Including Means For Separating A Constituent (e.g., Extraction, Etc.) Patents (Class 422/527)
  • Publication number: 20130129582
    Abstract: The present invention relates to the treatment of internal surfaces of a hollow body, on the inner surfaces of which areas having different surface properties, for example, having hydrophilic and hydrophobic properties, are produced. The invention further relates to fluid separators that are based on said hollow bodies and that have areas having different surface properties. Such fluid separators are used in medical technology and analysis, in particular biochemical analysis.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 23, 2013
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventor: Fraunhofer-Gesellschaft Zur Foerderung Der Ange
  • Publication number: 20130130371
    Abstract: A system and method for isolating and separating lipoaspirate particles. The system includes a generally cylindrical container having a lid and a bottom wherein the container includes at least one input port positioned to permit a lipoaspirate fluid to enter the container above the bottom; and a source of a vacuum coupled to the container to provide a partial vacuum during use of the system.
    Type: Application
    Filed: April 30, 2012
    Publication date: May 23, 2013
    Applicant: SpineSmith Partners, L.P.
    Inventors: Ted Sand, David Chau, Matthew R. DeWitt, Sujata Ghosh, Kevin Hao-Yu Lin
  • Patent number: 8444935
    Abstract: A sample testing system includes a plurality of sample tubes, each sample tube coupled to a pumping chamber, a pressure control subsystem and a flow control subsystem. The pressure control system includes a first dynamic pump equipped to induce pulsatile pressure in a mass of pumping fluid coupled to the pumping chambers. The flow control subsystem includes a mean flow pump equipped to generate a flow of sample fluid in a plurality of flow loops. Each of the flow loops conducts the flow of sample fluid between the mean flow pump and one of the sample tubes. The pumping chamber couples pressure from the pumping fluid to the sample fluid.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: May 21, 2013
    Assignee: Bose Corporation
    Inventors: Troy D. Nickel, David Louis Dingmann, Mark Hanson
  • Patent number: 8445842
    Abstract: A mechanical holder that provides for a confined sampling region for extraction and removal of chemical substances contained in a dried blood spot or other spot of sample is described herein.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: May 21, 2013
    Assignee: Advion, Inc.
    Inventors: Daniel Eikel, John D. Henion, Christopher Alpha, Jason Scott Vega
  • Publication number: 20130121895
    Abstract: A micro flow device (11, 71) for separating or isolating cells from a bodily fluid or other liquid sample uses a flow path where straight-line flow is interrupted by a pattern of transverse posts (23, 81). The posts are spaced across the width of an expanded collection chamber region (17, 75) in the flow path, extending between the upper and lower surfaces thereof; they have rectilinear surfaces, being curved in cross-sections, e.g. circular or tear-drop shaped, and are randomly arranged so as to disrupt streamlined flow. The device is oriented so that its lower surface is aligned at about 45° to the horizontal. Sequestering agents, such as Abs, which are attached to surfaces of the collection region via a hydrophilic coating, preferably a permeable hydrogel containing isocyanate moieties, are highly effective in capturing cells or other targeted biomolecules while the remainder of the liquid sample exits horizontally.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 16, 2013
    Applicant: BIOCEPT, INC.
    Inventors: Zhongliang TANG, Pavel TSINBERG, Ram S. BHATT
  • Patent number: 8435465
    Abstract: A microfluidic cartridge for isolating biological molecules having a capture chamber containing functionalized solid supports maintained in a fluidized state provides reduced pressure drops and bubble formation during microfluidic extraction. The cartridge may include an electric field lysis chamber and/or a chemical lysis chamber. The electric-field lysis chamber may comprise an electrically insulating structure arranged between two opposing planar electrodes.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: May 7, 2013
    Assignee: CFD Research Corporation
    Inventors: Shivshankar Sundaram, Balabhaskar Prabhakarpandian, Kapil Pant, Yi Wang
  • Publication number: 20130105316
    Abstract: Provided is a substrate modification method that enables improvement of reproducibility in measurement with use of capillary electrophoresis. The substrate modification method includes immobilizing, to a substrate surface, at least two types of modification groups selected from three types of modification groups that are a type of a modification group having one functional group, a type of a modification group having two to nine functional groups, and a type of a modification group having ten or more functional groups.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Applicant: ARKRAY, INC.
