Liquid Chromatography Patents (Class 422/70)
  • Patent number: 8920719
    Abstract: Provided is a strip-assembled immunochromatographic disc, containing: a base, a lid engaged with the base and a draining piece disposed between the strips on the base and the lid, wherein a sampling opening is disposed on the lid directly facing to the draining piece, and the said sampling opening intercommunicates to a draining groove provided on the inner side of the lid which is formed by a plurality of draining channels; several strip stages are provided on the base with their location and number corresponding to those of the draining channels provided on the lid, and the edge of the draining piece laps to the sample pads of the strips carried on the stage adjacent to one end of the sampling opening. Also provided is a method of performing multiplexed immnochromatographic detection using the strip disc to accomplish the detection of multiple target analytes in one sample in an assay.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: December 30, 2014
    Assignee: Institute of Microbiology and Epidemiology, Acadamy of Military Medical Sciences
    Inventors: Lei Zhou, Zongmin Du, Ruifu Yang, Huijie Huang
  • Patent number: 8921113
    Abstract: A buffer kit includes a first eluent and second eluent. The first eluent solution includes at least four buffer salts where at least three of the four buffer salts are a monovalent buffer salt, have a net negative charge or a net neutral zwitterionic charge, and include a sulfonate group and an amine. The second eluent solution includes at least four buffer salts where at least three of the four buffer salts are a monovalent buffer salt, have a net negative charge or a net neutral zwitterionic charge, and include a sulfonate group and an amine. The first eluent solution has a first pH and the second eluent solution has a second pH where the first pH and second pH are different values. The buffer kit provides a linear pH gradient that forms an approximately straight line from at least the first pH to the second pH.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 30, 2014
    Assignee: Dionex Corporation
    Inventors: Shanhua Lin, Christopher A. Pohl
  • Patent number: 8920658
    Abstract: Methods and apparatus for desolvating flowing liquid streams while retaining temporal resolution of dissolved substrates are disclosed. A novel small-scale self-regulating spray dryer preserves temporal resolution while desolvating a liquid chromatography eluent stream and depositing the solute onto an optical surface for infrared spectrographic analysis. The liquid eluent is pumped through a heated nebulizer to create a high-speed jet of solute containing liquid and solvent vapor. This jet is directed circumferentially inside a hot cylindrical cavity. Centrifugal force causes the larger liquid droplets to travel along the outer diameter of the cavity. The cavity surface is heated to cause the droplets to film boil. Film boiling reduces droplet contact with the cavity surface thereby retaining the solute in the droplets. The solute temperature is limited by controlling the pressure into which the solvent evaporates from the droplets.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: December 30, 2014
    Assignee: Spectra Analysis Instruments, Inc.
    Inventors: William W. Carson, Sidney Bourne
  • Publication number: 20140377878
    Abstract: The present invention provides a rack for holding sample vials comprising: (i) a solid base; (ii) an upwardly extending wall around the perimeter of said base; (iii) a plurality of means for supporting a plurality of vials, each means for supporting one vial; and (iv) a means for draining liquid from said rack.
