Indirect Heat-exchange Tube Within Reaction Chamber With A Nonreactant Heat-exchange Fluid Passing Therethrough Patents (Class 422/200)
  • Publication number: 20110144405
    Abstract: An apparatus designed to completely vaporize an intake of heavy hydrocarbon feedstock is described. The apparatus, a so-called heavy feed mixer, is comprised of pipes being disposed coaxially about a common longitudinal axis. The inner tubular section delivers a two-phase liquid-vapor mixture of hydrocarbon feedstock and dilution steam to the apparatus. The converging/diverging tubular section has a unique structure which converges to a throat section and then diverges to an outlet section. The converging section directs a uniform shroud of superheated steam onto the hydrocarbon stream delivered by the inner tubular section. Impingement of the superheated steam with the intake stream initiates mixing and further vaporization within the throat section. The mixture traverses the converging/diverging tubular section and passes into the outlet section where vaporization is complete. The completely vaporized stream is directed out of the apparatus for further processing downstream.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 16, 2011
    Inventors: William Arthur Larson, George E. Dabney, JR., John R. Murphey, III, Kenneth Jack Fewel, JR., Yong Wang
  • Patent number: 7947232
    Abstract: An improved reactor for an HF alkylation unit of the shell-and-tube heat exchanger type has an axial tube bundle to provide cooling for the reactor and a centrally-located axial sparger system for injecting and dispersing the hydrocarbon reactants into the flow path in the reactor. The sparger comprises an axially-extensive tube with outlet nozzles for the hydrocarbon reactants arranged around the tube, preferably with differing radial angles, at different locations along the length of the sparger.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: May 24, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Ramon A. Strauss, Ramesh R. Hemrajani
  • Patent number: 7941921
    Abstract: A method for the production of heat exchangers (10, 110, 210) of the so-called plate type, comprising the operative steps of: —juxtaposing a couple of substantially identical metal plates (12, 14), —fixing together said juxtaposed plates (12, 14) to one another by means of welding performed at respective perimetric sides (13a, 13b, 13c, 13d), —further fixing together said juxtaposed plates to each other by means of a plurality of welding tracts (22), arranged in at least two alignments, parallel and adjacent to a couple of opposite perimetric sides (13a, 13c) of the plates themselves (12, 14), and at a pre-established spaced relationship from said sides, —introducing a fluid under pressure between said juxtaposed metal plates (12, 14), to form a hollow, substantially box-shaped body (17), in which an internal chamber (16) and two substantially tubular passages (16a, 16b), formed between said couple of opposite perimetric sides (13a, 13c) and the respective adjacent alignments of the welding tracts (22), are d
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 17, 2011
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Publication number: 20110104018
    Abstract: This invention relates to a device for cooling and distributing mixed charges on fixed catalyst beds for use in the cooling zone of descending flow reactors which comprises a flat tray fitted with collector and distributor tubes for liquid superimposed upon and connected to another flat tray of similar design to the upper tray. The device, which is of smaller size in comparison with other commercially available devices, is extremely simple to install industrially and compact, and has as its main characteristic the efficiency with which it promotes reduction of the temperature of the reaction medium when it receives the cooling fluid within the catalytic reactor.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 5, 2011
    Applicant: PETRÓLEO BRASILEIRO S.A. - PETROBRAS
    Inventors: Wilson Kenzo HUZIWARA, Donizeti Aurelio Silva Belato, Jorge Roberto Duncan Lima, Rogério Michelan, William Victor Carlos Candido, Angelo Jose Gugelmin, Paulo Sérgio Freire, Nelson Patrício, JR.
  • Publication number: 20110104019
    Abstract: A polyester production system employing a vertically elongated esterification reactor. The esterification reactor of the present invention is an improvement over conventional CSTR esterification reactors because, for example, in one embodiment, the reactor requires little or no mechanical agitation. Further, in one embodiment, the positioning of the inlets and outlets of the reactor provides improved operational performance and flexibility over CSTRs of the prior art.
