Structure For Contacting The Sample With The Reagent Patents (Class 422/408)
  • Patent number: 8940538
    Abstract: The present invention relates to an apparatus for quantifying the binding and dissociation kinetics of molecular interactions of small molecular bio materials with high sensitivity almost without the influence of a change in the reflective index resulting from a buffer solution by making polarized incident light incident on the binding layer of a bio material, formed in a thin dielectric film, so that the polarized incident light satisfies a p-wave non-reflecting condition and a quantifying method using the same.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 27, 2015
    Assignee: Korea Research Institute of Standards and Science
    Inventors: Hyun Mo Cho, Gal Won Che, Yong Jai Cho
  • Patent number: 8938973
    Abstract: An aircraft air system includes a gas turbine engine, a bleed air duct directing compressed air bled from a compressor to an inner compartment within the aircraft, and an air contamination detector located downstream of the gas turbine engine compressor. The air contamination detector includes a visual indicator which detects the presence of a fluid contaminant within the bleed air.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: January 27, 2015
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Kevin Allan Dooley, Kiritkumar Patel
  • Patent number: 8940237
    Abstract: An optic light guide test sensor comprises a light guide, a reagent-coated membrane, and a mesh layer. The reagent-coated membrane and the mesh layer are attached to the light guide at an output end of the light guide. The light guide test sensor is adapted to be used to test the level of an analyte in a biological fluid sample when used with a readhead. A method of manufacturing the light guide test sensor involves providing a plurality of light guides, providing a strip of reagent-coated membrane, and providing a strip of mesh layer. The reagent-coated membrane and mesh layer are attached to the light guides by ultrasonic welding. The reagent-coated membrane and mesh layer may also be attached to the light guides by adhesive.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: January 27, 2015
    Assignee: Bayer HealthCare LLC
    Inventors: Jeffery S. Reynolds, Steven C. Charlton, Sung-Kwon Jung, Suny J. George
  • Patent number: 8940246
    Abstract: A system for diagnostic testing may include a meter for performing a diagnostic test on a sample applied to a test media, the meter having a housing and an interface for receiving a signal representing coding information, and a container configured to contain test media compatible with the meter, the container having a coding element associated therewith. Additionally, the system may provide a mechanism for removing the meter from an interconnected test container and reattaching it to a new container using on-container coding methods that can recalibrate the meter for the new container of test strips.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: January 27, 2015
    Assignee: Nipro Diagnostics, Inc.
    Inventors: Gary T. Neel, Brent E. Modzelewski, George R. Rounds, Carlos Oti, Allan Javier Caban, Jeffrey Akins
  • Patent number: 8940540
    Abstract: A portable, hand-held glucose testing device includes a housing configured to accommodate a plurality of test sensors in a stacked arrangement and having a wall with an opening defined therein. A plurality of packaged test sensors is stacked in alignment with one another within the housing. Each of the test sensors is packaged within a blister package. The blister package includes a blister package housing and a cover foil overlying a surface of the blister package housing and the test sensor. A drive slide is configured to displace one of the plurality of packaged test sensors out of alignment with other packaged test sensors. A knife mechanism is configured to pierce through the cover foil, and to engage and urge the test sensor to extend through the opening for receiving a sample. A meter contact is configured to engage the test sensor when the test sensor extends through the opening.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 27, 2015
    Assignee: Bayer HealthCare LLC
    Inventors: Steven C. Charlton, Allen Brenneman
  • Kit
    Patent number: 8940248
    Abstract: A kit comprising a carrier and vessels arranged on the carrier, wherein different reagents are contained in different vessels, the vessels are arranged with an openable closing device on top of the carrier, the carrier has a footprint on the bottom side for being placed on a base, and the carrier has bottom positioning means for being positioned on at least one workplace of an automated laboratory system for microtiter plates according to the SBS standard.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: January 27, 2015
    Assignee: Eppendorf AG
    Inventors: Judith Lucke, Jens-Peter Kroog, Helmut Knofe
  • Patent number: 8932538
