Unitary (i.e., Nonparticulate) Contact Bed, (e.g., Monolithic Catalyst Bed, Etc.) Patents (Class 422/222)
  • Patent number: 7938868
    Abstract: The inventive stage system for producing hydrogen consists of at least two upstream/downstream stages, respectively, each of which comprises, optionally, a catalytic reactor (C1 to C5) followed by a separator comprising a space (E1 to E4) for circulation of a gaseous mixture contacting at least one oxygen extracting membrane and a hydrogen collecting space, wherein the reactor (C1) of the upstream stage is connected to a reaction gaseous mixture source, the circulation stage (E1) of the upstream stage separator is connected to the reactor (C2) of the downstream stage and the spaces for extracting/collecting oxygen from two separators are connected to a hydrogen collecting circuit (TC, 8) which is common for two stages.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: May 10, 2011
    Assignee: Compagnie Européenne des Technologies de l'Hydrogène (C.E.T.H.)
    Inventors: Eric Gernot, Arnaud Deschamps
  • Patent number: 7939033
    Abstract: A microfluidic device [10] includes at least one reactant passage [26] and one or more thermal control passages defined therein, the one or more thermal control passages being positioned and arranged within two volumes [12,14] each bordered by a wall [18,20], the walls being generally planar and parallel to one another, the reactant passage positioned between said generally planar walls and defined by said generally planar walls and walls [28] extending between said generally planar walls, wherein the reactant passage comprises multiple successive chambers [34], each such chamber including a split of the reactant passage into at least two sub-passages [36], and a joining [38] of the split passages, and a change of passage direction, of at least one of the sub-passages, of at least 90 degrees.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 10, 2011
    Assignee: Corning Incorporated
    Inventors: Elena Daniela Lavric, Pierre Woehl
  • Patent number: 7906079
    Abstract: A reactor including a monolith having a plurality of fins in an annular arrangement for receiving fluid flow through the reactor. The monolith is disposed within a generally cylindrical outer tube, and around a corrugated inner tube. The reactor includes a device for urging the monolith radially outward, so as to maintain contact between the monolith and the outer tube.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: March 15, 2011
    Assignee: Catacel Corp.
    Inventors: William A. Whittenberger, David A. Becker, Randall J. Bartos
  • Patent number: 7897119
    Abstract: A compact catalytic reactor defines a multiplicity of first and second flow channels arranged alternately, the first flow channels being no more than 10 mm deep and providing flow paths for combustible reactants, and containing a catalyst structure (20) to catalyze combustion of the reactants, and having at least one inlet for at least one of the reactants. The first flow channel also includes an insert (40 or 60) adjacent to each inlet, this insert not being catalytic to the combustion reaction; the insert may define gaps which are narrower than the maximum gap size for preventing flame propagation.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: March 1, 2011
    Inventors: David James West, Michael Joseph Bowe, Robert Frew Gillespie, Steven Brabon, Robert Peat
  • Patent number: 7897121
    Abstract: A fluid reactor for facilitating mixing and/or chemical reaction and including an elongated cylindrical flow chamber having a first for receiving a flow of a first fluid, a second flow inlet through which a relatively low mass flow of a second fluid may be admitted to the chamber; and a cone-pi element disposed downstream of the second flow inlet and having an upstream conical portion with a leading apex generally facing the first flow inlet, an intervening cylindrical portion, and a downstream conical portion with a trailing apex generally facing the flow outlet, the cone-pi element being operable to produce cavitation and/or vortical flow within the flow stream to effectuate mixing and/or chemical interaction of the first fluid and the second fluid, and to deliver a mixed and/or reacted fluid from the flow outlet.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: March 1, 2011
    Assignee: Fluid Energy Conversion, Inc.
    Inventors: Nathaniel Hughes, Leon Shaw
  • Publication number: 20110038762
    Abstract: Apparatus and methods for the production of hydrogen using a reformer including a housing, a first plate having a first plurality of fin structures and a second plate having a second plurality of fin structures assembled such that the first plurality of fin structures is interleaved with the second plurality of fin structures. At least one inlet port is formed in at least one of the first plate and the second plate, and at least one outlet port formed in at least one of the first plate and the second plate. The fin structures may be coated with a catalytic material to enhance or stimulate reactions taking place within the apparatus. A heat exchange device may also be integrated into one or both plates of the reformer.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 17, 2011
    Inventors: Florin Girlea, John C. Leylegian
  • Publication number: 20110033342
    Abstract: A hydrogen generator comprising a plurality of a fuel pellets (10) containing a hydrogen-generating compound such as ammonia borane, a case serving as a pressure-resistant container for containing the fuel pellets, and a controller for controlling hydrogen generation from the fuel pellets. This hydrogen generator generates hydrogen from the hydrogen-generating compound by a chemical reaction. The periphery of the fuel pellet is surrounded by a member including a thin plate of metal aluminum such as aluminum foil (18) on its surface.