    Type: Application
    Filed: January 7, 2011
    Publication date: May 5, 2011
    Applicant: Eastman Chemical Company
    Inventor: Bruce Roger DeBruin
  • Patent number: 7919057
    Abstract: A process and apparatus for producing a hydrogen-containing gas in a reformer where a furnace, which is independent of the reformer, heats the effluent from a prereformer prior to reacting the prereformer effluent in the reformer. The prereformer effluent may be heated in a heat exchange tube in the furnace where the heat exchange tube is positioned in the furnace to preclude direct radiation from any flames in the furnace thereby preventing local overheating of the heat exchange tube and preventing carbon formation in the heat exchange tube. Fuel and oxidant gas may be introduced into the furnace with significant excess oxidant gas, having a stoichiometric ratio of 1.8 to 2.8 for controlling the temperature of the heat exchange tube.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: April 5, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Eugene S. Genkin, Nitin Madhubhai Patel, Gregory David Snyder, Miguel Rafael Alvarez, Vladimir Yliy Gershtein
  • Patent number: 7919056
    Abstract: A micro-reactor system assembly comprises a stack of at least n process modules (1-6), wherein n is an integer equal to or greater than 1, made from a rigid first material and comprising at least one reactive fluid passage (1A, 1B, 2A, 3A, 6A) for accommodating and guiding a reactive fluid, and at least n+1 heat exchange modules (7, 8) made from a ductile second material other than said first material and comprising at least one heat exchange fluid passage (7A, 8A) for accommodating and guiding a heat exchange fluid, wherein each process module (1-6) is sandwiched between two adjacent heat exchange modules (7, 8).
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 5, 2011
    Assignee: Lonza AG
    Inventors: Dominique Roberge, Nikolaus Bieler, Bertin Zimmermann, Rainald Forbert
  • Patent number: 7914749
    Abstract: Methods, apparatuses and systems directed to clathrate hydrate modular storage, applications and utilization processes. In one implementation, the present invention provides a method of creating scalable, easily deployable storage of natural gas and thermal energy by assembling an array of interconnecting, modular gas clathrate hydrate storage units.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: March 29, 2011
    Assignee: Solid Gas Technologies
    Inventors: Christopher Carstens, Wade Dickinson, Wayne Dickinson, Jon Myers
  • Publication number: 20110059523
    Abstract: This disclosure describes an improved heat transfer system for use in reaction vessels used in chemical and biological processes. In one embodiment, a heat transfer baffle comprising two sub-assemblies adjoined to one another is provided.
    Type: Application
    Filed: October 24, 2009
    Publication date: March 10, 2011
    Applicant: ABEC, Inc.
    Inventor: Cameron Knight
  • Patent number: 7897127
    Abstract: A method of collecting particles from a gas-particle stream having a first temperature and a plurality of particles, the method comprising: cooling an interior surface of a collection chamber to a second temperature less than the first temperature of the gas-particle stream; flowing the gas-particle stream through the chamber, wherein the gas-particle stream is directed along the cooled interior surface of the collection chamber, and a temperature gradient between the gas-particle stream and the cooled interior surface creates a thermophoretic force; and the thermophoretic force attracting the particles from the gas-particle stream to the interior surface of the collection chamber, wherein the particles are deposited onto the interior surface of the collection chamber.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: March 1, 2011
    Assignee: SDCmaterials, Inc.
    Inventors: Frederick P. Layman, Maximilian A. Biberger
  • Patent number: 7897114
    Abstract: A microreactor assembly comprising a fluidic interconnect backbone and plurality of fluidic microstructures is provided. The fluidic microstructures are supported by respective portions of the fluidic interconnect backbone, The microreactor assembly comprises a plurality of non-polymeric interconnect seals associated with the interconnect input and output ports. The interconnect input port of the fluidic interconnect backbone is interfaced with the microchannel output port of a first fluidic microstructure at one of the non-polymeric interconnect seals. The interconnect output port of the fluidic interconnect backbone is interfaced with the microchannel input port of a second fluidic microstructure at another of the non-polymeric interconnect seals.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: March 1, 2011
    Assignee: Corning Incorporated
    Inventors: Stephane Poissy, Ronan Tanguy
  • Patent number: 7892498
    Abstract: A polyester production system employing a vertically elongated esterification reactor. The esterification reactor of the present invention is an improvement over conventional CSTR esterification reactors because, for example, in one embodiment, the reactor requires little or no mechanical agitation. Further, in one embodiment, the positioning of the inlets and outlets of the reactor provides improved operational performance and flexibility over CSTRs of the prior art.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: February 22, 2011
    Assignee: Eastman Chemical Company
    Inventor: Bruce Roger DeBruin
  • Publication number: 20110027145
    Abstract: Provided are a gasket, a reactor using the same for sealing a spiral, and a manufacturing method thereof. The present invention improves a spiral sealing mechanism of a reactor wherein, spirals are continuously installed in the longitudinal direction between an inner pipe and an outer pipe coaxially arranged to form a flow path for a heat medium, so the seal between the spiral and the outer pipe is stably maintained and fabrication of the reactor is facilitated. The gasket (10) according to the present invention has a structure that the gasket is inserted in and coupled with the spiral (3), and thus does not need additional processing for combining the gasket (10). Therefore, since the gasket (10) and spiral (3) are coupled by lodging the spiral (3) into a channel (21) of the gasket (10), the assembly is facilitated.