    Inventor: ARKRAY, INC.
  • Patent number: 8431339
    Abstract: The present invention relates to a method for purifying analyte molecules and in particular to a component of this type in which a separation section is used for separating analyte molecules and other constituents of a sample, and in which provision is made of at least one sample chamber for receiving a sample containing the analyte molecules and at least one collecting chamber for receiving the purified analyte molecules. According to the invention, the microfluidic component has at least one integrated receptor device for detecting the presence and/or the concentration of the purified analyte molecules. In accordance with one advantageous development of the present invention, the separation section is formed by an electrophoretic gel filtration section.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: April 30, 2013
    Assignee: Albert-Ludwigs-Universitat Freiburg
    Inventors: Paul Vulto, Gerald Urban
  • Patent number: 8430247
    Abstract: Method for handling microparticles in such a manner, that at least two treatment steps are performed for microparticles in the same vessel without moving the particles to another vessel. There are organs in the device for changing the solution without having to move the microparticles to another vessel.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 30, 2013
    Assignee: BioControl Systems, Inc.
    Inventors: Matti Korpela, Kenneth Rundt
  • Publication number: 20130102459
    Abstract: The present invention is a process for making an inorganic/organic hybrid totally porous spherical silica particles by self assembly of surfactants that serve as organic templates via pseudomorphic transformation.
    Type: Application
    Filed: December 12, 2012
    Publication date: April 25, 2013
    Applicant: Agilent Technologies, Inc.
    Inventor: Agilent Technologies, Inc.
  • Patent number: 8425862
    Abstract: The system has a plurality of dishes (1) for receiving at least one sample, each dish having a perforated base (2) enabling liquid reagents or solutions to pass continuously therethrough, the dishes being superposed in a confining tube (5); a circuit (50) for the continuous outflow of the solutions originating from distinct reservoirs (17); a multipath electrovalve (15); an electric pump (13); and a member for controlling and commanding the pump (13) and the multipath electrovalve (15) in a sequential and coordinated manner.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: April 23, 2013
    Assignees: Centre National de la Recherche Scientifique, Universite Joseph Fourier
    Inventor: Jacques Lucien Thelu
  • Publication number: 20130095512
    Abstract: A biomolecule partitioning device (BPD) is provided that can be used to separate and sort membrane species into raft-like membrane regions without using detergent or crosslinkers. The BPD can comprise one or more microfluidic channels coated with coexistent lipid phases (raft-like and fluid-like lipid compositions) as a contiguous supported lipid bilayer (SLB). The geometry of the phases can be patterned with spatial and temporal control within each channel. Methods for the separation and sorting are also provided. The method can comprise the steps of introducing cell membrane species into an SLB; patterning coexistent phases; applying an electric field or hydrodynamic flow to move the species; sorting migrating species into regions based on their partitioning preference; and collecting sorted species in a quantification area. The BPD can also be used to measure partitioning kinetics or to assay for activity changes of biomolecules as a function of local lipid environment.
    Type: Application
    Filed: June 17, 2011
    Publication date: April 18, 2013
    Applicant: Cornell University
    Inventors: Susan Daniel, Ling Chao
  • Patent number: 8414774
    Abstract: Aspects of the invention provide systems and methods for high-throughput screening of fluidic samples. In some embodiments, two chromatography columns are utilized in series. The first chromatography column can have a high affinity for phosphorylated compounds while the second chromatography column has a high affinity for one or more analytes of interest.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: April 9, 2013
    Assignee: Agilent Technologies, Inc.
    Inventors: William A. LaMarr, Can C. Ozbal, Arrin Katz, Donald Green
  • Patent number: 8414778
    Abstract: The present invention relates to a filtration method, a filter-incorporated tip and a filtration device, and its object is to perform efficient and swift isolation of a target substance.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: April 9, 2013
    Assignee: Universal Bio Research Co., Ltd.