    Type: Application
    Filed: November 7, 2008
    Publication date: February 10, 2011
    Inventors: Toshio Horiguchi, Michael Miller, John Tilston
  • Patent number: 7871579
    Abstract: A tubular reactor having an insert for improving heat transfer characteristics of the tubular reactor. The insert comprises a catalyst and metal structures consecutively arranged in a lengthwise direction of the tube. The metal structures have radially expandable side walls and orifices for squeezing fluid between the metal structures and the tube wall. The radially expandable side walls form hollows between the radially expandable side walls and the tube wall of the tubular reactor. The radially expandable side walls deform responsive to the fluid pressure difference between the inside of the metal structure and the outer space between the metal structure and the tube wall thereby maintaining the gap between the orifice opening and the tube wall to adjust for tube creep.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: January 18, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Stephen Clyde Tentarelli
  • Patent number: 7867301
    Abstract: A pre-reformer comprises a non-electrically conducting gas tight duct and an electrically conducting wire arranged in the duct. The electrically conducting wire is electrically isolated from the duct. The duct has an inlet for receiving a hydrocarbon fuel at a first end and an outlet for supplying a pre-reformed hydrocarbon fuel at a second end. At least the inner surface of the duct is chemically inert with respect to the hydrocarbon fuel. An electrical power supply is electrically connected to the electrically conducting wire and a control means controls the supply of electrical current through the electrically conducting wire to provide thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 11, 2011
    Assignee: Rolls-Royce plc
    Inventors: Gerard D Agnew, Robert H Cunningham, Gary J Saunders
  • Patent number: 7857944
    Abstract: The method and apparatus for improving the esterification procedure, in particular for improving the esterification procedure to obtain an ester of low carbon number such as the ethyl acetate and the isopropyl acetate, are provided. By applying the provided method and apparatus, the conversion ratio of the esterification procedure is significantly increased and hence an ester product of a relatively high purity, up to the industrial specification, is obtained.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: December 28, 2010
    Assignee: National Taiwan University
    Inventors: Huang Hsiao-Ping, Yu Cheng-Ching, Lee Ming-Jer, Hung Shih-Bo, Lai I-Kuan
  • Patent number: 7850929
    Abstract: An internal static mixing system such as a disperser of mesh wire or expanded metal co-knit with a multi filament material selected from inert polymers, catalytic polymers, catalytic metals or mixtures in combination with a vertical reactor having a reaction zone and the disperser disposed in said reaction zone, particularly for carrying out paraffin alkylation using acid catalyst is disclosed. The wire mesh provides the structural integrity of the system as well as the open space required in reactors for the movement of vapors and liquids though the system. The disperser may be in sheets, bundles or bales or positioned within a frame.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: December 14, 2010
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein, John R. Adams
  • Patent number: 7842256
    Abstract: A compact catalytic reactor for Fischer-Tropsch synthesis defines a multiplicity of first and second flow channels arranged alternately in the reactor, for carrying a gas mixture which undergoes Fischer-Tropsch synthesis, and a coolant fluid, respectively. Each first flow channel contains a removable gas-permeable catalyst structure incorporating a metal substrate. A multiplicity of flow paths are defined through the catalyst structure, and the voidage, that is to say the proportion of the cross-sectional area of the first flow channel constituted by the said multiplicity of flow paths, is between 25% and 70%. This provides an optimum balance between productivity and selectivity, so that operation of the reactor can be economic and controllable.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 30, 2010
    Assignee: CompactGTL PLC
    Inventor: Clive Derek Lee-Tuffnell
  • Patent number: 7842260
    Abstract: Provided is a reaction vessel for a fuel cell, and more particularly to a reaction vessel exhibiting improved thermal efficiency, and a reaction device for a steam reforming reaction for a fuel cell. The reaction device includes a cylindrical reaction catalyst chamber on which a target reaction catalyst for a predetermined target reaction is disposed; and a tubular oxidation catalyst chamber surrounding the reaction catalyst chamber, comprising an oxidation reaction catalyst therein. The reaction device according features an increased contact area between catalyst and gas, and rapidly heating of the gas in contact with the catalyst to a desired reaction temperature.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: November 30, 2010
    Assignee: Samsung SDI Co. Ltd.