    Type: Application
    Filed: December 14, 2012
    Publication date: December 25, 2014
    Inventors: Ross Oliver Beecroft, Victoria Louise Goff, Sarah Jane Karim, Nicholas Brian Milne
  • Patent number: 8906231
    Abstract: The present invention provides a method and automated system for the purification of polypeptides including the direct filtration of solutions containing the polypeptides after purification.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: December 9, 2014
    Assignee: Lonza Biologics PLC
    Inventors: Mark R. Whickman, Sam Mansoor
  • Patent number: 8906229
    Abstract: The invention concerns a device comprising: a base (2); a moveable or removable door (20), said device having a closed door position; and in the closed door position, a circuit (8) comprising a bag comprising two flexible films and conveying network connectors, and a press (9) comprising a first shell (16) disposed on said front face (5) of said base (2) and a second shell (17) disposed in said door (20); said bag being clamped between said first shell (16) and said second shell (17) in a state in which conduits of said network for conveying liquid are formed between said films.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 9, 2014
    Assignee: EMD Millipore Corporation
    Inventors: Sebastien Cirou, Rene Reinbigler, Virginie Buisson, Jean-Louis Weissenbach
  • Patent number: 8906692
    Abstract: Disclosed are an apparatus and method for separation analysis of mannose-6-phosphate (M6P) by post-column fluorescence detection method. The apparatus is based on chromatography, and includes a column with a solid phase having affinity for phosphate, a flow path for the eluate, a heater installed on the flow path for M6P and a basic amino acid to react by heating the eluate in the flow path, and a fluorescence detector installed downstream of the heater for continuously irradiating the eluate with excitation light and measuring the intensity of the emission, and may include in the flow path a supply channel for addition of a basic amino acid between the column and the heater. The method is characterized in that it uses the apparatus and a second mobile phase consisting of a second buffer containing phosphate of predetermined concentration and adjusted to a predetermined pH.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: December 9, 2014
    Inventor: Tetsuo Yokoyama
  • Patent number: 8905073
    Abstract: A microfluidic device provided with a micro-channel structure capable of easily and positively providing therein micro-droplet having various dilution ratios. A micro-channel structure provided in a substrate (2) has a first mixing unit (11) and a second mixing unit (21) connected to the downstream side of the first mixing unit (11), with each mixing unit (11, 21) having first through third micro-channels. One end of a first weighing unit (11d) consisting of a micro-channel having a capacity equivalent to the volume of a specified-amount first micro-droplet is opened to a first micro-channel (11a), and the other end is opened to a merging unit (12a) provided on a second micro-channel (12). One end of a second weighing unit (13d) consisting of a micro-channel having a capacity equivalent to the volume of a specified-amount second micro-droplet is connected to a third micro-channel (13), and the other end is opened to the merging unit (12a).
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: December 9, 2014
    Assignee: Sekisui Chemical Co. Ltd.
    Inventors: Kazuki Yamamoto, Hiroji Fukui, Minoru Seki
  • Patent number: 8890061
    Abstract: Provided are methods for determining the amount of reverse T3 in a sample using mass spectrometry. The methods generally involve ionizing reverse T3 in a sample and detecting and quantifying the amount of the ion to determine the amount of reverse T3 in the sample.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: November 18, 2014
    Assignee: Quest Diagnostics Investments, Inc.
    Inventors: J. Fred Banks, Peter P. Chou, Noriya M. Matt
  • Patent number: 8889423
    Abstract: A method for analyzing a binding ability of protein to a compound, comprising the steps of (a) fractionating a first group of isotope-labeled proteins into plural fractions using a carrier having the compound immobilized thereon; (b) fractionating a second group of proteins into one or plural fractions using a carrier having the compound immobilized thereon; (c) adding an amount of at least one fraction obtained in step (b) to each of the fractions obtained in step (a); (d) analyzing the fractions obtained in step (c) with mass spectrometry; and (e) based on the mass spectrometry information, obtaining, regarding each fraction, an intensity ratio between a peak derived from a protein in the fraction obtained in step (a) and a peak derived from a protein in the fraction obtained in step (b), and comparing degrees of the binding ability of the plural kinds of proteins to the compound.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: November 18, 2014
    Assignee: Eisai R & D Management Co., Ltd.