    Inventors: Hideji Tajima, Tomoyuki Hatano, Masataka Fumoto, Yoshinori Koh, Tomomi Saegusa
  • Patent number: 8415169
    Abstract: A tube and float system for use in separation and axial expansion of the buffy coat includes a transparent or semi-transparent, flexible sample tube and a rigid separator float having a specific gravity intermediate that of red blood cells and plasma. The float includes a main body portion of reduced diameter to provide a clearance gap between the inner wall of the sample tube and the float. One or more protrusions on the main body portion serve to support the flexible tube. During centrifugation, the centrifugal force causes the diameter of the flexible tube to expand and permit density-based axial movement of the float in the tube. The float further includes a pressure relief system to alleviate pressure build up in the trapped red blood cell blood fraction below the float, thereby preventing red blood cells from being forced into the annular gap containing the buffy coat layers.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 9, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Thomas Haubert, Vince Contini, Steve Grimes, Randy Jones, Stephen C. Wardlaw
  • Patent number: 8409528
    Abstract: A reaction vessel with a bottom drain opening supporting a selected unpressured head of fluid by the surface tension of the fluid. A device processing zone includes a support for spaced rows of reaction vessels, passages communicating with their drain openings of supported vessels, and a pressure source for selectively draining fluid through the drain openings. Generally horizontal bar magnets are supported for selected vertical movement between the vessel rows. A dispensing head has X discharge openings selectively positionable over X selected reaction vessels. A metering pump mechanism selectively meters X a selected quantity of fluid a bulk supply (where X is at least four), and selectively pumps the metered selected quantities through the drain openings to the selected reaction vessels. Methods of drawing fluid from the vessels using the pressure source, and moving the magnets to form a pellet of analyte are also included.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: April 2, 2013
    Assignee: Abbott Laboratories
    Inventors: Scott Safar, Stephen Herchenbach, Chadwick M. Dunn, Charles Michael Galitz, Julius J. Toth, Ronald E. Kukla, Michael G. Lowery, Eric B. Shain
  • Patent number: 8409510
    Abstract: In the invention, a collection device includes a flow through micro scale plate arranged to collect analyte. The plate includes holes, and sorbent coating on contact surfaces of the plate. The holes pass analyte fluid flow, for example analyte vapor so that fluid flow for collection may be generally perpendicular to the sorbent plate. Preferred embodiment plates include an integrated heater trace. In preferred embodiments, a high substantially perpendicular flow is used for collection and concentration, and during desorption and delivery a low substantially parallel flow is used. The low flow is selected to meet constraints of a detector system.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: April 2, 2013
    Assignees: The United States of America as represented by the Secretary of the Navy, University of Louisville Research Foundation, Inc.
    Inventors: Robert Andrew McGill, Michael Martin, Mark Crain, Kevin Walsh, Eric Houser, Stanley Vincent Stepnowski, Viet Nguyen
  • Patent number: 8404194
    Abstract: Disclosed is a separation media, comprising an upstream layer, comprising fibers, wherein the upstream layer has a mean flow pore size of 8 microns or less; and a downstream layer, comprising fibers. The separation media is designed to separate red blood cells from liquid specimens such as blood and allow a filtrate, such as blood plasma, to flow from said downstream layer. Also provided is a diagnostic test device incorporating the separation media. Further disclosed is a method for separating red blood cells from a liquid specimen.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: March 26, 2013
    Assignee: Lydall, Inc.
    Inventors: Abhishek D. Saxena, John C. Ramsay
  • Patent number: 8404440
    Abstract: The present invention provides an integrated lab-on-a-chip device for carrying out a nucleic acid extraction process on a fluid sample containing cells and/or particles, the device comprising: (a) a sample inlet (1) for loading of a fluid sample, (b) a lysis unit (4) for lysis of cells and/or particles present in the fluid sample, (c) a reservoir of lysis fluid (7) for the lysis unit, (d) a nucleic acid extraction unit (5) downstream of the lysis unit, and (e) reservoirs of first washing buffer and eluant fluid (8, 9, 10) for the nucleic acid extraction unit, wherein the device further comprises (f) a mixing unit (6) downstream of the nucleic acid extraction unit, and (g) a source of mixing fluid (11) for the mixing unit. The reservoirs of lysis fluid, first washing buffer and eluant fluid may be provided parallel to one anther so that they may be actuated by a single pump.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: March 26, 2013
    Assignee: Norchip A/S
    Inventors: Lars A. Solli, Anja Gulliksen, Frank Karlsen, Tobias Baier, Rainer Gransee, Thomas Hansen-Hagge, Klaus Stefan Drese, Liv Furuberg
  • Patent number: 8404489
    Abstract: A nucleic acid extraction kit, which enables the nucleic acid extraction operation to be accomplished safely without causing contamination, and in which the complex preparation of reagents and the disposal treatments that are performed before and after the nucleic acid extraction operation can be performed rapidly and simply, with the extraction performed in an automated manner. The nucleic acid extraction kit includes: a container including reagent wells that each store at least a reagent, a sample well into which a biological sample is introduced, a waste liquid well, and a collection well in which an extracted nucleic acid is collected, and an extraction filter cartridge equipped with an extraction filter for separating and extracting a nucleic acid from the biological sample, wherein the extraction filter cartridge is formed in a manner that enables the extraction filter cartridge to be supported on the waste liquid well and the collection well.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: March 26, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Shuichi Akashi, Ryoichi Asai
  • Publication number: 20130071945
    Abstract: Germania-based sol-gel organic-inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. A germania-based sol-gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.). Scanning electron microscopy images of the sol-gel germania triblock polymer coating were obtained to estimate the coating thickness. The analyte distribution constants between a sol-gel germania organic-inorganic hybrid coating and the samples (Kcs) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols, and amines, the Kcs values ranged from 1.8×101 to 2.0×104. The sol-gel germania triblock polymer coatings survived exposure to high temperature solvent conditions (200° C.