    Type: Application
    Filed: April 7, 2009
    Publication date: February 3, 2011
    Inventor: Gyu Hyun Seo
  • Patent number: 7875248
    Abstract: A tube reactor having a substantially tubular body portion including a conical section, an entry port, an opposing exit port, and an axis extending between the ports through the body portion. The tubular body portion being rotatable about the axis. At least one reactant can be fed into the tubular body portion and directed toward the conical section. An inner surface of the tubular body portion receives the reactants from the conical section, and processes the reactants. An insert may be positioned within the tubular body portion to further process the reactants along the inner surface. A rotating reservoir having a damper can be coupled to the rotating tubular body portion. The damper receives the processed reactants from the inner surface of the tubular body portion, and guides the processed reactants into the rotating reservoir to minimize turbulence. The rotating reservoir then separates the processed reactants by density.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: January 25, 2011
    Assignee: Clarkson University
    Inventor: Roshan Jachuck
  • Patent number: 7875254
    Abstract: The invention relates to improvements in internal loop reactors. The reactor of the invention is characterized by a plurality of cooling tubes which form the annulus between the riser and the downcomer path of said internal loop reactor. The reactor also provides improvements in hydroformylation reactions using the improved reactor.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ronald Dean Garton, Matthew Findlay, Krishnan Sankaranarayanan, Arie Van Vliet
  • Patent number: 7871593
    Abstract: Process for the continuous catalytic complete or partial oxidation of a starting gas containing from 0.1 to 66% by volume of sulphur dioxide plus oxygen, in which the catalyst is kept active by means of pseudoisothermal process conditions with introduction or removal of energy; apparatus for the continuous catalytic complete or partial oxidation of a starting gas containing sulphur dioxide and oxygen having at least one tube contact apparatus in the form of an upright heat exchanger composed of at least one double-walled tube whose catalyst-filled inner tube forms a reaction tube, with heat being transferred in cocurrent around the reaction tube and an absorber for separating off SO3 downstream of the tube contact apparatus; the reactivity of the catalyst being preset by mixing with inert material.
    Type: Grant
    Filed: October 13, 2007
    Date of Patent: January 18, 2011
    Assignee: Bayer Technology Services GmbH
    Inventors: Bernd Erkes, Martin Kürten, Verena Haverkamp
  • Patent number: 7867460
    Abstract: Systems and methods for producing ammonia. The system can include a first shell having two or more discrete catalyst beds disposed therein, a second shell disposed about the first shell, a first heat exchanger disposed external to the first shell and in fluid communication therewith, a second heat exchanger disposed external to the second shell and in fluid communication therewith, and a flow path disposed within the first shell. A first portion can be reacted in the presence of the catalyst to provide an ammonia effluent. The heat of reaction from the ammonia effluent can be exchanged within the first heat exchanger and the second heat exchanger. The heated second portion of the feed gas can be introduced to the first shell and can be reacted in the presence of the catalyst.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: January 11, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Shashi P. Singh, Yue Jing
  • Publication number: 20100324158
    Abstract: A reactor module for Fischer-Tropsch synthesis having a generally rectangular reactor block with a stack of plates defining flow channels for coolant and flow channels for the synthesis reaction arranged alternately in the block. The synthesis flow channels extend in a generally vertical direction between upper and lower faces of the reactor block and are defined by plates in combination with either bars or sheets such that each channel is of width no more than 200 mm. The coolant flow channels are oriented in the same direction, and communicate through distributor chambers with inlet and outlet ports at side faces of the reactor block. A plant may contain a multiplicity of such reactor modules operating in parallel, the modules being interchangeable and replaceable. The temperature control is enhanced by allowing the coolant flow to be parallel to the synthesis gas flow.