    Inventors: Sung-chul Lee, Ju-yong Kim, Yong-kul Lee, Man-seok Han, Jun-sic Kim, Chan-ho Lee, Jin-goo Ahn
  • Patent number: 7837953
    Abstract: Provided are improved carbon monoxide removal articles and processes for treating hydrogen gas streams to achieve very low threshold levels of carbon monoxide. The articles have a substrate with an inlet end, an outlet end, a length extending between the inlet end to the outlet end, wall elements and a plurality of cells defined by the wall elements. A first layer is deposited on the wall elements from the inlet end and extending at least partially toward the outlet end. The first layer has a preferential carbon monoxide oxidation catalyst. A second layer contains a methanation catalyst, and is deposited on at least part of the first layer from the outlet end. The second layer has a length that is about 10-70% of the substrate length.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: November 23, 2010
    Assignee: BASF Corporation
    Inventor: Lawrence Shore
  • Publication number: 20100288617
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar, an oxygen partial pressure of 10?10 bar, at a temperature of 1200° C. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus. In other aspects, this invention includes a method for pyrolyzing a hydrocarbon feedstock using a pyrolysis reactor system comprising the step of providing in a heated region of a pyrolysis reactor system for pyrolyzing a hydrocarbon feedstock, apparatus comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C.
    Type: Application
    Filed: October 8, 2009
    Publication date: November 18, 2010
    Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
  • Patent number: 7833509
    Abstract: The invention relates to a process and to an apparatus for preparing hydrogen sulfide H2S by converting a reactant mixture which comprises gaseous sulfur and hydrogen over a solid catalyst. The reactant mixture is converted at a pressure of from 0.5 to 10 bar absolute, a temperature of from 300 to 450° C. and a sulfur excess in a reactor (1). The sulfur excess corresponds to a ratio of excess sulfur to H2S prepared of from 0.2 to 3 kg of sulfur per kg of H2S prepared.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: November 16, 2010
    Assignee: BASF SE
    Inventors: Andreas Wölfert, Herald Jachow, Heinz Drieβ
  • Patent number: 7828864
    Abstract: Systems and methods for producing hydrogen gas with a fuel processing system that includes a hydrogen-producing region that produces hydrogen gas from a feed stream and a heating assembly that consumes a fuel stream to produce a heated exhaust stream for heating the hydrogen-producing region. In some embodiments, the heating assembly heats the hydrogen-producing region to at least a minimum hydrogen-producing temperature. In some embodiments, the feed stream and the fuel stream both contain a carbon-containing feedstock and at least 25 wt % water. In some embodiments, at least one of the feed and fuel streams contain at least one additional component. In some embodiments, the feed and fuel streams have the same composition. In some embodiments, the feed and fuel streams are drawn or obtained from a common source or supply, and in some embodiments as a liquid stream that is selectively apportioned to form the feed and fuel streams.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: November 9, 2010
    Assignee: Idatech, LLC
    Inventors: David J. Edlund, Darrell J. Elliott, Alan E. Hayes, William A. Pledger, Curtiss Renn, Redwood Stephens, R. Todd Studebaker
  • Patent number: 7823285
    Abstract: A method is provided for assembling a plurality of catalytic substrates and support materials within a catalytic converter housing using a uniform compression. Outer profiles of a plurality of catalytic substrates are determined. Weight factors of a plurality of the support materials are determined. A lookup table containing a list of associated outer profiles of catalytic substrates and weight factors of support materials are provided. A first catalytic substrate and a first support material are joined as a first pre-assembly based on a matching outer profile and weight factor from the lookup table. A second catalytic substrate and a second support material are joined as a second pre-assembly based on a matching outer profile and weight factor from the lookup table. The first and second pre-assemblies are inserted into the catalytic converter housing. The first catalytic element and the second catalytic element are secured within the catalytic converter housing.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: November 2, 2010
    Assignee: Automotive Components Holdings, LLC
    Inventors: Haimian Cai, Richard Harms, Jr.