    Type: Application
    Filed: April 18, 2011
    Publication date: March 21, 2013
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Abdul Malik, Scott S. Segro
  • Patent number: 8394325
    Abstract: Methods and devices for reducing interference from leukocytes in an analyte immunoassay are provided. In one embodiment, a method is provided comprising the steps of amending a biological sample with magnetic sacrificial beads opsonized to leukocytes, binding leukocytes in the sample to the magnetic sacrificial beads, and magnetically retaining the beads out of contact from an immunosensor.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: March 12, 2013
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Graham Davis
  • Patent number: 8394342
    Abstract: A mechanical separator for separating a fluid sample into first and second phases is disclosed. The mechanical separator includes a float having a passageway extending between first and second ends thereof with a pierceable head enclosing the first end of the float, a ballast longitudinally moveable with respect to the float, and a bellows extending between a portion of the float and a portion of the ballast. The bellows is adapted for deformation upon longitudinal movement of the float and the ballast, with the bellows isolated from the pierceable head. The float has a first density and the ballast has a second density greater than the first density. The bellows is structured for sealing engagement with a cylindrical wall of a tube, and the pierceable head is structured for application of a puncture tip therethrough. The separation device is suitable for use with a standard medical collection tube.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: March 12, 2013
    Assignee: Becton, Dickinson and Company
    Inventors: Shenika E. Felix, Jamieson W. Crawford, Christopher A. Battles, Jes Tougaard Gram
  • Patent number: 8389293
    Abstract: The invention is directed to methods and devices for reducing interference from leukocytes in competitive analyte immunoassays. In one embodiment, the invention is to a method comprising the steps of (a) amending a biological sample such as a whole blood sample with sacrificial beads opsonized for leukocytes; and (b) performing a competitive immunoassay on the amended sample to determine the concentration of said analyte in said sample. Preferably, the sample is amended with IgG-coated sacrificial beads.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: March 5, 2013
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Graham Davis
  • Patent number: 8388911
    Abstract: A filtration container (1) includes a container body (2) including a porous filter (4) exhibiting both hydrophilic and oleophobic properties. The container also has a lid (3) which provides a secondary filter for the container (1). The filter is slidable within the container body and is rotatable into a vertical position. The filtration container may be used for testing a fat content of an item placed within the container. A method for testing the fat content of an item is also provided.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: March 5, 2013
    Assignee: Foss Analytical AB
    Inventors: Michael Arthur Kitcherside, Margaret Joan Kitcherside
  • Patent number: 8382660
    Abstract: An endoscope system includes: an endoscope having an insertion section extending from an operation section operated by an operator into a human body, and an operation channel having a first end section having an opening at a distal end of the insertion section and a second end section passing through the insertion section and having an opening at the operation section; a tissue-collecting apparatus connected to a connecting pipeway branching from a branch section formed to the second end section in the operation channel, and capable of seizing tissue retracted into the operation channel; an aspirator for producing suction force for suctioning the tissue into the operation channel; and a suction pipeway connecting the tissue-collecting apparatus to the aspirator.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: February 26, 2013
    Assignee: Olympus Medical Systems Corp.