    Type: Application
    Filed: September 24, 2008
    Publication date: December 23, 2010
    Inventors: Michael Joseph Bowe, Clive Derek Lee-Tuffnell
  • Patent number: 7854906
    Abstract: A reactor for carrying out a reaction between two fluid starting materials over a catalyst bed with premixing of the fluid starting materials before introduction into the catalyst bed within a delay time of less than 150 ms in a mixing-in device, wherein the mixing-in device is made up of the following elements which are arranged essentially transverse to the inflow direction of the first fluid starting material stream: two or three rows arranged behind one another of tubes which have turbulence generators on the outside and constrict the flow cross section for the first fluid starting material stream to from ½ to 1/10, with the second fluid starting material stream being passed through the interiors of the tubes and injected via openings in the tubes into the first fluid starting material stream; a perforated plate upstream of the tubes; and a perforated plate downstream of the tubes, is proposed.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: December 21, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerhard Olbert, Franz Corr, Sven Crone
  • Publication number: 20100303684
    Abstract: The invention relates to a reactor for carrying out an exothermic process comprising a reactor shell, inlets for introducing reactants and coolant into the reactor shell, outlets for removing product and coolant from the reactor shell, and a plurality of cooling modules, the reactor comprising for at least some of the modules a skirt for guiding gas underneath the modules.
    Type: Application
    Filed: April 29, 2010
    Publication date: December 2, 2010
    Inventors: Kelvin John Hendrie, Wouter Van Maaren, Remco Schilthuizen, Barend Roeland Vermeer, Ronald Vladimir Wisman
  • Patent number: 7842107
    Abstract: Carbonaceous materials are thermally upgraded in a pressurized steam environment to remove moisture and other byproducts. A variety of water/solid separation devices may be employed in a process vessel to maximize moisture removal from the upgraded charge. Heating media inlet nozzles and process chamber vents are strategically positioned at the process vessel wall to minimize short circuiting of heating media to vessel outlet vents and to continuously separate hot water removed from the charge and condensed steam, such that the upgraded material removed from the process vessel is not discharged with accompanying free moisture. After upgrading, the charge may be rehydrated to improve its stability during shipping and storage.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: November 30, 2010
    Assignee: Evergreen Energy Inc.
    Inventors: Robert F. Hogsett, Philippus J. Meyer, Michael F. Ray, Michael L. Schlegel, Sheldon L. Schultz
  • Patent number: 7837856
    Abstract: A reactor for carrying out a continuous oxydehydrogenation of a feed gas stream of saturated hydrocarbons after premixing with an oxygen-comprising gas stream over a moving catalyst bed which is introduced in the longitudinal direction of their reactor between two concentric cylindrical holding devices so as to leave a central interior space and an intermediate space between the moving catalyst bed and the interior wall of the reactor to give a reaction gas mixture, wherein the reactor has two or more reactor sections which are separated from one another by disk-shaped deflection plates arranged alternately in the central interior space and divided in subregions by annular deflection plates arranged in the intermediate space between the moving catalyst bed and the interior wall of the reactor, in each case with a mixing-in device which is located upstream of the moving catalyst bed in the flow direction of the reaction gas mixture and comprises the following elements: two or three rows arranged behind one
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: November 23, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerhard Olbert, Franz Corr, Sven Crone
  • Patent number: 7815874
    Abstract: A reactor including a reactor vessel and heat exchange tubes provided in the reactor vessel. The reactor vessel includes a tubesheet and is configured to receive a reaction fluid. The tubesheet has a first plate member configured to contact the reaction fluid and a second plate member configured to not contact the reaction fluid. Heat exchange tubes are provided in the reactor vessel and fixed to the first plate member. The heat exchange tubes are configured to receive a heat exchange medium. At least a portion of the first plate member configured to contact the reaction fluid is made of a metal that has a high corrosion-resistance against the reaction liquid, and the second plate member is made of a metal that has a low corrosion-resistance against the reaction liquid. The second plate member is detachably fixed to a remainder of the reactor vessel.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: October 19, 2010
    Assignee: Toyo Engineering Corporation
    Inventors: Kenji Sakai, Yasuhiko Kojima
  • Publication number: 20100260650
    Abstract: A production amount and a yield in a carbon nanotube producing device are improved. Inside a reaction pipe (20) heated so as to become a circumference heating body, a plurality of nozzles (26) for injecting a material and carrier gas into the reactor pipe and at least one internal heating source (24) are arranged. By arranging a plurality of the nozzles, the production amount is increased. The nozzles are arranged so as to be sandwiched by two heating sources circumference heating element, internal heating source) and a distance to the the closest two heating source peripheral walls is “a”. Also, a distance between the adjacent nozzles is “b” (?2a). Flows of the material and the carrier gas injected by the nozzles do not interfere with each other or the heating source wall, and the yield is increased.