    Abstract: A apparatus for analyzing sample to prevent a sample from being stuck to a surface of the apparatus for analyzing sample in the course of being injected into the apparatus for analyzing sample. The apparatus for analyzing sample includes a platform having a disk shape. The platform includes chambers and channels, a sample inlet hole which is formed in an outer surface the platform and through which a sample is injected into the platform; an opening which is formed in the outer surface of the platform and through which a residual of the sample, present on the outer surface of the platform around the sample inlet hole, is introduced into a receiving space isolated from the chambers and channels; and a barrier which is formed on the outer surface of the platform around a portion of the opening to prevent the residual of the sample from moving past the opening in a radial outward direction of the platform.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: January 13, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun Min Kim, Do Gyoon Kim, Jong Myeon Park
  • Patent number: 8920748
    Abstract: The present invention relates to a biochip with a piezoelectric element for ultrasonic standing wave generation. The biochip comprises an upper module, a lower module, and a chemical sensor. The piezoelectric element is integrated within the upper module of the biochip. The piezoelectric element can generate ultrasonic standing waves (USW) in the reaction chamber of the biochip by manipulating the operation frequency so the particles being detected can effectively move toward the QCM sensing surface. Hence, the biochip significantly increases the sensitivity and reduces the time required to reach equilibrium when undergoing USW excitation. The biochip of the present invention can be broadly applied to the bio-detection in medical and pharmaceutical fields.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: December 30, 2014
    Assignee: National Chung Cheng University
    Inventors: Guo-Hua Feng, Lai-Kwan Chau, Shu-Xiang Yang
  • Patent number: 8920857
    Abstract: A system and method for a beverage container configured to test for a contaminated beverage in the beverage container comprises a base of the beverage container, an upper portion of the beverage container, and a sidewall with an inner surface and an outer surface that extends from the base to the upper portion, and a testing material. A portion of the beverage container is the testing material configured to visibly react when the portion of the beverage container is contacted with the contaminated beverage.
    Type: Grant
    Filed: August 7, 2011
    Date of Patent: December 30, 2014
    Inventors: Michael T. Abramson, John C. MacDonald
  • Patent number: 8916108
    Abstract: A vial and particles for distributing reagent bound particles in a fluid, a kit, and methods for distributing particles in a fluid.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: December 23, 2014
    Assignee: Biokit S.A.
    Inventor: Joan Francesc Guasch
  • Patent number: 8906702
    Abstract: A fluidic device including a main channel, wherein a first inlet fluidly connects to an upstream end of the main channel and introduces magnetic beads into a first side of the main channel A second inlet is fluidly connected to the upstream end of the main channel and introduces a sample stream into a second side of the main channel A first magnet disposed adjacent to the second side of the main channel pulls the magnetic beads towards a sidewall of the second side, and thus into the sample stream A second magnet disposed downstream from the first magnet and adjacent to a first side of the main channel subsequently pulls the magnetic beads towards a sidewall of the first side, and thus out of the sample stream A detection region is disposed at or downstream from the second magnet and in the first side of the main channel.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 9, 2014
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Jeffrey Zahn, Lawrence Anthony Sasso, Jr.
  • Patent number: 8900875
    Abstract: A method for assessing a corrosion inhibitor in a coolant, comprises providing a test kit comprising a first chamber containing an acid buffer and a solvent immiscible therein and a second chamber containing an indicator, the second chamber being in fluid communication with the first chamber and being configured such that retraction of the second chamber draws fluid into the first chamber and advancement forces fluid into the second chamber; drawing a coolant sample into the first chamber; contacting the coolant sample with the acid buffer and solvent in the first chamber and extracting the corrosion inhibitor into the solvent; allowing the solvent and buffer to separate in the first chamber; forcing a portion of the separated solvent into the second chamber; contacting the separated solvent with the indicator in the second chamber, and obtaining a visual indication of the presence of corrosion inhibitor in the coolant sample.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: December 2, 2014
    Assignee: Shell Oil Company
    Inventors: Abraham Robert De Kraker, Liliana Minevski, Tze Lee Phang
  • Patent number: 8895320
    Abstract: A device and method for filtering blood is disclosed herein. The device can filter blood and attach analytes within the blood to magnetic particles. The analytes can then be strongly bound to an analyzing device by a magnetic force. The analytes can then be counted by the analyzing device and the result can be displayed.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: November 25, 2014
    Assignee: Silicon BioDevices, Inc.