    Inventors: Yoshiya Oda, Hiroyuki Katayama
  • Publication number: 20140273264
    Abstract: This invention provides mixed-mode stationary phase compositions, devices and systems comprising the stationary phases as well as methods of producing these compositions using epoxide ring-opening reactions. Also provided are methods of using the stationary phases of the invention in separations.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Xiaodong LIU, Liang CAO, Christopher A. POHL
  • Publication number: 20140248714
    Abstract: Methods and systems for processing samples fixed to a porous substrate generally comprising, a compressor defining one or more fluid isolation areas, a support, for the porous substrate, having an opening corresponding to one or more of the fluid isolation areas of the compressor, an actuator that causes at least a portion of the compressor to press against the porous substrate, a fluid inlet having access to the fluid isolation area at least when the compressor is pressed against the porous substrate, and a fluid outlet to receive fluid, through the opening in the support corresponding to the fluid isolation area of the compressor, at least when the compressor is pressed against the porous substrate.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 4, 2014
    Applicant: WHATMAN INTERNATIONAL LIMITED
    Inventors: Philip Alexander Shoemaker, Weston Blaine Griffin, Erin Jean Finehout, Xuefeng Wang, Kashan Ali Shaikh, Greg Darryl Goddard
  • Patent number: 8802010
    Abstract: A chromatographic method including chromatographically separating sample ionic species in an eluent stream, detecting the separated sample ionic species, catalytically combining hydrogen and oxygen gases or catalytically decomposing hydrogen peroxide in a catalytic gas elimination chamber, and recycling the effluent stream from the chamber to the chromatography separation column. The residence time between the detector and the chamber is at least about one minute. Also, flowing the recycle sequentially through two detector effluent flow channels of an electrolytic membrane suppressor. Also, applying heat or UV energy between the detector and the chamber. Also, detecting bubbles after the chamber. Also, a Platinum group metal catalyst and ion exchange medium in the chamber. Apparatus for performing the methods.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: August 12, 2014
    Assignee: Dionex Corporation
    Inventors: Yan Liu, Kannan Srinivasan, Christopher A. Pohl, Sheetal Bhardwaj, Zhongqing Lu
  • Patent number: 8802011
    Abstract: A chromatographic method including chromatographically separating sample ionic species in an eluent stream, detecting the separated sample ionic species, catalytically combining hydrogen and oxygen gases or catalytically decomposing hydrogen peroxide in a catalytic gas elimination chamber, and recycling the effluent stream from the chamber to the chromatography separation column. The residence time between the detector and the chamber is at least about one minute. Also, flowing the recycle sequentially through two detector effluent flow channels of an electrolytic membrane suppressor. Also, applying heat or UV energy between the detector and the chamber. Also, detecting bubbles after the chamber. Also, a Platinum group metal catalyst and ion exchange medium in the chamber. Apparatus for performing the methods.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: August 12, 2014
    Assignee: Dionex Corporation
    Inventors: Yan Liu, Kannan Srinivasan, Christopher A. Pohl, Sheetal Bhardwaj, Zhongqing Lu
  • Publication number: 20140212981
    Abstract: Disclosed are methods and systems for the analysis of thiopurine drug metabolites in a sample using liquid chromatography/mass spectrometry.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 31, 2014
    Applicant: Laboratory Corporation of America Holdings
    Inventors: Russell Philip Grant, Stacy Michelle Walker Dee
  • Publication number: 20140213468
    Abstract: Devices and methods for performing a point of care diagnostic test for detecting and quantifying at least one analyte in a biological sample. The device may include an immunoassay apparatus and a holder with a variable angle stage for positioning the immunoassay apparatus relative to a light source and a detector device. In one embodiment, the device is based upon elastic light scattering, so the variation in the angle of incidence and angle of reflection are optimized to maximize signal generation due to elastic light scattering. The detector device may include a wired or wireless connection to a computer network for communicating with an electronic medical records system, uploading the amount or concentration of at least one analyte present in the sample to the electronic medical records system, or querying a decision support algorithm stored in a computer readable format. The detector device may further include an onboard interpretive algorithm.