    Type: Application
    Filed: November 11, 2008
    Publication date: October 14, 2010
    Inventors: Shuichi Shiraki, Takeji Murai, Yuzo Nakagawa
  • Publication number: 20100252072
    Abstract: In this disclosure, a reactor system is described. The reaction system comprises (a) a reaction vessel having an inner wall, wherein said reaction vessel is configured to receive reactants and export products and byproducts; (b) a primary quench device (PQD) configured to receive a coolant and disperse said coolant into said reaction vessel; and (c) a secondary quench device (SQD) configured to receive a coolant and disperse said coolant into said reaction vessel; wherein said PQD comprises an array of spray nozzles fixed on the inner wall of said reaction vessel at a first axial position; and wherein said SQD comprises (1) an axially movable pipe having a coolant entry end and a nozzle end, wherein said pipe is configured to be removably fixed inside said reaction vessel; and (2) a spray nozzle that is fluidly connected to said pipe at its nozzle end via a fluid tight seal connection.
    Type: Application
    Filed: April 6, 2009
    Publication date: October 7, 2010
    Applicant: SYNFUELS INTERNATIONAL, INC.
    Inventors: Duane MORROW, Joel CANTRELL, Edward R. PETERSON
  • Patent number: 7807115
    Abstract: A chemical reactor for catalytic reactions, comprises a substantially cylindrical shell (2) closed at the opposite ends by respective covers (3 and 4), at least one reaction zone (7, 8) in which a respective catalytic bed (9, 10) and a plurality of heat exchangers (25) placed in said at least one reaction zone (7, 8) are supported.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: October 5, 2010
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Patent number: 7803331
    Abstract: The present invention concerns an isothermal reactor (1) comprising a substantially cylindrical shell (2), at least one catalytic bed (10) supported in the shell (2) and at least one heat exchange unit (13) supported in the bed (10), the heat exchange unit (13) comprising a plurality of exchangers (14) substantially box shaped, of essentially elongated rectangular and flattened structure, each of the exchangers (14) having opposite long sides (14a) parallel to the cylindrical shell (2) axis and opposite short sides (14b, 14c) extended perpendicularly with respect to the shell axis and comprising furthermore an inner chamber (18) through which a heat exchange operating fluid in intended to flow, wherein at least one exchanger (14) of such at least one heat exchange unit (13) is internally equipped with a plurality of separation baffles (19) extended from a short side (14b or 14c) of the exchanger to the opposite short side (14c or 14b) and in a predetermined spaced relationship with respect to the latter, defi
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 28, 2010
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Patent number: 7794676
    Abstract: Reactor for a catalytic conversion reaction comprising within a catalyst housing a perforated catalyst support plate supporting a catalyst bed, the perforated catalyst support plate being supported by a plurality of elongated support elements, and catalyst particles in the catalyst bed being placed outside the elongated support elements, the perforated catalyst support plate being attached to the lower ends of the elongated support elements, the perforated catalyst support plate being divided into a plurality of perforated catalyst support plate segments, at least one perforated catalyst support plate segment being supported by an elongated support element.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: September 14, 2010
    Assignee: Haldor Topsoe A/S
    Inventors: Niels Erikstrup, Søren Gyde Thomsen, Michael Boe
  • Patent number: 7786327
    Abstract: A method for co-producing electric power and urea from carbonaceous fuels such as coal, by pyrolizing the coal with oxygen to produce a raw rich gas and a hot char which is gasified with air to produce a raw lean gas. Subsequent to the cleaning of the two gases, the cleaned rich gas is made up of CO and 2H2, and the clean lean gas is made up of N2+CO. The CO in the rich gas is separated from the 2H2 and is added to the lean gas to enrich it with CO to become a lean fuel gas which fuels a gas turbine and is part of a combined cycle system which efficiently generates electric power while exhausting an off-gas (flue gas) made up of N2+CO2. The 2H2 separated from the CO, and the N2+CO2 of the exhausted flue gas are together synthesized to produce urea —CO(NH2)2.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: August 31, 2010
    Inventor: Albert Calderon
  • Patent number: 7776285
    Abstract: A heat exchange reactor for carrying out endothermic or exothermic reactions comprising: a housing defining an external reactor wall (1), a plurality of heat transfer tubes (2) arranged within said housing for the supply or removal of heat in catalyst beds (3, 3?) disposed at least outside (3) said heat transfer tubes (2), and built-in elements (4) disposed in the outer periphery of said catalyst bed (3).