    Inventor: Octavian Florescu
  • Patent number: 8883489
    Abstract: Apparatus for performing an assay to detect the presence of an analyte in a test sample. A housing defines a slot for receiving a sample collector, and a capsule contains a buffer liquid, the capsule being sealed by an openable lid, and being connected to the housing such that insertion of a sample collector into the slot causes the lid to open releasing the buffer liquid into the slot. The housing further defines an incubation chamber containing or configured to receive a reagent, and an aperture permitting liquid communication between said slot and the incubation chamber. The apparatus comprises one or more test elements, a substantially liquid tight sealing member separating the incubation chamber and the test element(s), and an activation mechanism operable to open said liquid tight sealing member thereby bringing at least a portion of the or each test element into liquid communication with said incubation chamber.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: November 11, 2014
    Assignee: Concateno UK Limited
    Inventors: Alan Pang, Gordon Jowett, Barry Lillis, Jack Fairbank
  • Patent number: 8865088
    Abstract: Disclosed is an assay device for use in the determination of the presence of at least one analyte of interest in a liquid sample; the device comprising a reaction zone in which a reagent reacts with the analyte of interest and a bibulous member which, when contacted with the liquid sample, draws liquid therefrom towards the reaction zone; the bibulous member comprising means to change color when wetted by the sample.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: October 21, 2014
    Assignee: Alere Switzerland GmbH
    Inventors: Barry Sinclair Brewster, Susan Catrin Day, Peter John Skelly, Jill Crawford
  • Patent number: 8865071
    Abstract: A test tape device is disclosed herein for use with a replaceable analytical tape cassette, where the device includes a housing having a cassette compartment covered by a cassette door and a housing opening for sample application, a protective cover that can be moved between a closed position covering the housing opening and a release position allowing access to the housing opening and a door lock for retaining the cassette door in the closed position, wherein the protective cover is coupled with the door lock via an interlocking mechanism, such that the door lock can only be unlocked in the release position of the cover.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: October 21, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Hao-Chih Lin, Wen Tsung Wang
  • Patent number: 8834946
    Abstract: A system and method for a beverage container configured to test for a contaminated beverage in the beverage container comprises a base of the beverage container, an upper portion of the beverage container, and a sidewall with an inner surface and an outer surface that extends from the base to the upper portion, and a testing material. A portion of the beverage container is the testing material configured to visibly react when the portion of the beverage container is contacted with the contaminated beverage.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: September 16, 2014
    Assignee: Drinksavvy, Inc.
    Inventors: Michael T. Abramson, John C. MacDonald
  • Patent number: 8795500
    Abstract: In one example embodiment, a micro-particle sorting apparatus includes: (a) a microchip in which a flow path through which liquid containing a micro particle flows and an orifice through which the liquid flowing through the flow path is discharged into a space outside the chip; (b) an oscillating element for transforming the liquid into a liquid drop and discharging the liquid drop at the orifice; (c) a charge means for adding an electric charge to the discharged liquid drop; (d) an optical detection means that detects an optical property of the micro particle flowing through the flow path, upstream of a liquid-delivering direction with respect to the orifice; (e) paired electrodes opposed to each other while sandwiching the moving liquid drop along a movement direction of the liquid drop discharged into the space outside the chip; and (f) two containers that collect the liquid drop passing between the paired electrodes.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: August 5, 2014
    Assignee: Sony Corporation
    Inventor: Masataka Shinoda
  • Publication number: 20140199768
    Abstract: A device indicates the location of an air leak in a vacuum bag used to process composite parts. The device includes a layer of material on the inner face of the bag that changes in appearance due to an oxidation-reduction reaction in areas of the layer exposed to oxygen caused by a leak in the bag.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicant: The Boeing Company
    Inventors: John N. Harris, Finley Miller, Michael R. Swift
  • Publication number: 20140193894
    Abstract: A fluid sensor comprises a formed plastic body and a reagent. The body has a top face with an integral first surface. The body also has a bottom face opposed to the first surface and a sidewall that extends from the periphery of the top face. The first surface is adapted to accept a fluid sample. The reagent is disposed on the integral first surface and causes a color change detectable on the bottom face when the reagent reacts with an analyte in the fluid sample.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: Bayer Healthcare, LLC
    Inventors: Sung-Kwon Jung, Steven C. Charlton, Suny J. George, Andrew J. Dosmann, Karen L. Marfurt
  • Patent number: 8747747
    Abstract: A reader for mechanical actuation of fluids within a test cartridge. The instrument interface including multiple independently-controlled plungers aligned to respective fluidic pouches on a test cartridge that is inserted into a testing apparatus embodying the instrument interface. The plungers include tips for applying mechanical force to the respective fluidic pouches.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: June 10, 2014
    Assignee: Abbott Point of Care Inc.