  • Patent number: 7819944
    Abstract: A dehydration method by which water is selectively separated from a water-containing mixture 31 with a separation membrane. The separation membrane is a DDR type zeolite membrane 2. The dehydration method includes bringing the mixture 31 into contact with one side of the DDR type zeolite membrane 2 and causing a pressure difference between that side of the DDR type zeolite membrane 2 which is in contact with the mixture and the other side of the DDR type zeolite membrane 2 to thereby cause the water to selectively permeate and separate out. By the dehydration method, water can be selectively separated from a water-containing mixture without the need of a high energy cost. The separation membrane has excellent acid resistance.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: October 26, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenji Yajima, Kunio Nakayama, Makiko Niino, Toshihiro Tomita
  • Patent number: 7815875
    Abstract: The invention relates to a device for the reactive conversion of gaseous streams at high temperatures in excess of 1000° C. Said device comprises a reaction chamber (8) with an inlet opening for the gaseous streams to be converted, in particular a burner head (2) and an outlet opening for the converted gaseous streams. In order to guarantee the highest possible conversion performance, the reaction chamber (8) has a narrow construction, extending longitudinally from the inlet opening to the outlet opening to form a controlled gaseous flow, thus preventing a circulatory flow in the reaction chamber (8). To achieve reaction conditions that are as adiabatic as possible, the reaction chamber (8) is thermally insulated with a layer (7) that has a porous foam and/or fiber structure. In the simplest embodiment, the reaction chamber (8) is cylindrical, thus achieving a tubular flow reactor construction for the entire device.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: October 19, 2010
    Assignee: Linde Aktiengesellschaft
    Inventors: Sebastian Muschelknautz, Harald Ranke, Hanno Tautz
  • Publication number: 20100254864
    Abstract: A cylindrical steam reformer and process for manufacturing the same, wherein a honeycomb reforming catalyst is disposed in a clearance between an inner cylinder and an outer cylinder, making up a double cylinder. The cylindrical steam reformer improves thermal conductivity from the inner cylinder and the outer cylinder to the reforming catalyst.
    Type: Application
    Filed: December 26, 2008
    Publication date: October 7, 2010
    Inventors: Hisayuki Itsuki, Hiroshi Fujiki, Masaki Hondo
  • Publication number: 20100247406
    Abstract: A honeycomb structure includes aluminum titanate and cell walls. The cell walls extend along a longitudinal direction of the honeycomb structure to form a plurality of cells between the cell walls. A porosity of the honeycomb structure is from about 40% to about 60%. In a binary image of substrate portions and pore portions of each of the cell walls, an area ratio (%) of the pore portions to a whole area in a rectangularly-divided image is in a range from (the porosity?about 25%) to (the porosity+about 25%). The binary image is converted from a microscopic image of a cross section of each of the cell walls in parallel with the longitudinal direction. The rectangularly-divided image is formed by dividing the binary image in a direction parallel to a thickness direction of each of the cell walls at a predetermined width.
    Type: Application
    Filed: May 12, 2010
    Publication date: September 30, 2010
    Applicant: IBIDEN CO., LTD.
    Inventors: Kazushige OHNO, Kazunori YAMAYOSE
  • Patent number: 7795475
    Abstract: A reaction device according to the present invention is used in production of aldehyde from alcohol. The reaction device includes a reactor having a reaction field where a catalyst is provided inside and a reaction fluid flows. The catalyst has a surface extending in the direction of flow of the reaction fluid and contains Cu.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: September 14, 2010
    Assignee: Kao Corporation
    Inventors: Takeshi Shirasawa, Yasukazu Kumita, Eiji Saito
  • Patent number: 7789920
    Abstract: A reactor, system and method for producing hydrogen features a reactor containing a heating stream channel and a hydrogen channel with a reaction channel positioned there between. A heat transfer sheet separates the heating stream channel and the reaction channel and a porous support plate separates the reaction channel and the hydrogen channel. A membrane constructed from palladium, vanadium, copper or alloys thereof covers the porous support plate. The heating stream channel receives a heating stream so that heat is provided to the reaction channel through the heat transfer sheet. A catalyst is positioned in the reaction channel and the reaction channel receives a reaction stream including a mixture of supercritical water and a hydrocarbon fuel so that hydrogen is produced in the reaction channel and is passed through the membrane into the hydrogen channel.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: September 7, 2010
    Assignee: Chart Industries, Inc.