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: August 17, 2010
    Assignee: Haldor Topsøe A/S
    Inventors: Søren Gyde Thomsen, Michael Boe, Niels Erikstrup, Olav Holm-Christensen
  • Patent number: 7767171
    Abstract: The object of the present utility model is to cope with the problems of large volume of the presently known cellpacking type of reactor and the poor effect of heat transfer, and to provide a shell-type reactor with radial baffle, which transfers heat well and reduce the volume of the reactor, comprising a shell (1) and an internal cold plate assembly (2), the internal cold plate assembly (2) fixed within the shell (1); wherein a gas radial distribution vessel (9) and a radial gas cylinder (10) fixed within the shell (1); the radial distribution vessel (9) and the radial gas cylinder (10) could counterchange according to the difference of the gas flow direction; several circles of radial baffling assemblies (12) are provided between the radial distribution vessel (9) and the radial gas cylinder (10), the radial baffling assemblies (12) consisting of several baffling components fixed in an interval mode, an axial baffling through groove or hole is provided between the adjacent baffling components.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 3, 2010
    Inventor: Zhongming Lv
  • Patent number: 7767170
    Abstract: A process is provided for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, optionally further heating the mixture, flashing the mixture within a flash/separation vessel to form a vapor phase and a liquid phase, partially condensing the vapor phase by contacting with a condenser within the vessel, to condense at least some coke precursors within the vapor while providing condensates which add to the liquid phase, removing the vapor phase of reduced coke precursors content as overhead and the liquid phase as bottoms, heating the vapor phase, cracking the vapor phase in a radiant section of a pyrolysis furnace to produce an effluent comprising olefins, and quenching the effluent and recovering cracked product therefrom. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, George Stephens, Jennifer L. Bancroft, John R. Messinger
  • Patent number: 7767601
    Abstract: The object of the present utility model is to cope with the problems of large volume of the presently known cellpacking type of reactor and the poor effect of heat transfer, and to provide a shell-type reactor with radial baffle, which transfers heat well and reduce the volume of the reactor, comprising a shell (1) and an internal cold plate assembly (2), the internal cold plate assembly (2) fixed within the shell (1); wherein a gas radial distribution vessel (9) and a radial gas cylinder (10) fixed within the shell (1); the radial distribution vessel (9) and the radial gas cylinder (10) could counterchange according to the difference of the gas flow direction; several circles of radial baffling assemblies (12) are provided between the radial distribution vessel (9) and the radial gas cylinder (10), the radial baffling assemblies (12) consisting of several baffling components fixed in an interval mode, an axial baffling through groove or hole is provided between the adjacent baffling components.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 3, 2010
    Inventor: Zhongming Lv
  • Patent number: 7767172
    Abstract: The object of the present utility model is to cope with the problems of large volume of the presently known cellpacking type of reactor and the poor effect of heat transfer, and to provide a shell-type reactor with radial baffle, which transfers heat well and reduce the volume of the reactor, comprising a shell (1) and an internal cold plate assembly (2), the internal cold plate assembly (2) fixed within the shell (1); wherein a gas radial distribution vessel (9) and a radial gas cylinder (10) fixed within the shell (1); the radial distribution vessel (9) and the radial gas cylinder (10) could counterchange according to the difference of the gas flow direction; several circles of radial baffling assemblies (12) are provided between the radial distribution vessel (9) and the radial gas cylinder (10), the radial baffling assemblies (12) consisting of several baffling components fixed in an interval mode, an axial baffling through groove or hole is provided between the adjacent baffling components.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 3, 2010
    Inventor: Zhongming Lv
  • Patent number: 7763217
    Abstract: An on-board fuel processor includes a microchannel steam reforming reactor (30) and a water vaporizer (40) heated in series with a combustion gas. The reformer (30) and the vaporizer (40) are both of a cross-flow panel configuration that allows for low combustion side pressure drop. Fuel is directly injected into the steam, and during a rapid cold start, both the combustion gas flow rate and the steam to carbon ratio are substantially increased relative to their steady state operating values. A rapid cold start can be achieved in under 30 seconds with a manageable amount of electric power consumption, removing impediments to use in automotive fuel cell applications.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: July 27, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Greg A. Whyatt, Christopher M. Fischer, James M. Davis
  • Publication number: 20100183496