    Inventor: Tsutomu Okada
  • Patent number: 8383066
    Abstract: A filter vial and piston are provided where the vial has a cylindrical wall with a closed bottom and open top and with the hollow, tubular piston therein. The piston has a distal end covered by a cup having a proximal cup seal extending outward to engage the walls of the vial to form a fluid tight seal with the vial during use. The distal end of the piston has a piston flange extending outwardly and located adjacent a recess in the piston so the cup forms a snap fit over the piston flange and extends into the recess. The piston flange causes the cup to bulge sufficiently outward to form a fluid tight seal with the vial during use. A filter is placed in the bottom of the cup and abuts an inwardly extending lip on the cup. The filter is held against the lip by a piston support at the distal end of the piston. A cup support at a distal end of the cup also helps support the filter.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: February 26, 2013
    Assignee: Scientific Plastic Products, Inc.
    Inventors: Samuel A. Ellis, Kishan G. Hingorani
  • Patent number: 8383064
    Abstract: A test module for performing a genetic diagnostic assay, the test module having an outer casing dimensioned for hand-held portability, the outer casing having a receptacle for a biological sample containing target nucleic acid sequences, an array of chambers containing probes for hybridization with the target nucleic acid sequences to form probe-target hybrids, a flow-path extending from the inlet to the probes, and, a reagent reservoir containing a reagent for addition to the sample in the flow-path upstream of the probes, wherein, each of the chambers contains less than 270 picograms of probe and the reagent reservoir has a volume less than 1000,000,000 cubic microns.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: February 26, 2013
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Mehdi Azimi, Kia Silverbrook
  • Publication number: 20130042888
    Abstract: A fluidic tile having a first substrate containing macrofluidic structures bonded to a second substrate containing microfluidic structures. The microfluidic structures correspond to the macrofluidic structures in the first substrate and provide fluid flow paths between the macrofluidic structures. One of the microfluidic structures is a washing siphon that provides a fluid flow path between a purification chamber and a waste chamber. The washing siphon is configured to be primed when a volume of liquid in the purification chamber exceeds a predetermined amount causing the washing siphon to initiate transfer of the liquid in the purification chamber to the waste chamber when the volume of the liquid in the purification chamber exceeds the predetermined amount.
    Type: Application
    Filed: October 29, 2010
    Publication date: February 21, 2013
    Inventor: Piero Zucchelli
  • Publication number: 20130045146
    Abstract: A plastic device, such as a syringe barrel, tube, cartridge, filter disk, tubing, solvent reservoir, connector, valve, frit, or container, for transferring or storing solids and liquids used in sample preparation and extraction (SPE) methods, is provided with a barrier coating layer of Parylene over the surface of the plastic device, to prevent contamination of the solids and liquids being transferred or stored by the inventive plastic device from contaminants introduced from the plastic of the device.
    Type: Application
    Filed: May 4, 2012
    Publication date: February 21, 2013
    Inventors: Tracey A. Peters, Neil Mosesman, Jack Cochran, Jason D. Thomas, Julie Kowalski, Corby Hilliard
  • Patent number: 8377394
    Abstract: The present invention provides a low bed-volume spin column system and methods of use. The system includes various combinations of spin columns with packed beds, a rack for holding the spin columns, a receiver plate that attaches to the rack and that has wells in registration with the spin columns held in the rack, a lid that attaches to the receiver plate and seals the spin columns, and an incubator block configured for accepting the wells of the receiver plate and for incubating the packed bed. The lid, spin columns, rack, receiver plate, and incubator block are preferably capable of being assembled in a nested configuration. In preferred versions of the invention, the rack is compatible with and attachable to conventional 96-well microplates. Further provided are methods of using the spin column system that include quantitatively purifying and analyzing an analyte, removing and preventing air entrainment within the packed bed, and incubating the packed bed while preventing drying thereof.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: February 19, 2013
    Assignee: Agilent Technoogies, Inc.