    Inventors: Zhijun Jia, Lawrence A. Stryker, Douglas Decker
  • Patent number: 7785548
    Abstract: Disclosed is a fuel filter for removing sulfur containing compounds from an internal combustion fuel stream. In one embodiment, the fuel filter comprises at least one column comprising an adsorbent. In one exemplary embodiment the adsorbent is capable of removing sulfur containing compounds, especially sulfur containing aromatic compounds, from fuels used in internal combustion engines, especially diesel fuels. Also disclosed is an apparatus for extending the life cycle of a post combustion emission control device. In one exemplary embodiment, the apparatus comprises a fuel filter for removing sulfur containing compounds from an internal combustion fuel stream and an emission control device. Finally, a method for removing sulfur containing compounds from an internal combustion fuel stream is disclosed.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: August 31, 2010
    Assignee: Honeywell International Inc.
    Inventors: Ronald P. Rohrbach, Peter D. Unger, Gary B. Zulauf, Daniel E. Bause, Russ Johnson, David R. Rockwell
  • Publication number: 20100215555
    Abstract: The present invention provides a structure in which the surface of a solid substrate of any shape is covered with metal oxide, in particular, a nanostructure composite in which polyethyleneimine, which is an organic substance, and metal oxide, which is an inorganic substance, are combined in nano-meter scale, spreads at the entire surface of a substrate, and the nanostructure composite forms a nano-boundary of complex shapes so as to thoroughly cover the entire surface of the substrate; a structure in which metal ions, metal nano-particles, organic pigment molecules are contained in the nanostructure composite; a process for producing these structures which can produce these structures with ease and efficiently; and an application method for the structures as an immobilized catalyst type reactor.
    Type: Application
    Filed: September 1, 2008
    Publication date: August 26, 2010
    Applicants: KAWAMURA INSTITUTE OF CHEMICAL RESEARCH, DIC CORPORATION
    Inventors: Ren-Hua Jin, Jian Jun Yuan
  • Patent number: 7771678
    Abstract: The present invention relates to a catalytic converter element having a plurality of essentially parallel channels through which gas flows during operation of the catalytic converter element. The channels are bordered by channel walls which have a catalytically active coating arranged thereon in at least some areas where it is exposed to the gas. In some channels the coating thus begins with an axial offset from the admission end. This allows an improved temperature management within the catalytic converter element.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: August 10, 2010
    Assignee: J. Eberspaecher GmbH & Co. KG
    Inventor: Guenter Eberspach
  • Patent number: 7767622
    Abstract: In automotive exhaust gas catalysts with a metallic honeycomb composed of corrugated and smooth sheet layers, it is known that the heat capacity and thermal conductivity of the honeycomb can be reduced by perforations in the sheet layers. As a result, the honeycomb heats up more rapidly and the catalytic coating applied on the honeycomb reaches its operating temperature more rapidly. A disadvantage here is the reduction in the support surface area by the perforations in the sheet layers. According to the invention, suitable adjustment of the properties of the coating suspension used for the catalytic coating and of the dimensions of the holes relative to one another allows the holes to be filled permanently with catalyst material. The resulting catalyst has, at the same coating concentration as a catalyst with unperforated sheet layers, a significantly reduced heat capacity and thermal conductivity.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: August 3, 2010
    Assignee: Umicore AG & Co. KG
    Inventor: Juergen Quell
  • Publication number: 20100189612
    Abstract: The present invention relates to a method and system for recovery of waste.