    Abstract: An apparatus for producing trichlorosilane in which metallurgical grade silicon powder supplied to a reactor is reacted with hydrogen chloride gas while being fluidized by the hydrogen chloride gas, thereby discharging trichlorosilane generated by the reaction from the reactor, includes: a plurality of gas flow controlling members which are installed along a vertical direction in an annular shape R from an inner peripheral wall of the reactor in an internal space of the reactor; and a heat transfer tube which is installed along the vertical direction in the annular space R and through which a heating medium passes.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 22, 2010
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventor: Mitsutoshi Narukawa
  • Patent number: 7758662
    Abstract: A reformer includes a burner that generates thermal energy, and a reforming reaction unit that is supplied with thermal energy from the burner to generate a hydrogen-rich gas from a fuel, wherein the burner includes a burner main body having first and second portions that are constructed by bending the burner main body to form bended portions and coupling the bended portions together, wherein the burner main body is disposed in an inner portion of the reforming reaction unit, and wherein a first catalyst is filled in an inner portion of the burner main body.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: July 20, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: In-Hyuk Son, Zin Park, Dong-Myung Suh
  • Patent number: 7758823
    Abstract: A quench exchanger and quench exchanger tube with increased heat transfer area on the process side of the tube are provided. The exchanger provides increased heat transfer efficiency relative to a fixed tube length and at the same time eliminates stagnant and low velocity areas as well as recirculation eddies. The tubes incorporate a fin profile on the process side of the tube with alternating concave and convex surfaces. Additionally, the fins are preferably aligned with the tube center line as opposed to being twisted or spiraled.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: July 20, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David B. Spicer, Wallace L. Ottersbach
  • Patent number: 7754163
    Abstract: Pseudo-isothermal chemical reactor (1) for catalytic reactions with a vertical axis, comprising a substantially cylindrical shell (2), Closed at the opposite ends by upper (4) and lower (3) bottoms respectively, a reaction zone (8) in which a catalytic bed (11) and a plurality of flat, boxed, plate-shaped heat exchangers (12), having the shape of a parallelepiped and having long sides parallel to said vertical axis and short sides perpendicular to it, situated in said reaction zone and supported in an arrangement on parallel cords at a predetermined distance.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: July 13, 2010
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Patent number: 7749290
    Abstract: A method of cooling syngas in a gasifier is provided. The method includes channeling cooling fluid through at least one platen that extends at least partially through a reaction zone of the gasifier, and circulating reactant fluid around the at least one platen to facilitate heat transfer from the reactant fluid to the cooling fluid.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: July 6, 2010
    Assignee: General Electric Company
    Inventor: Paul Steven Wallace
  • Patent number: 7749462
    Abstract: The invention relates to piping for use as a pyrolysis tube in a cracking furnace. The tube is formed such that it has at least one section whose centreline curves in three dimensions, to induce swirl flow in the tube. Preferably, the tube is formed as a helix, more preferably a low-amplitude helix.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: July 6, 2010
    Assignee: Technip France S.A.S.
    Inventors: Colin G. Caro, Philip L. Birch, William Tallis
  • Patent number: 7740812
    Abstract: The present invention relates to a method and an apparatus for continuously separating aromatic dialdehyde from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene. The method for continuously separating aromatic dialdehyde includes the steps of congealing aromatic dialdehyde by cooling the gas-phase reaction mixture including the aromatic dialdehyde, which is obtained by gas-phase oxidation of dimethylbenzene, to 5-70° C. and separating the congealed aromatic dialdehyde from the remaining reaction mixture. Using the method and apparatus in accordance with the present invention, aromatic dialdehyde can be effectively and selectively separated from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene in high yield.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: June 22, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Jong-Hyun Chae, Won-Ho Lee, Dong-Il Lee, Hyun-Kyung Yoon
  • Patent number: 7736604
    Abstract: Multi-port flow control valves are provided wherein the outlet ports may be opened in cascade fashion to allow fluid to flow through the outlet ports into at least two conduits in which the opening of the outlet ports is controlled by a signal indicating the need for fluid in the conduits. The valves are particularly useful for controller the supply of heating/cooling fluid to multiple heating/cooling coils employed to control reactions. In a preferred embodiment the opening of the ports is controlled according to the heat measured in the reaction.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: June 15, 2010
    Assignee: Ashe Morris Ltd
    Inventors: Robert Ashe, David Morris
  • Patent number: 7730616