    Inventor: Seth Hunter
  • Patent number: 8709736
    Abstract: The present invention relates to the use of TFF3 in the diagnosis and detection of Barrett's esophagus using non-invasive, non-endoscopic methods.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: April 29, 2014
    Assignee: Medical Research Council
    Inventors: Pierre Lao-Sirieix, Rebecca C. Fitzgerald
  • Patent number: 8703061
    Abstract: The present invention relates to an immunoaffinity device for capturing one or more analytes present at high or low concentrations in simple or complex matrices. The device is designed as an integrated modular unit and connected to capillary electrophoresis or liquid chromatography for the isolation, enrichment, separation and identification of polymeric macromolecules, primarily protein biomarkers. The integrated modular unit includes an analyte-concentrator-microreaction device connected to a modified cartridge-cassette.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 22, 2014
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8697009
    Abstract: The present invention relates to microfluidic devices and methods for manipulating and analyzing fluid samples. The disclosed microfluidic devices utilize a plurality of microfluidic channels, inlets, valves, filter, pumps, liquid barriers and other elements arranged in various configurations to manipulate the flow of a fluid sample in order to prepare such sample for analysis.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: April 15, 2014
    Assignee: Micronics, Inc.
    Inventors: Patrick Saltsman, Mingchao Shen, Jeffrey M. Houkal, Christy A. Lancaster, C. Frederick Battrell, Bernhard H. Weigl
  • Patent number: 8691162
    Abstract: A biomedical diagnostic device includes a hydrophilic layer, hydrophobic layer, and at least one test pad. The hydrophilic layer includes an exposed introductory portion adapted to introduce a test fluid, and is stacked with the hydrophobic layer with multiple access holes. At least one test pad, each of which includes a distinguishing reaction medium, is disposed in the corresponding holes that extend to contact the hydrophilic layer. The relations within the device are as follows: hydrophilicity of any of the test pads>hydrophilicity of the hydrophilic layer>hydrophilicity of the hydrophobic layer.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 8, 2014
    Assignee: National Tsing Hua University
    Inventors: Shang-Chi Lin, Li-Ching Chen, Chen-Meng Kuan, Fan-Gang Tseng, Chao-Min Cheng
  • Publication number: 20140093896
    Abstract: A point-of-care, screening kit for use by a heath care worker to create custom test strips for screening the bodily fluids of an individual for various, medical conditions includes: (a) a plurality of reagents (12), (b) a substrate (18) configured to: i) receive one of the reagents and react with it so as to cause it to acquire a first characteristic color, and, ii) upon the addition of the individual's bodily fluid to the substrate, acquire, as a result of the formulation of each of the reagents, a second, dichotomous characteristic color when the individual has a specific one of the various, medical conditions.