    Type: Application
    Filed: April 8, 2010
    Publication date: July 29, 2010
    Inventors: Vasilis Fthenakis, Wenming Wang
  • Patent number: 7758662
    Abstract: A reformer includes a burner that generates thermal energy, and a reforming reaction unit that is supplied with thermal energy from the burner to generate a hydrogen-rich gas from a fuel, wherein the burner includes a burner main body having first and second portions that are constructed by bending the burner main body to form bended portions and coupling the bended portions together, wherein the burner main body is disposed in an inner portion of the reforming reaction unit, and wherein a first catalyst is filled in an inner portion of the burner main body.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: July 20, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: In-Hyuk Son, Zin Park, Dong-Myung Suh
  • Patent number: 7753971
    Abstract: Two types of cells (first cells and second cells) are used to constitute a honeycomb structure. The first cells and second cells differ in the catalyst supporting position. The first cells and second cells are alternately arranged. The catalyst supporting position of the second cells is shifted in the direction of the downstream side of the flow of an air-fuel mixture from the catalyst supporting position of the first cells so that when an exothermic reaction occurs on the second cell side of a partition wall for separating a first cell from a second cell, an endothermic reaction occurs on the opposing first cell side of the partition wall.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: July 13, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Sakurai, Kazuhiro Wakao
  • Patent number: 7749458
    Abstract: This is directed to a honeycomb structure (10) including two or more honeycomb segments (11) having numerous through channels having been partitioned by walls and penetrating in axial direction thereof, the walls for through channels having a filtering function, and one end being clogged at predetermined through channels, and the other end at the remaining ones, and joint layers (12) for joining two or more honeycomb segments (11) each other. It may satisfy at least either that the Young's modulus of material of the joint layer (12) is 20% or less of that of the honeycomb segment (11), or that the material strength of joint layer (12) is lower than that of the honeycomb segment (11). This honeycomb structure shows a less thermal stress during use, has such a durability that no crack is formed, hardly shows a difference in temperature between the central portion and outer peripheral portion, and shows a lower pressure loss of fluid.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: July 6, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Harada, Yukio Miyairi
  • Patent number: 7749464
    Abstract: A plate type catalytic reactor in which components of a starting material gas react comprises a plurality of pairs of heat transfer plates, each pair being formed of two sheets of corrugated plates joined to each other and each pair having a plurality of interior heat transfer medium flow passages, that are arranged so that projected surface parts and recessed surface parts of the corrugated plates of adjacent heat transfer plates are opposed to each other and so that the plurality of pairs of corrugated plates placed in contiguous non-contacting relationship define a plurality of catalyst bed regions in which catalyst material is placed, each having an inlet for the flow of starting gas material and an outlet for the egress of reaction product, wherein the direction of flow of the heat transfer medium through the passages is perpendicular to the direction of flow of starting material gas through the plurality of catalyst regions.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: July 6, 2010
    Assignees: Mitsubishi Chemical Corporation, Mitsubishi Chemical Engineering Corporation
    Inventors: Yasuyuki Sakakura, Youji Kawatani, Teruo Saitou
  • Publication number: 20100166631
    Abstract: Improved reactors for catalytic, exothermic gas-phase reactions, which comprise, viewed in the flow direction of a feed gas, an inlet zone (1), a reaction zone (2) containing at least one catalyst (4) an outlet zone (3) for the product gas, are described. The reactors are provided in the region of the inlet zone (1) or in the region of the inlet zone (1) and the reaction zone (2) with means, for example an insulating liner (6) and/or apparatuses for the transport of cooling media, which reduce heat transport from the reaction zone (2) into the inlet zone (1) and thus reduce the risk of preignition of the feed gas mixture used or occurrence of undesirable secondary reactions in the inlet zone (1) and/or the interior walls of the reactor in the region of the inlet zone (1) or in the region of the inlet zone (1) and the reaction zone (2) consist of inert material.
    Type: Application
    Filed: May 28, 2008
    Publication date: July 1, 2010
    Inventors: Meinhard Schwefer, Michael Groves, Jürgen Fuchs, Rainer Maurer, Rolf Siefert, Bernhard Hündgen
  • Patent number: 7744829
    Abstract: The invention provides methods of oxidative dehydrogenation (ODH). Conducting ODH in microchannels has unexpectedly been found to yield superior performance when compared to the same reactions at the same conditions in larger reactors. ODH methods employing a Mo—V—Mg—O catalyst is also described. Microchannel apparatus for conducting ODH is also disclosed.