    Inventors: Robert Sakowski, Scott Fulton
  • Patent number: 8377669
    Abstract: The invention is directed to methods and devices for reducing interference from leukocytes in an analyte immunoassay, and in particular in non-competitive immunoassays. In one embodiment, the invention is to a method comprising the steps of (a) amending a biological sample such as a whole blood sample with sacrificial beads; and (b) performing a non-competitive immunoassay on the amended sample to determine the concentration of said analyte in said sample. Preferably, the sample is amended with IgG-coated sacrificial beads.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: February 19, 2013
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Adam Roger Moss, Graham Davis
  • Patent number: 8377715
    Abstract: The invention provides pipette tip extraction columns for the purification of a DNA vector from un-clarified cell lysate containing cell debris as well as methods for making and using such columns. The columns typically include a bed of extraction media positioned in the pipette tip column, above a bottom frit and with an optional top frit.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: February 19, 2013
    Assignee: PhyNexus, Inc.
    Inventors: Chris Suh, Lee Hoang, Jennifer E. Grant, Douglas T. Gjerde
  • Publication number: 20130040307
    Abstract: A method and apparatus for pretreatment of a sample of whole blood in a discrete fluid analyzing instrument comprises automated means for handling and analyzing the sample and means for performing a pretreatment step on the sample or a sub-sample of the sample. The means for pretreatment are used for immobilizing at least one substance or analyte from the sample or sub-sample wherein the substance or analyte is reversibly immobilized. Usually, the apparatus further comprises means for eluting the substance or analyte from the capture means prior to analysis.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 14, 2013
    Applicant: THERMO FISHER SCIENTIFIC OY
    Inventors: Sari TIKANOJA, Annu SUONIEMI-KÄHÄRÄ, Johan FINELL, Lili ARABSHAHI
  • Patent number: 8372657
    Abstract: According to various embodiments, a microfluidic system for detecting a biological entity in a sample volume is provided. The microfluidic system may include: a chamber configured to receive the sample volume, wherein the chamber includes a detection region for detecting the biological entity; a first port in fluid communication with the chamber; and a second port including a filter in fluid communication with the chamber; and wherein a fluid provided to the first port or the second port flows between the first port and the second port through the chamber.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: February 12, 2013
    Assignee: Agency For Science, Technology, and Research
    Inventors: Julien Reboud, Linus Tzu-Hsiang Kao, Andre Yao-Kuang Chung, Shin Yun Ng, Yu Chen, Yan Ping Wang, Janice Hao Yuan Liaw, Kum Cheong Tang
  • Publication number: 20130034845
    Abstract: The present invention relates to systems, devices, and methods for performing biological reactions. In particular, the present invention relates to the use of lipophilic, water immiscible, or hydrophobic barriers in sample separation, purification, modification, and analysis processes.
    Type: Application
    Filed: October 4, 2012
    Publication date: February 7, 2013
    Applicant: NORTHWESTERN UNIVERSITY
    Inventor: NORTHWESTERN UNIVERSITY
  • Patent number: 8361316
    Abstract: An apparatus for mixing and separating magnetic particles in a liquid comprises a holder having a plurality of apertures configured as an array of rows and columns and a plurality of containers capable of receiving liquid containing magnetic particles, each container being sized to be placed in one of the apertures; plural magnets capable of being moved relative to the containers between a first position and a second position to change the position of the magnets and magnetic particles in the container; and a drive mechanism for moving the magnets between positions at a sufficiently high speed that the particles do not settle down due to gravitational forces during motion between the first and second positions.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: January 29, 2013
    Assignee: Sigris Research, Inc.
    Inventor: Iqbal W. Siddiqi
  • Publication number: 20130022647
    Abstract: Embodiments presented herein relate to various polymers. Some of the polymer embodiments are heparin binding polymers. Some embodiments of the heparin binding polymers can be employed to bind to heparin for methods such as separating, purifying, removing, and/or isolating heparin and heparin like molecules.
    Type: Application
    Filed: September 27, 2011
    Publication date: January 24, 2013
    Applicant: University of British Columbia
    Inventors: Jayachandran N. Kizhakkedathu, Rajesh A. Shenoi, Cedric J. Carter, Donald E. Brooks
  • Patent number: 8357543
    Abstract: A reaction vessel with a bottom drain opening supporting a selected unpressured head of fluid by the surface tension of the fluid. A device processing zone includes a support for spaced rows of reaction vessels, passages communicating with their drain openings of supported vessels, and a pressure source for selectively draining fluid through the drain openings. Generally horizontal bar magnets are supported for selected vertical movement between the vessel rows. A dispensing head has X discharge openings selectively positionable over X selected reaction vessels. A metering pump mechanism selectively meters X a selected quantity of fluid a bulk supply (where X is at least four), and selectively pumps the metered selected quantities through the drain openings to the selected reaction vessels. Methods of drawing fluid from the vessels using the pressure source, and moving the magnets to form a pellet of analyte are also included.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: January 22, 2013
    Assignee: Abbott Laboratories
    Inventors: Scott G. Safar, Stephen L. Herchenbach, Chadwick M. Dunn, Charles M. Galitz, Julius J. Toth, Ronald E. Kukla, Michael G. Lowery, Eric B. Shain
  • Patent number: 8357340
    Abstract: A materials analysis device (2) comprises an inner receptacle (4), incorporating a filter (5) at its lower end, within an outer receptacle (6). Gas inlet/outlet ports (8, 10) are arranged to provide a means whereby solvent can be caused to pass between the receptacles (4, 6) via filter (5). Solvent in the receptacles (4, 6) is arranged to be heated and its temperature assessed. In use in one embodiment, a solute material to be analyzed is introduced into outer receptacle (6) and a solvent is introduced into inner receptacle (4). The solvent is caused to pass back and (15) forth between the receptacles (4, 6) via the filter (5) until a saturated solution of the solute is present in inner receptacle (4). This may be removed for analysis. By undertaking the process described at a range of temperatures, a solubility profile for the solute can be determined.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: January 22, 2013
    Assignee: Wicken Technology Limited
    Inventor: Ryszard Jurek Kobylecki
  • Publication number: 20130017545
    Abstract: An apparatus for acquiring analytes from a dried biological fluid sample includes a tube, a substrate in a proximal section of the tube, and a sorbent bed in a distal section of the tube. A biological fluid sample is dispensed on the substrate and is dried to form a dried sample. A conditioning solvent is flowed into the distal section to condition the sorbent bed. A first elution solvent is flowed through the substrate and the sorbent bed. Analytes are eluted from the dried sample and retained on the sorbent bed. A second elution solvent is flowed through the substrate and the sorbent bed. The analytes are eluted from the sorbent bed, pass through an opening, and are collected. Alternatively, an elution solvent is flowed through the substrate and the sorbent bed such that analytes eluted from the dried sample pass through the sorbent bed and the opening for collection, while non-analytes are retained on the sorbent bed.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: Agilent Technologies, Inc.
    Inventors: Ben Yong, William C. Hudson
  • Publication number: 20130008859
    Abstract: A control device for a sample separation apparatus, the sample separation apparatus including a first separation unit and a second separation unit downstream of the first separation unit and supplied with the fluidic sample after treatment by the first separation unit. A control device is configured for controlling the first separation unit to execute a primary separation sequence within a time interval for separating the fluidic sample into fractions, and for controlling the second separation unit to execute secondary separation sequences within the time interval for further separating the separated fractions into sub-fractions, wherein the secondary separation sequences form part of a common sample separation method defined by a common specification of the sample separation involving a set of parameters, and adjusting, over a progress of the primary separation sequence, at least one parameter according to which at least one of the plurality of secondary separation sequences is executed.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventor: Klaus Witt
  • Patent number: 8348066
    Abstract: A floating separating element for use in centrifugal separation of components of a physiological fluid comprises a positioning part and a separating part, where the positioning part is designed to automatically assume a position in a supernatant and a separating part is positioned at a desired location with respect to the interface between the supernatant and heavier components. In preferred embodiments the physiological fluids are blood or bone marrow aspirate, and the heavier components comprise red blood cells. The positioning part comprises the majority of the mass of the separating element and is thin so that differences in the position of the separating element with respect to the interface are small compared to differences in the densities of the separated compoments, particularly the component comprising red blood cells. A method allows red blood cells to move the separating element during decanting to ensure complete decant of the supernatant.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: January 8, 2013
    Assignee: Harvest Technologies Corporation
    Inventor: James R. Ellsworth
  • Patent number: 8343440
    Abstract: A cancer cell separating apparatus includes: a flow channel including an antibody fixation area having antibodies which bind specifically to cancer cells fixed thereon, wherein the cancer cells and non-cancer cells are separated using a difference in velocity of movement between the cancer cells and the non-cancer cells in cell slurry introduced into the flow channel.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: January 1, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Satomi Yoshioka
  • Publication number: 20120329141
    Abstract: A particle processing device includes a chamber and at least one capturing structure. The chamber is connected to a first port and a second port to provide a space between the first and second ports for flowing of a fluid having a particle. The capturing structure is provided in the chamber to form a fluidic channel, wherein the fluidic channel has a first opening and a second opening and a capturing region is formed between the first and second openings such that the capturing region has a changeable sectional shape for capturing the particle in the fluid flowing from the first port to the second port.