    Type: Application
    Filed: May 7, 2012
    Publication date: April 3, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Sean Mongale, Shishira Nagesh, Ezra Taylor, Mary O'Grady, Thembi Mdluli, Peter Truskey, Sherri Hall, James Waring, III, Britni Crocker, Harshard Sanghvi, Elaine Yang, Soumyadipta Acharya, Maxim Budyansky, Matthew Means
  • Patent number: 8673236
    Abstract: The invention relates to a water soluble film based matrix for collecting blood samples, urine samples, serum samples or any other type of samples extracted from living species; so as to avoid cross infection or spillage of samples during transportation of said samples. These samples can then used for further detection of virus, bacteria, finding new molecules, diagnosing genes or extraction of DNA. Also, said matrix will dissolve during analysis of the sample and thus there will be no disposal problems.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: March 18, 2014
    Assignee: Arrow Coated Products, Ltd.
    Inventors: Shilpan Pravinchandra Patel, Nikita Kamlesh Thanawala
  • Patent number: 8667833
    Abstract: A protective cap 2 is engaged with a latch 10 of a diluent container 5 so as to fix the diluent container 5 at a liquid holding position of a diluent container containing section 11. The engagement is released when the protective cap 2 is set to an open position against the engagement so as to expose an inlet 13. When the protective cap 2 is shifted from the open position to a closed position, the protective cap 2 pushes the diluent container 5 into a liquid discharge position. Thus, it is possible to preserve a diluent for a long period of time and to easily open the diluent container 5 without having to complicate the structure of an analysis apparatus.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: March 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Saiki, Yoshiyuki Fujii, Nobuyasu Higashi, Masaaki Kitoh, Kenji Okada, Hirofumi Sugimoto
  • Publication number: 20140065030
    Abstract: The present invention is directed toward a colorimetric detection kit comprising a unit containing chemical reagents and a sample collector for collecting a sample analyte from a surface and a separate unit for visualizing a possible reaction of the chemical reagent and sample, the unit holding the chemical reagents and sample collector being placeable on the visualization unit, whereby when the chemical reagents are released, they are directed onto the sample collector for reaction and the reacted reagents absorbed on a visualization media, such that the presence of a specified analyte in the sample results in a color change in the visualization media.
    Type: Application
    Filed: October 23, 2012
    Publication date: March 6, 2014
    Applicant: U.S. Army Research Development and Engineering Command
    Inventor: U.S. Army Research Development and Engineerin
  • Patent number: 8663561
    Abstract: An automated apparatus and method for analyzing liquid samples by forming discrete sample aliquots (boluses) in an elongated conduit which contains a hydrophobic carrier liquid. Aliquots may be analyzed by adding at least one reagent to the sample aliquot that reacts selectively with an analyte contained therein. The reaction product, which is selective for the analyte of interest and proportional to its concentration, is measured with an appropriate detector. Intrinsic sample properties of the sample may also be measured without the need for adding chemical reagents. The invention enables simple and accurate testing of samples using time honored wet-chemical analysis methods in microliter volume regimes while producing remarkably small volumes of waste.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: March 4, 2014
    Inventor: Charles J. Patton
  • Patent number: 8647588
    Abstract: An apparatus and method for packaging of an optical sensing fiber is disclosed. The apparatus includes a substrate with a plurality of openings, and each opening is configured for holding an optical sensing assembly. The assembly is positioned in the opening with a tip of the assembly extending through the opening to be suspended from the substrate. In addition, openings are arranged so the assembly positioned therein avoids contacting another assembly positioned therein. The apparatus can include a support member for supporting the substrate and positioning the substrate so the tip of the assembly suspended from the opening in the substrate contacts solution in one of a plurality of wells in a container adjacent to the substrate. The assembly can be configured for preparing of the optical assembly for assay. An agitation assembly for agitating the container to create flow of the solution in the container wells over an optical sensing assembly is also disclosed.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: February 11, 2014
    Assignee: Pall Corporation
    Inventors: Michael W. Recknor, Hong Tan, Robert Zuk, Krista Leah Witte, Sae Choo, Scott Lockard
  • Patent number: 8641986
    Abstract: Assay modules, preferably assay cartridges, are described as are reader apparatuses which may be used to control aspects of module operation. The modules preferably comprise a detection chamber with integrated electrodes that may be used for carrying out electrode induced luminescence measurements. Methods are described for immobilizing assay reagents in a controlled fashion on these electrodes and other surfaces. Assay modules and cartridges are also described that have a detection chamber, preferably having integrated electrodes, and other fluidic components which may include sample chambers, waste chambers, conduits, vents, bubble traps, reagent chambers, dry reagent pill zones and the like. In certain preferred embodiments, these modules are adapted to receive and analyze a sample collected on an applicator stick.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: February 4, 2014
    Assignee: Meso Scale Technologies, LLC
    Inventors: Eli N. Glezer, Jonathan K. Leland, Mark A. Billadeau, Joseph M. Leginus, Bandele Jeffrey-Coker, Jeff D. Debad, Koustubh A. Phalnikar, Sriram Jambunathan
  • Patent number: 8632733
    Abstract: The present invention provides for a device and a kit for collecting body fluids. The device includes a body fluid collection portion comprising a body fluid absorbing material. The body fluid connecting portion has a free edge and is hingedly connected at the edge opposite to the free edge to a first support panel and a second support panel. A base panel is hingedly connected to the first support panel or the second support panel. In a first folded condition the body fluid collection portion is sandwiched between the first support panel and the second support panel in a substantially face contacting relationship.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 21, 2014
    Assignee: Labor Diagnostika Nord GmbH & Co. KG
    Inventors: Bernhard Manz, Matthias Kuper
  • Patent number: 8632730
    Abstract: In one aspect, a diagnostic test system includes a receptacle, optical detectors, and a logic circuit. Each of the optical detectors has a corresponding view in the receptacle and produces an electrical signal at a respective detector output in response to light from the corresponding view. The logic circuit includes logic inputs that are respectively coupled to the detector outputs and that produce an output logic signal corresponding to a logical combination of signals received at the logic inputs. In another aspect, respective detection signals are produced in response to light received from respective ones of multiple views of the test strip, and at least one output logic signal corresponding to a respective logical combination of the detection signals is generated.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: January 21, 2014
    Assignee: Alverix, Inc.
    Inventors: John F. Petrilla, Daniel B. Roitman
  • Patent number: 8623665
    Abstract: A method for collecting and processing biological samples (e.g., fecal samples) is disclosed. The method may include obtaining a system comprising a container, a collector, and a lid. Using the collector, a user may collect a sample. The sample may be inserted within the container. The lid may be secured and the container and sample contained therewithin may be transported to a testing facility. At the testing facility, the container may be used throughout the processing of the sample. Accordingly, the risk of cross-contamination may be reduced.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: January 7, 2014
    Inventors: Val L. Poll, Steven J. Miller, Jay J. Davis, Brian T. Leishman, Joshua L. Kirk
  • Patent number: 8617485
    Abstract: A sensor strip apparatus includes: a top plate having an entrance opening downward and a joint formed downward; a pad section including a support having a window opening downward, a reaction pad attached to the window of the support and reacting with a specimen, first and second hemolysis inhibition pads attached to the reaction pad to filter hemocytes from the specimen, a specimen pad attached to the first and second hemolysis inhibition pads to diffuse the specimen crosswise, and an adhesive film attached to the support around the first and second hemolysis inhibition pads to increase adhesion strength of the specimen pad; and a bottom plate having a second joint forcibly coupled with to the joint of the top plate, and a window configured to indentify the reaction pad through the window of the support.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 31, 2013
    Assignee: SD Biosensor, Inc.