    Abstract: A method of cooling syngas in a gasifier is provided. The method includes channeling cooling fluid through at least one tube-bundle that includes at least three tubes coupled together within a radiant syngas cooler and extends through a reaction zone of the gasifier, and circulating reactant fluid around the at least one tube-bundle to facilitate transferring heat from the reactant fluid to the cooling fluid.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: June 8, 2010
    Assignee: General Electric Company
    Inventors: George Albert Goller, Daniel Anthony Nowak
  • Patent number: 7731935
    Abstract: An apparatus for steam reforming of hydrocarbons comprises a heat exchange reformer having disposed within a plurality of vertical catalyst-filled tubes, through which a gas mixture comprising hydrocarbon and steam may be passed, and to which heat may be transferred by means of a heat exchange medium flowing around the external tube surfaces, wherein heat exchange adapting means are provided within the reformer so that the tubes have a zone of lower heat exchange extending from the bottom of the catalyst up to 25% of the catalyst depth with no heat exchange enhancement means provided in that zone. A process for steam reforming of hydrocarbons employs this apparatus.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: June 8, 2010
    Assignee: Johnson Matthey PLC
    Inventors: Stuart Ballentyne Brady, Peter William Farnell, Martin Fowles
  • Publication number: 20100135871
    Abstract: The present invention concerns an isothermal reactor (1) for carrying out exothermal or endothermal heterogeneous reactions comprising: —a substantially cylindrical outer shell (2) with longitudinal axis (X), —at least one catalytic bed (6) extending in the shell (2) and comprising opposite perforated side walls (7, 8) respectively for the inlet of a gaseous flow of reactants and for the outlet of a gaseous flow comprising reaction products, and —a heat exchange unit (12) immersed in said at least one catalytic bed (6) and crossed by a heat exchange fluid, characterised in that said heat exchange unit (12) comprises at least one succession of heat exchangers (13) arranged substantially parallel to each other and substantially parallel to the direction in which said at least one catalytic bed (6) is crossed by said gaseous flow of reactants.
    Type: Application
    Filed: August 20, 2007
    Publication date: June 3, 2010
    Applicant: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Patent number: 7727482
    Abstract: Method for controlling the reaction temperature in a catalytic bed (24) of a reactor (1) in which a chemical reaction takes place in pseudo-isothermal conditions by means of at least one heat exchanger (12), crossed by a respective operating fluid, immersed in the catalytic bed (24).
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: June 1, 2010
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Patent number: 7727492
    Abstract: An onboard hydrogen storage unit for a hydrogen powered vehicle including one or more hydrogen storage vessels at least partially filled with a hydrogen storage material which stores hydrogen in metal hydride form. During operation of the hydrogen powered vehicle heat is provided to the hydrogen storage material within the one or more hydrogen storage vessels to aid in desorption of hydrogen from the hydrogen storage material. During hydrogen refueling, heat of hydride formation is removed from the hydrogen storage material within the one or more hydrogen storage vessels to aid in absorption of hydrogen into the hydrogen storage material. The heat of hydride formation is removed from the one or more hydrogen storage vessels via a heat transfer fluid circulated and/or cooled by a stream of compressed air.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: June 1, 2010
    Assignee: Ovonic Hydrogen Systems LLC
    Inventors: Vitaliy Myasnikov, Stanford R. Ovshinsky
  • Patent number: 7727493
    Abstract: A plate-shaped heat exchanger (20, 120) for a heat exchange unit (40) of a chemical reactor (60), that advantageously presents a thermal insulation obtained in an unusually simple and reliable manner, has a substantially flattened box-like structure (22), with a substantially parallelepiped, rectangular configuration, defining an internal chamber (24), and comprises an inlet connection (28) and an outlet connection (29) of a heat exchange operating fluid into and from said chamber (24), and a distributor pipe (10, 110) of said operating fluid inside said chamber (24), extended in said structure (22) at a long side (22a) of it, said distributor pipe (10, 110) comprising a first tube (30, 130) and a second tube (32, 132), positioned one inside the other, between said tubes, respectively external tube (30) and internal tube (32, 132), an interspace (30a) being defined in fluid communication, on one side, with said chamber (24) through a plurality of openings (26) provided in the external tube (30, 130) of said d
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: June 1, 2010
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Micro Tarozzo
  • Patent number: 7727491
    Abstract: Pseudo-isothermal chemical reactor for heterogeneous chemical reactions comprising a substantially cylindrical shell closed at the opposite ends by respective bottoms, upper and lower, a reaction zone containing at least one catalytic bed and at least one tubular heat exchanger, intended to be crossed, along a predetermined direction, by an operating heat exchange fluid and embedded in said catalytic bed.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: June 1, 2010
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo