. The process can include sending a first catalyst from a first riser reactor and a second catalyst from a second riser reactor to a regeneration vessel having a first stage and a second stage. The first catalyst may be sent to the first stage and the second catalyst may be sent to the second stage of the regeneration vessel. Generally, the first stage is positioned above the second stage.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 26, 2013
    Applicant: UOP, LLC
    Inventor: Paolo Palmas
  • Patent number: 8540949
    Abstract: An apparatus and process is disclosed for hydroprocessing hydrocarbon feed in a hydroprocessing unit and hydrotreating a second hydrocarbon. A warm separator sends vaporous hydrotreating effluent to be flashed with liquid hydroprocessing effluent to produce a vapor flash overhead that can be recycled to the hydrotreating unit to provide hydrogen requirements.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: September 24, 2013
    Assignee: UOP LLC
    Inventors: Andrew P. Wieber, Joao J. da Silva Ferreira Alves
  • Publication number: 20130245318
    Abstract: A reactive rectification column suitable for the production of 2-hydroxy-4-methylmercaptobutyric acid and/or methionine contains a weir having a height of 100 mm or more.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 19, 2013
    Applicant: Evonik Degussa GmbH
    Inventors: Martin Steffan, Hans Joachim Hasselbach, Martin Koerfer, Harald Jakob, Jignesh Gangadwala
  • Publication number: 20130243684
    Abstract: This disclosure describes systems, methods, and apparatus for recovery and purification of iodine from strong brine solutions having low concentrations of iodine. This can involve acidifying and oxidizing the strong brine solution to produce a solution of processed brine and elemental iodine. This solution can then be passed through a countercurrent sorber causing the elemental iodine to adsorb onto a solid sorbent such as GAC. The iodine-loaded sorbent is separated and regenerated, for instance via heating, producing regenerated sorbent and iodine vapor. The vapor can be condensed thus leaving solid elemental iodine.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 19, 2013
    Applicant: DRAKE WATER TECHNOLOGIES, INC.
    Inventor: Ronald N. Drake
  • Publication number: 20130245342
    Abstract: The present invention relates to a process and system for producing fuel components, and more particularly to a process and system for producing fuel components from a material of biological origin. The process is a two-step or a three-step process comprising purifying of the feed material by evaporating and refining the purified feed material in the presence of at least one catalyst to form a mixture of hydrocarbon compounds from which mixture liquid hydrocarbon compounds are separated and further fractionated into fuel components. The present invention relates further to fuel components obtained by the process of the present invention as well as to the use of the fuel components and a mixture comprising the fuel components.
    Type: Application
    Filed: November 25, 2010
    Publication date: September 19, 2013
    Applicant: UPM-KYMMENE CORPORATION
    Inventors: Heli Laumola, Jari Kotoneva, Arto Rissanen, Jaakko Nousiainen
  • Publication number: 20130245352
    Abstract: A method for recovering hydrocarbons from an aqueous hydrocarbonaceous slurry comprises pumping a mixture of the slurry and an oxidizing agent through a conduit, wherein the conduit comprises a plurality of stationary interior projections defining a non-linear path through the conduit, and thereby agitating the mixture to release the hydrocarbons from the slurry; and separating the hydrocarbons from the slurry.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 19, 2013
    Inventors: Steig Breloff, Lawrence Conaway
  • Publication number: 20130240411
    Abstract: A device and a method for separating mixtures that contain oil or bitumen and additives. The device and the method are applicable in particular to separating stone chippings and bitumen in excavated asphalt road surfaces. In the case of oil sands and oil shale, a mineral phase can be separated from an oil phase and separation of bitumen and carrier felt can be induced in recycling of bitumen felt, oil binder and oil. The individual components of the mixture are separated from one another using a solvent, wherein the solvent takes up the oil or bitumen. The oil and bitumen are subsequently separated from the solvent so that the solvent can be reused.
    Type: Application
    Filed: July 29, 2011
    Publication date: September 19, 2013
    Inventors: Waldemar Karsten, Thomas Winter
  • Publication number: 20130245301
    Abstract: The present invention relates to a process and an apparatus for purifying a mixture of terpene material and tall oil material for the production of biofuels and components thereof. The present invention relates further to hydroprocessing of the purified material to obtain biofuels and components thereof.
    Type: Application
    Filed: November 25, 2011
    Publication date: September 19, 2013
    Applicant: UPM-KYMMENE CORPORATION
    Inventors: Jaakko Nousiainen, Heli Laumola, Arto Rissanen, Jari Kotoneva, Matti Ristolainen
  • Publication number: 20130243660
    Abstract: A separation membrane including an alloy, the alloy including at least one Group 5 element, and at least one selected from Pt and Ir.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 19, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwang Hee KIM, Hyeon Cheol PARK, Byung Ki RYU, Jae Ho LEE
  • Patent number: 8535613
    Abstract: A method and an apparatus for separating acidic gases from syngas are capable of reducing the necessary power and are capable of obtaining high-purity CO2 at a high recovery ratio. A purification method and a purification system of coal gasification gas using the method and the apparatus are also provided. An apparatus for separating acidic gases from syngas containing acidic gases of C02 and H2S, in order, converts CO in the syngas into C02, removes H2S contained in the syngas by using a solvent for physical absorption, removes physical solvent from the syngas followed by heating in a heat exchanger using the converted syngas heat, and removes C02 from the heated syngas by using a solvent for chemical absorption.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 17, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shinji Ogino, Fumiaki Sato, Yudai Kato, Motonari Aihara, Kazuo Ishida, Seiji Kakesako
  • Patent number: 8535626
    Abstract: An exhaust gas treatment apparatus according to the present invention generates post-mercury oxidation exhaust gas by denitrating exhaust gas of a combustion apparatus, generates desulfurization drainage by desulfurizing the post-mercury oxidation exhaust gas, supplies the desulfurization drainage to the combustion apparatus, and controls a return amount, which is the amount of the desulfurization drainage reused for the desulfurization, based on a concentration of halogens in the desulfurization drainage. Such exhaust gas treatment apparatus can appropriately remove mercury from the exhaust gas, and can desulfurize the post-mercury oxidation exhaust gas more appropriately.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: September 17, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shintaro Honjo, Satoru Sugita
  • Publication number: 20130237728
    Abstract: Oxygenate feedstocks derived from biomass are converted to a variety of fuels including gas, jet, and diesel fuel range hydrocarbons. General methods are provided including hydrolysis, dehydration, hydrogenation, condensation, oligomerization, and/or a polishing hydrotreating.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Edgar LOTERO, Kristi FJARE, TiePan SHI, Sourabh PANSARE, Yun BAO
  • Publication number: 20130236950
    Abstract: The object of the present invention is an atmospheric bioremediation system focused to reduce the Carbon Dioxide content in the Earth's atmosphere. The disclosed system includes an apparatus to distribute iron in low oxidation states such as zero or plus two trough out the photic region of high nutrients low clorophylls (HNLC) oceans over a period of time. This special apparatus is needed to provide a slow and continuous release of the iron to prevent premature precipitation. It has been shown that microalgae growth is usually initiated by the addition of iron and its sustained feed in water whose only limiting nutrient to prevent algal growth is iron itself. It has also been shown that southern oceans are a possible large batch area where iron is the limiting nutrient.
    Type: Application
    Filed: March 11, 2012
    Publication date: September 12, 2013
    Inventors: ALBERTO ARAMAYO, PATRICIA ARAMAYO
  • Patent number: 8528463
    Abstract: A modular process for organosolv fractionation of lignocellulosic feedstocks into component parts and further processing of said component parts into at least fuel-grade ethanol and four classes of lignin derivatives. The modular process includes a first processing module configured for physico-chemically digesting lignocellulosic feedstocks with an organic solvent thereby producing a cellulosic solids fraction and a liquid fraction, a second processing module configured for producing at least a fuel-grade ethanol and a first class of novel lignin derivatives from the cellulosic solids fraction, a third processing module configured for separating a second class and a third class of lignin derivatives from the liquid fraction and further processing the liquid fraction to produce a distillate and a stillage, a fourth processing module configured for separating a fourth class of lignin derivatives from the stillage and further processing the stillage to produce a sugar syrup.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: September 10, 2013
    Assignee: Lignol Innovations Ltd.
    Inventors: Christer Hallberg, Donald O'Connor, Michael Rushton, Edward Kendall Pye, Gordon Gjennestad, Alex Berlin, John Ross MacLachlan
  • Patent number: 8529687
    Abstract: A method for processing asphaltenes is disclosed. The method can include separating asphaltenes from an asphaltene-containing composition and oxidizing the separated asphaltenes to form oxidation products. Alternatively, the method can include oxidizing asphaltenes within an asphaltene-containing composition without first separating the asphaltenes. Once formed, the oxidation products can be combined with other hydrocarbons. The amount of oxidation can be limited to an amount sufficient to produce a mixture suitable for the desired application. This method can be used to upgrade asphaltenes from a variety of sources, including oil sands. The oxidation step can be performed, for example, by introducing an oxidizing agent and, in some cases, a catalyst into the asphaltenes. A solvent or miscibility agent also can be introduced to improve mixing between the oxidizing agent and the asphaltenes.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: September 10, 2013
    Assignee: Marathon Oil Canada Corporation
    Inventors: Willem P. C. Duyvesteyn, Raymond L. Morley
  • Publication number: 20130230436
    Abstract: A modular component is provided for use in a system for inerting void spaces in aircraft. The modular component is comprised of a hollow fiber membrane and tubesheet bundle, a low-temperature ozone converter, a hollow fiber membrane shell, and separator endcaps. The ozone converter can be any low-temperature converter with an ozone removal catalyst capable of high ozone removal efficiencies in the temperature range of 100 to 300° F. The modular component may further be used in a system comprising an additional low-temperature and high-temperature ozone converter upstream of the modular component.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 5, 2013
    Inventors: Bill Vestal, Edward Tesch, Alan Yoder, Jeremy Schaeffer
  • Publication number: 20130230437
    Abstract: The apparatus converts ethylene in a dilute ethylene stream and dilute benzene in an aromatic containing stream via alkylation to heavier hydrocarbons. The catalyst may be a zeolite such as UZM-8. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, and hydrogen and selectively converts benzene. At least 40 wt-% of the ethylene in the dilute ethylene stream and at least 20 wt-% of the benzene in the dilute benzene stream can be converted to heavier hydrocarbons.
    Type: Application
    Filed: April 8, 2013
    Publication date: September 5, 2013
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Alakananda Bhattacharyya
  • Patent number: 8522573
    Abstract: A system for conversion of waste and solar heat energy into a carbon sequestration device, including as a collector for collecting carbon dioxide gas from a carbon dioxide gas source, such as ambient air. The Joule Thompson effect is used to cool and thereby refrigerate/liquefy ambient air and then extracting carbon dioxide therefrom, comprising steps of and means for providing a hydride heat engine, operating the hydride heat engine utilizing hydride thermal compression technology to compress hydrogen gas and thereby to cool ambient air to a temperature rendering air into a refrigerated/liquefied state by use of a Joule-Thompson type process, and extracting carbon dioxide from the refrigerated/liquefied ambient air and collecting the carbon dioxide.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: September 3, 2013
    Assignee: Ergenics Corporation
    Inventor: P. Mark Golben
  • Patent number: 8524187
    Abstract: A VOC treatment apparatus is provided for treating substantially opaque VOCs and comprises a processing chamber (24) in which VOCs are treated; and a solar energy introducing device (8). The solar energy introducing device (8) comprises a tubular structure having a first end located external to the processing chamber (24) and having a first inlet (14) through which concentrated sunlight is received and a second inlet (16) through which a flow of substantially optically transmittant gas is received. The solar energy introducing device (8) has a second end (18) that opens into the processing chamber (24) and terminates in a nozzle providing an outlet for the substantially optically transmittant gas and the concentrated sunlight. In use the optically transmittant gas exits the second end of the device in a jet to create an optically transmittant zone in the substantially opaque VOCs within the processing chamber (24), in which zone the sunlight can travel.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: September 3, 2013
    Assignee: Chinook Sciences Limited
    Inventors: Rifat Al Chalabi, Ophneil Henry Perry
  • Publication number: 20130225884
    Abstract: Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C2-rich effluent, a methane-rich effluent, and a nitrogen-rich effluent. Advantageously, in some embodiments the separation is achieved with little or no external refrigeration requirement.
    Type: Application
    Filed: January 11, 2013
    Publication date: August 29, 2013
    Applicant: SILURIA TECHNOLOGIES, INC.
    Inventor: SILURIA TECHNOLOGIES, INC.
  • Publication number: 20130220886
    Abstract: The catalytic reactor consists of a chamber 1 that contains at least one catalyst bed 2 in solid form, with the reactor being supplied with effluent to be treated by a pipe 3 that empties into a separation means 4 between gas and liquid, with the liquid obtained from the separator being collected in a tank, and a plate 9 being arranged between the separation means 4 and the solid catalyst bed 2. The plate 9 consists of at least two closed boxes 10, with at least two vertical tubes 11 provided with openings 12 linking with the interiors of the boxes 10 passing through the boxes, and with the liquid distribution means 8 channeling the liquid from the tank into said boxes 10.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 29, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventor: IFP ENERGIES NOUVELLES
  • Patent number: 8518335
    Abstract: A system for preparing silica aerogel powders. The system includes a material supplier, a mixer, a drier and a recoverer. The material supplier transmitting de-ionized water, water glass, an organosilane compound, an inorganic acid and at least one organic solvent. Some of organic solvents are mixed and transmitted to the mixer and tramining organic solvent is transmitted to the mixer. The mixer mixes the materials transmitted from the material supplier so as to generate silica hydrogel. The drier dries the silica hydrogel so as to generate silica aerogel powders. The recoverer recovers some vaporized materials of the materials used in the mixer and the drier.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: August 27, 2013
    Assignee: Jios Aerogel Limited
    Inventors: Young Chul Joung, Myung Je Roe, Young Jong Yoo, Jong Chul Park, Hee Jung Choi, Min Woo Kim
  • Patent number: 8518151
    Abstract: A dense hydrogen-permeable layer, such as palladium or palladium alloy, is deposited on a porous hollow fiber. A porous hollow fiber is defined as having an inner diameter of approximately 30 microns to approximately 1500 microns and an outer diameter of approximately 100 microns to approximately 2000 microns. This allows an order-of-magnitude increase in the surface per volume ratio in a hydrogen separation or purification module, or a membrane reformer or reactor.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: August 27, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude el l'Exploitation des Procedes Georges Claude
    Inventors: Pascal Tessier, Edgar S. Sanders, Jr., Pascal J. Tromeur
  • Patent number: 8518351
    Abstract: An apparatus is disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit shares the same recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventors: Andrew P. Wieber, Paul R. Zimmerman
  • Patent number: 8518334
    Abstract: A process for upgrading unconventional or heavy oils such as, tar sands, shale oil, or bitumen. This process may include a coking scheme in which oil-containing solids, of suitable size, are fed directly into the riser of an FCC unit. Contacting a hot stream of solids causes vaporization and produces a gaseous product stream. The gaseous product may be separated out in a separating vessel and coked or unconverted oil-containing solids may be transferred to a gasifier for combustion at high temperatures to remove the coke and residual oil. Syngas from the gasifier may be converted to hydrogen using a water gas shift reaction. The hydrogen may be used for hydroprocessing.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventor: Gavin P. Towler
  • Publication number: 20130212930
    Abstract: In one aspect, a method for rendering biomass-derived pyrolysis oil miscible with refinery hydrocarbons comprises mixing a high oxygen content bio-oil having an oxygen content of at least about 10 wt. % with a low oxygen content bio-oil having an oxygen content of less than about 8 wt. % to produce a blended oil. The blended oil may be hydrotreated to produce a deoxygenated hydrotreated mixture from which water is removed using a separator, resulting in a low oxygen content hybrid bio-oil intermediate miscible in refinery process streams. A portion of the low oxygen content hybrid bio-oil intermediate may be recycled with the high oxygen content bio-oil or removed for use in a refinery process stream for further hydroprocessing.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 22, 2013
    Applicant: Chevron USA, Inc.
    Inventors: Douglas G. Naae, Jason C. Hicks, Jerome F. Mayer, Horacio Trevino, Jose I. Villegas
  • Publication number: 20130216468
    Abstract: A method and apparatus for in-line production of milk of lime into an in-line production process of PCC arranged in connection with a fibrous web machine. In the solution, lime is slaked in a slaking apparatus at a temperature of at least 80 degrees. The produced milk of lime is cleaned by separating excessively large calcium hydroxide particles immediately prior to introducing the milk of lime into the production process of PCC. The milk of lime is introduced into the in-line production process of PCC located in the production line of the end or intermediate product of the fibrous web machine.
    Type: Application
    Filed: June 9, 2011
    Publication date: August 22, 2013
    Inventors: Olavi Imppola, Esko Kukkamaki, Jouni Matula, Paivi Solismaa
  • Publication number: 20130216443
    Abstract: Disclosed are a process and an apparatus for synthesizing nitroalkanes by reaction of a hydrocarbon feedstock with aqueous nitric acid. Energy and capital costs may be reduced by recycling a majority of the aqueous phase back to the reactor.
    Type: Application
    Filed: April 1, 2013
    Publication date: August 22, 2013
    Applicants: ANGUS CHEMICAL COMPANY, DOW GLOBAL TECHNOLOGIES INC.