    Inventors: Hyo Geun Lee, Hyo Lim Park, Eun Sun Song, Byung Hak Song
  • Patent number: 8613892
    Abstract: The present disclosure provides in vitro analyte meters that include a meter portion that is moveable relative to at least one other meter portion. Embodiments include moveable meters that are integrated with in vivo analyte systems. Also provided are methods, systems and kits.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: December 24, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Gary Ashley Stafford
  • Patent number: 8609043
    Abstract: The present invention relates to the use of a container, made of an inorganic additive containing plastic material, for reducing physical/chemical interaction between the container and an oil, fat and/or wax containing formulation contained therein.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: December 17, 2013
    Assignee: M & P Patent Aktiengesellschaft
    Inventor: Claudia Mattern
  • Patent number: 8609044
    Abstract: A micro vial assembly for performing microwave-assisted chemical reactions on small reaction mixture volumes is disclosed, wherein a reaction vessel (10) is sealed through a diaphragm (30) that is capped over an open end of the reaction vessel. The reaction vessel mouths in an end plane of a sleeve (20) surrounding the reaction vessel, the diaphragm being clamped for sealing the open end of the vessel by means of a cap (40) which is secured to the sleeve. The sleeve provides a radial extension of the reaction vessel in order to bridge the radial distance between a wall of the reaction vessel and other components in a system for performing microwave-assisted chemical reactions.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: December 17, 2013
    Assignee: Biotage AB
    Inventors: Johan Ulin, Per-Gunnar Eriksson, Fredrik Ekdahl
  • Patent number: 8603835
    Abstract: Test cells have a first sorbent strip with a sample receiving location and defining a first migration path, a distinct second sorbent strip which receives buffer solution and at least partially defines a second migration path distinct from and elongated relative to the first migration path, conjugate supported by the second strip, a test site located at a junction of the first and second strips and having an immobilized ligand-binding mechanism, and a divider which directs a first amount of the buffer to the first strip to move the sample to the test site and a second amount to the second strip to move the conjugate to the test site. The first and second migration paths have first and second lengths chosen so that ligand in the sample reaches the test site and binds to the immobilized ligand-binding mechanism prior to the conjugate reaching the test site.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: December 10, 2013
    Assignee: Chembio Diagnostic Systems, Inc.
    Inventor: Javanbakhsh Esfandiari
  • Publication number: 20130323852
    Abstract: A portable, hand-held glucose testing device includes a housing configured to accommodate a plurality of test sensors in a stacked arrangement and having a wall with an opening defined therein. A plurality of packaged test sensors is stacked in alignment with one another within the housing. Each of the test sensors is packaged within a blister package. The blister package comprises a blister package housing and a cover foil overlying a surface of the blister package housing and the test sensor. A drive slide is configured to displace one of the plurality of packaged test sensors out of alignment with other packaged test sensors. A knife mechanism is configured to pierce through the cover foil, and to engage and urge the test sensor to extend through the opening for receiving a sample. A meter contact is configured to engage the test sensor when the test sensor extends through the opening.
    Type: Application
    Filed: March 12, 2013
    Publication date: December 5, 2013
    Inventors: Steven C. Charlton, Allen Brenneman
  • Publication number: 20130295690
    Abstract: A versatile drug testing device (a lateral flow diagnostic testing device) includes a flat transparent carrier with a top and a bottom with the carrier having a series of independent parallel grooves formed therein running from adjacent to the top to adjacent to the bottom of the carrier, each groove having a first opening and a second opening above the first opening therein adjacent to the bottom of the carrier, at least one drug test strip installed in one of said grooves with its absorbent pad contiguous to the openings and a cover layer attached to the carrier operable to sealing close each of said grooves whereby the bottom of the device can be immersed in a specimen of urine, body fluid, or other biological specimen to wet the pad of the at least one test strip though the ingress of the specimen though the associated openings and the test results on the test strip can be easily viewed through the transparent carrier.