    Type: Grant
    Filed: June 7, 2008
    Date of Patent: June 29, 2010
    Assignee: Velocys
    Inventors: John H. Brophy, Kai Jarosch, Terry J. Mazanec, Matthew B. Schmidt, Laura J. Silva, Anna Lee Tonkovich, Fred Pesa, David J. Hesse
  • Patent number: 7740670
    Abstract: Disclosed is a catalyst for a partial oxidation reforming reaction of fuel in the form of disk having through-hole. In addition, according to the invention, there is provided a fuel reforming apparatus and method using the catalyst. The catalyst for a partial oxidation reforming reaction of fuel according to the invention makes it possible to progress the partial oxidation reforming reaction of fuel smoothly, to improve the efficiency when reforming the fuel and to simplify the fuel reforming reactor. According to the fuel reforming apparatus and method, since the heat of reaction is efficiently controlled and used, a simple on-off operation, reduction of starting time and a stable operational condition are accomplished, which are indispensably required for a fuel reforming system in fuel cells, such as household, portable and car fuel cells.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: June 22, 2010
    Assignee: Korea Institute of Science & Technology
    Inventors: Suk-Woo Nam, Sang Jun Kong, Seong-Ahn Hong, In-Hwan Oh, Tae-Hoon Lim, Heung Yong Ha, Sung Pil Yoon, Jonghee Han, Eun Ae Cho
  • Patent number: 7736602
    Abstract: A reaction chamber enables a reaction between received elemental mercury gas and an oxidizing agent gas. The reaction chamber includes a porous (or permeable) medium through which to pass the elemental mercury gas and the oxidizing agent gas. Passing of the elemental mercury gas and the oxidizing agent gas through the porous medium supports a number of useful functions. For example, the porous medium enhances mixing of the elemental mercury gas with the oxidizing agent gas to enhance a reaction. Also, the porous medium increases an amount of surface area in a reaction chamber on which reactions (e.g., heterogeneous surface reactions) can take place between the elemental mercury gas and the oxidizing agent gas to form oxidized mercury gas. Accordingly, the reaction chamber configured to include a porous medium enhances a conversion of elemental mercury gas into oxidized mercury gas.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: June 15, 2010
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Dieter Kita, Jeffrey Socha, Bryan A. Marcotte
  • Patent number: 7731918
    Abstract: A method and device for loading a catalyst into a chamber. The catalyst loading is well suited for production of hydrogen producing microreactors. The catalyst is coated onto a strip which is mountable within the chamber.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: June 8, 2010
    Assignee: Intelligent Energy, Inc.
    Inventor: Anand Chellappa
  • Publication number: 20100126907
    Abstract: In one aspect, the invention includes a heat stable, formed ceramic component that includes a multimodal grain distribution including (i) at least 50 wt % of coarse grains including stabilized zirconia, the coarse grains comprising a D50 grain size in the range of from 5 to 800 ?m, based upon the total weight of the component; and (ii) at least 1 wt % of fine grains comprising a D50 average grain size not greater than one-fourth the D50 grain size of the coarse grain, dispersed within the coarse grains, based upon the total weight of the component; wherein after sintering, the component has porosity at ambient temperature in the range of from 5 to 45 vol. %, based on the formed volume of the component.
    Type: Application
    Filed: November 24, 2008
    Publication date: May 27, 2010
    Inventors: Changmin Chun, Frank Hershkowitz
  • Patent number: 7722831
    Abstract: A micro component steam reformer system for producing hydrogen-enriched gas to power a fuel cell adapted for scalable power requirements wherein fluid flow is configured in a circuit whereby, in serially interconnected fluid flow modules, a vaporized hydrocarbon is mixed with fuel cell off gas having a hydrogen component and combusted to heat vaporizers and a steam reformer, vaporized hydrocarbons and water vapor are introduced as a feed stock into the steam reformer to produce a syn-gas, which is cooled and purified, and the resulting principally hydrogen gas is introduced into a hydrogen fuel cell having an interconnection within the circuit in which off gas from the fuel cell is processed to provide hydrogen and water for use in the system cycle.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: May 25, 2010
    Inventors: James Seaba, Christopher J. Brooks
  • Patent number: 7722833
    Abstract: A microchannel reactor is described which has at least one process microchannel and at least one heat exchange zone. The microchannel reactor may be used for conducting a Fischer-Tropsch synthesis reaction.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: May 25, 2010
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Shari Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Publication number: 20100119422
    Abstract: A carbon nanotube filter. The filter including a filter housing; and chemically active carbon nanotubes within the filter housing, the chemically active carbon nanotubes comprising a chemically active layer formed on carbon nanotubes or comprising chemically reactive groups on sidewalls of the carbon nanotubes; and media containing the chemically active carbon nanotubes.
    Type: Application
    Filed: January 6, 2010
    Publication date: May 13, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Mark C. Hakey, David V. Horak, James G. Ryan
  • Publication number: 20100119421
    Abstract: A catalyst support includes a base member, and a plurality of paths extending through the base member in a first direction from a first end of the base member to a second end of the base member. Each path has a first end at the first end of the base member and a second end at the second end of the base member, and the first ends of the paths are disposed at different intervals from a plane that is perpendicular to the first direction.