    Inventors: Mahesh Sawant, Daniel M. Trauth, John G. Pendergast
  • Publication number: 20130217933
    Abstract: Processes and hydrocarbon processing apparatuses for preparing mono-olefins are provided. An exemplary process includes separating a hydrocarbon feed into a first fraction of carbon-containing compounds having less than or equal to 5 carbon atoms and a second fraction of compounds that have a lower vapor pressure than those in the first fraction. Dienes and/or acetylenes from the first fraction are selectively hydrogenated into corresponding mono-olefins. Paraffins from the first fraction are converted into corresponding mono-olefins. The converted mono-olefins are contact cooled with an impurity-containing liquid hydrocarbon stream, with the impurities in the impurity-containing liquid hydrocarbon stream having a lower vapor pressure than compounds in the first fraction. The dienes and/or acetylenes from the first fraction are selectively hydrogenated prior to converting the paraffins from the first fraction into mono-olefins and after separating the first fraction from the hydrocarbon feed.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: UOP LLC
    Inventors: Steven C. Kozup, Joseph Edward Zimmermann
  • Publication number: 20130216438
    Abstract: A decontamination enclosure, comprised of a plurality of preformed panels joined together to form a structure defining a totally enclosed chamber. A door is formed in at least one of the panels, the door being movable between an opened position and a closed position to allow access to the chamber. A circulation system is attached to the structure for circulating vaporized hydrogen peroxide through the chamber. A controller is provided for controlling the amount of vaporized hydrogen peroxide introduced into the chamber.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 22, 2013
    Applicant: AMERICAN STERILIZER COMPANY
    Inventor: American Sterilizer Company
  • Patent number: 8512660
    Abstract: The absorptive removal of carbon dioxide from biogas using a scrubbing liquid in which carbon dioxide is chemically bound proceeds by heating the loaded scrubbing liquid, occurring after the absorption, to a temperature at which liberation of CO2 begins. Immediately thereafter, the loaded scrubbing liquid is fed to at least one centrifugal separator for separating off the gas phase from the liquid phase, wherein methane and dissolved fractions of CO2 escape via the gas phase. After separation is complete, the gas phase is passed into the absorber unit and the liquid phase is further heated to the temperature required for desorption and fed to the desorption unit for regeneration.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 20, 2013
    Assignee: MT-Biomethan GmbH
    Inventors: Stephan Engelke, Uwe Jordan
  • Patent number: 8512661
    Abstract: A process for the efficient capture of CO2 and sulfur from combustion flue gas streams and gasification based fuel gas mixtures using regenerable and recyclable calcium based sorbents. The regeneration of the calcium sorbent is accomplished by hydrating the sorbent at high temperatures of about 600° C. and a pressure higher than 6 bars to lower the parasitic energy consumption.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: August 20, 2013
    Assignee: The Ohio State University Research Foundation
    Inventors: Liang-Shih Fan, Shwetha Ramkumar, William Wang, Robert Statnick
  • Publication number: 20130205650
    Abstract: The system and method described herein provide for the higher production rate fractionation of biomass for the purpose of selectively separating specific volatile components, which may subsequently be used in the production of a renewable liquid fuel, such as gasoline. Increased production rates of processing of biomass or other feedstock is achieved through the use of sealed reaction chambers, which may be transferred in a sealed configuration between stations in a multi-station processing system. Also, the present invention considers the use of piston assemblies for the dual functions of controlling fluid intake and exhaust (in combination with valves) and for providing a more robust and more cost effective sealing mechanism. The present invention may also achieve improved uniformity of biomass processing through the introduction of a mechanical agitator designed to mix the biomass during processing.
    Type: Application
    Filed: November 28, 2012
    Publication date: August 15, 2013
    Inventor: Jon Strimling
  • Publication number: 20130211175
    Abstract: We provide a process and apparatus for preparing a used catalyst for disposal, comprising: a. hydrolyzing a used ionic liquid catalyst comprising an anhydrous metal halide to produce a hydrolyzed product; and b. separating the hydrolyzed product into a liquid phase and a solid phase; wherein the liquid phase comprises a non-water-reactive aqueous phase and a hydrocarbon phase; and wherein the solid phase comprises a solid portion of the hydrolyzed product, that is not water reactive. A vessel is used for the hydrolyzing and a separator is used for the separating.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Shawn Stephen Healy, Shawn Shlomo Winter
  • Publication number: 20130209324
    Abstract: We provide an apparatus for preparing a used catalyst for disposal, comprising: a. a vessel used to hydrolyze a used ionic liquid catalyst comprising an anhydrous metal halide, to produce a hydrolyzed product; and b. a separator used to separate a liquid phase and a solid phase from the hydrolyzed product; wherein the liquid phase comprises a non-water-reactive aqueous phase and a hydrocarbon phase; and wherein the solid phase comprises a solid portion of the hydrolyzed product, that is not water reactive.
    Type: Application
    Filed: October 26, 2012
    Publication date: August 15, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Hye Kyung Cho Timken, Shawn Stephen Healy, Shawn Shlomo Winter