    Type: Application
    Filed: June 25, 2013
    Publication date: November 7, 2013
    Inventor: Jianfeng Chen
  • Patent number: 8563330
    Abstract: The invention provides a device and method for the rapid identification of patients suspected of having thalassemia. The invention provides a test strip for the aqueous detection of thalassemia related proteins in whole blood. The test strip includes antibodies specific to the gamma 4, (?4) protein and provides easy visual discrimination between a positive result and a negative result. The invention can be used in remote or clinical settings.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: October 22, 2013
    Assignee: National Science and Technology Development Agency
    Inventors: Watchara Kasinrerk, Chatchai Tayapiwatana, Thanusak Tatu, Suthat Fucharoen, Sawitree Chiampanichayakul
  • Patent number: 8545760
    Abstract: A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 1, 2013
    Assignee: Sysmex Corporation
    Inventors: Norimasa Yamamoto, Takashi Yamato, Naohiko Matsuo, Satoshi Iguchi
  • Patent number: 8541227
    Abstract: The inventions relates to compositions and method for determining the absolute counts of cells per unit volume of a sample. Such a method comprises: (a) providing a container containing (i) a predetermined quantity of microparticles; and (ii) a cell-binding agent; in which the microparticles are disposed in or on a matrix which adheres to at least one wall of the container such that substantially all the microparticles are thereby attached to the container; (b) adding a known volume of sample to the container; (c) determining the ratio of microparticles to cells by counting microparticles and cells in a volume of the sample; and (d) determining the absolute count of cells by multiplying the number of cells per microparticle by the concentration of microparticles in the sample.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: September 24, 2013
    Assignee: Dako Denmark A/S
    Inventors: Nanna K Christensen, Jesper Laursen, Lars Winther
  • Patent number: 8518342
    Abstract: The present invention relates generally to the field of analysis, for example biological analysis.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: August 27, 2013
    Assignee: Biomerieux
    Inventors: David Mosticone, Pascal Montes, Jean-Claude Raymond, Bruno Colin, Cecile Paris
  • Patent number: 8507260
    Abstract: Disclosed is a lateral flow capillary device and uses thereof comprising a unipath bibulous capillary flow matrix and at least two reservoirs each in fluid communication with the capillary flow matrix wherein a reservoir contacts the capillary flow matrix through a passage having a rim pressing the matrix. The pressure that the rim applies on the matrix prevents leakage of liquids out of the capillary flow matrix at the reservoir/ matrix interface, allowing accurate sequential draining of liquid from the reservoirs.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: August 13, 2013
    Assignee: Realbio Technologies, Ltd.
    Inventors: Sara Alajem, Avraham Reinhartz
  • Patent number: 8501111
    Abstract: A fast acting sensor designed to accommodate an aqueous analyte-containing sample having a volume of less than one microliter and that can be used to quantify the amount and concentration of such analyte in the sample through light reflectance or fiber-optic light reflectance. The sensor includes a storage chamber, a capillary passage, and a reaction membrane. The storage chamber acts to collect the sample and to secure such sample while it undergoes detection. The capillary passage acts to direct the sample over the reaction membrane and controls the diffusion of the sample in the storage chamber. The reaction membrane contains all of the chemicals and enzymes needed to cause a color-change reaction when contacted with the sample. The amount of analyte can be determined by light reflectance intensity with an optical measurement instrument.
    Type: Grant
    Filed: April 14, 2012
    Date of Patent: August 6, 2013
    Inventor: Tom Cheng Xu
  • Patent number: 8501496
    Abstract: The present invention is directed immunoassay cuvettes that comprise diffusely bound and non-diffusely bound reagents for carrying out an immunoassay. The reaction and detection are carried out in the immunoassay cuvette. The immunoassay cuvette comprises a transparent front wall, a back wall, side walls, a bottom, and a top opening. The back wall of the cuvette has a substantially planar surface made of a non-porous material and comprises a capture zone having reagents non-diffusedly bound and a signal reagent zone having reagents diffusedly bound.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: August 6, 2013
    Assignee: Access Medical Systems, Ltd.
    Inventors: Robert F. Zuk, Hong Tan
  • Patent number: 8491852
    Abstract: An indicator device adapted give a detectable signal when the antioxidant capacity of a sample of a mammalian wound fluid exceeds a predetermined minimum level which is characteristic of an infected wound. Also provided system for use in the diagnosis and treatment of wounds comprising the inventive diagnostic device and a wound dressing comprising at least one antimicrobial agent for selective application to infected wounds. Also provided are methods of diagnosis and treatment by means of the inventive device and system.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: July 23, 2013
    Assignee: Systagenix Wound Management (US), Inc.
    Inventors: Breda Mary Cullen, Rachael Clark, Philip Stephens, Ryan Moseley