    Type: Application
    Filed: October 19, 2009
    Publication date: May 13, 2010
    Inventors: Jin-Goo Ahn, Sung-Chul Lee, In-Hyuk Son, Woo-Cheol Shin, In--Seob Song
  • Patent number: 7704464
    Abstract: Hydrocarbon processing devices and systems are constructed to modify the combustion characteristics of hydrocarbon fuels and emissions for the purpose of emissions reduction and to increase the overall performance characteristics of the engine. According to one exemplary embodiment, a catalytic device for processing a fluid containing hydrocarbons includes a reactive body formed of a plurality of metallic materials arranged in a layered structure. The plurality of metallic materials is formed of at least two different materials. The body has an inner core member having a first density and another region, that is formed along a longitudinal length of the rolled layered structure, has a second density which is less than the first density.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: April 27, 2010
    Assignee: 0783963 BC Ltd.
    Inventor: Jeffrey A. Stephenson
  • Publication number: 20100098598
    Abstract: Catalysts are described in which an active catalyst is disposed on a low surface area, oxide support. Methods of forming catalysts are described in which a Cr-containing metal is oxidized to form a chromium oxide layer and an active catalyst is applied directly on the chromium oxide layer. Methods of making new catalysts are described in which the surface is sonicated prior to depositing the catalyst. Catalyst systems and methods of oxidation are also described. The inventive systems, catalysts and methods are, in some instances, characterized by surprisingly superior results.
    Type: Application
    Filed: December 18, 2007
    Publication date: April 22, 2010
    Inventors: Barry Lee-Mean Yang, Ruiqiang Long, Junko M. Waston, Abhishek Gupta
  • Patent number: 7700518
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: April 20, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Publication number: 20100092353
    Abstract: A hydrogen separation membrane comprising a palladium alloy that includes at least palladium, an added metal A, and an added metal B, the added metal A and the added metal B being two different metals other than palladium, each of the added metal A and the added metal B forming a complete solid solution with palladium, and the added metal A and the added metal B having a triple point in an equilibrium diagram and not forming an intermetallic compound. The hydrogen separation membrane exhibits excellent hydrogen permeability and durability.
    Type: Application
    Filed: November 20, 2009
    Publication date: April 15, 2010
    Applicant: NGK Insulators, Ltd.
    Inventor: Kenichi NODA
  • Patent number: 7682580
    Abstract: A reactor includes a plurality of metal leaves which extend from an interior of the reactor to its exterior. The leaves occupy a space between an internal mandrel and an external tube. In one embodiment, the leaves are generally flat pieces of foil, stacked together so that they do not touch except at spacers formed in the pieces. In another embodiment, the leaves are formed of a pleated and crimped foil, each leaf being defined by a piece of foil that has been folded over upon itself. In both embodiments, the leaves extend from the internal mandrel, radially outward to an inner surface of the tube. The reactor facilitates the transfer of heat between the outside of the reactor and its inside region.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: March 23, 2010
    Assignee: Catacel Corp.
    Inventors: William A. Whittenberger, David A. Becker
  • Patent number: 7678361
    Abstract: The present invention discloses a microreactor for performing heterogeneous catalytic reactions, being of plate or stack construction for industrial use, with provision made for chambers between the plates for the chemical reaction and for the heat removal. Inside the reaction chambers, catalyst material is applied to the internal walls or filled into recesses, and in all chambers there are spacers. In particular the slot-shaped reaction chambers have channels with a hydraulic diameter smaller than 1500 ?m and a ratio of free slot width to free slot height in the range of 10 to 450.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: March 16, 2010
    Assignees: UDHE GmbH, Deguesa AG
    Inventors: Georg Markowz, Johannes Albrecht, Johannes Ehrlich, Michael Jucys, Elias Klemm, Armin Lange De Oliveira, Reinhard Machnik, Juergen Rapp, Ruediger Schuette, Steffen Schirrmeister, Olaf Von Morstein, Hartmut Hederer, Martin Schmitz-Niederau
  • Patent number: 7662739
    Abstract: A catalyst body including a catalytic material containing an alkali metal and/or an alkaline earth metal, a carrier carrying the catalytic material, and a method of manufacturing the catalyst body are provided. The carrier has a cordierite binder phase and aggregate phases dispersed in the cordierite binder phase.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: February 16, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Misako Fujii, Kenji Morimoto, Shinji Kawasaki