    Type: Application
    Filed: August 5, 2010
    Publication date: December 27, 2012
    Applicant: NEXVIVO CO.,LTD.
    Inventors: Young-Ho Cho, Il Doh, Hwan-Il Yoo
  • Patent number: 8337705
    Abstract: Described are a device and a method for the manipulation of a liquid sample material in which magnetic microparticles are suspended whereby the microparticles have a functionalized surface and an analyte is bound to the surface. The sample material is introduced into a device with a liquid system through an injection device (50) and in a first mobile phase the sample material is carried to an extractor (90). In a section (97) of the extractor (90) the microparticles are immobilized by means of a magnetic field of a controllable means (96) and separated from the remaining sample material. By switching over of a switching unit (110) a second mobile phase (75) is carried to the extractor (90) and the second mobile phase (75) detaches the adsorbed analyte from the surface of the microparticles. The second mobile phase (75) with the dissolved analyte(s) can be analyzed by way of chromatographic separation (130) and subsequent detection (140).
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: December 25, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Michael Vogeser
  • Patent number: 8337711
    Abstract: Disclosed is a system to separate, enrich, and/or purify a cellular population from a biological tissue, such as a tissue sample. For example, an adipose tissue sample can be acquired and disrupted. The disrupted tissue sample can then be separated and purified. The separated components can include multipotent, pluripotent, or other cell populations.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: December 25, 2012
    Assignee: Biomet Biologics, LLC
    Inventors: Randel Dorian, Michael D. Leach, Richard W. Storrs, Jason Chavarria
  • Patent number: 8337704
    Abstract: The invention concerns a device and a method for the manipulation of a liquid sample material in which magnetic microparticles are suspended whereby the microparticles have a functionalized surface and an analyte is bound to the surface. The sample material is introduced into a device with a liquid system through an injection device (50) and in a first mobile phase the sample material is carried to an extractor (90). In a first section (97a) of the extractor (90) the microparticles are immobilized by means of a magnetic field of a controllable device (96) and separated from the remaining sample material. By switching over of a switching unit (110) a second mobile phase (75) is carried to the extractor (90) and the second mobile phase (75) detaches the adsorbed analyte from the surface of the microparticles.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: December 25, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Michael Vogeser
  • Patent number: 8329476
    Abstract: A sample port includes a body equipped with an internal cavity and two plungers arranged moveably in the internal cavity, whereby the plungers can be pressed against each other in the internal cavity, in order to compress a sample. At least one of the plungers can be moved into a reactor in order to collect a sample. The sample port also includes a sample chamber, which is formed by a space remaining between the internal cavity and the plungers. At least one sample-container connection is connected in connection with the internal cavity in order to collect the sample from sample chamber. In addition, the sample port has a filter which is provided to at least either plunger for separating a liquid component of the sample from a solid component and means for leading the liquid component of the sample out of the sample chamber.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: December 11, 2012
    Assignee: Teknologian Tutkimuskeskus VTT
    Inventors: Juha-Pekka Pitkänen, Ari Hokkanen, Päivi Heimala, Jari Kauhaniemi, Kai Kolari, Pekka Savolahti, Jaana Uusitalo
  • Publication number: 20120309004
    Abstract: A micro-device for disrupting cells includes a first chamber in which the cells are disrupted, a second chamber which is pressurized and depressurized, a flexible membrane which separates the first chamber and the second chamber and is vibrated by pressuring and depressurizing the second chamber, and a micro-unit confined in the first chamber, where the micro-unit disrupts the cells in the first chamber.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 6, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyu-youn HWANG, Joon-ho KIM, Sung-hong KWON, Chin-sung PARK, Hee-kyun LIM, Sun-ok JUNG, Won-jong JUNG