    Type: Application
    Filed: November 1, 2013
    Publication date: July 31, 2014
    Inventors: Joel R.L. Ehrenkranz, Pamela J. Turbeville, Jeong-Yeol Yoon, David J. You
  • Patent number: 8784655
    Abstract: A liquid chromatographic system is provided including catalytically combining hydrogen and oxygen gases in the chromatography eluent stream in a catalytic gas elimination chamber, to form water and thereby reduce the gas content in the eluent stream. Also, a liquid ion chromatographic system in which the effluent from the detector is recycled to a membrane suppressor and then is mixed with a source of eluent for recycle to the chromatographic column.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 22, 2014
    Assignee: Dionex Corporation
    Inventors: Yan Liu, Christopher A. Pohl, Nebojsa Avdalovic, John M. Riviello, Archava Siriraks
  • Patent number: 8775098
    Abstract: A sample is introduced from an injector unit into a mobile phase. One target component is separated into a plurality of vials by a fraction collector. Next, a sampler sequentially suctions the eluate from the plurality of the vials and performs an LC analysis on each of the eluate portions, thereby producing a chromatogram. A peak detector calculates the peak area corresponding to the amount of the target component in each chromatogram. A delay estimator extracts the peak area in the fraction having the maximum peak area and the peak areas in the previous and succeeding fractions on the time axis of the foregoing fraction. Then, the delay estimator estimates a delay volume from a detector to the tip end of the dispenser nozzle based on data such as the peak areas, the flow rate of the liquid fed from the pump, positions of the vials, and the position of the peak of the target component in the chromatogram detected by the detector, and stores the delay volume.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: July 8, 2014
    Assignee: Shimadzu Corporation
    Inventor: Shuzo Maruyama
  • Patent number: 8765391
    Abstract: A method and kit for assaying a cell sample for the presence of at least a threshold number of cells of a given type are disclosed. The kit includes an assay device having a sample chamber for receiving the cell sample and an elongate collection chamber containing a selected-density and/or viscosity medium and having along its length, a plurality of cell-collection regions, and particles which are capable of specific attachment to cells of the selected cell type, and which are effective, when attached to the cells, to increase the density or magnetic susceptibility of the cells. In operation, particle-bound cells and particles in the cell sample are drawn through the elongate collection chamber under the influence of a gravitational or selected centrifugal or magnetic-field force until the particle-bound cells and particles completely fill successive cell-collection regions in the collection chamber.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 1, 2014
    Assignee: Zyomyx, Inc.
    Inventors: Frank Zaugg, Renee Tobias, Silvia McManus-Munoz, Peter Kernen, Laurence Ruiz-Taylor, Peter Wagner
  • Publication number: 20140178979
    Abstract: An apparatus comprises: a first chromatographic column fluidically coupled to a source of sample and a source of a first chromatographic mobile phase solvent; a second chromatographic column fluidically coupled to the first column; a source of a second mobile phase solvent fluidically coupled between the first and second columns; and a detector, the first chromatographic column being configurable to receive, in a trapping step, the first solvent and sample and to retain a first portion of a plurality of analytes therein and to pass a second portion of the plurality of analytes therethrough, the second chromatographic column being configurable, in the trapping step, to receive the second portion of the plurality of analytes and the first and second solvents and to retain the second portion of the plurality of analytes therein, the detector being arranged to receive the second and first portions in respective first and second elution steps.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Joseph HERMAN, Sarah J. FAIR, Dayana ARGOTI
  • Patent number: 8758587
    Abstract: An analysis apparatus is provided with a storage tank, an injection nozzle, a syringe, a collection nozzle, a test sample tank, a microchip having two or more separation channels, detectors, a waste liquid tank, a controller, and a power supply. The collection nozzle collects a specimen which becomes a test sample from a test sample container housing the specimen, and transfers the specimen to the test sample tank. The separation channels separate characteristic components contained in the test sample. The injection nozzle is distanced from the collection nozzle and injects the test sample from the test sample tank into the separation channels. The detectors detect the separated characteristic components in the separation channels.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: June 24, 2014
    Assignee: ARKRAY, Inc.
    Inventors: Koji Sugiyama, Daisuke Matsumoto, Yasunori Shiraki, Satoshi Yonehara
  • Patent number: 8753586
    Abstract: An apparatus for chemical separations includes a microfluidic substrate having an outlet aperture for outputting an eluent of a sample, a spray unit having an inlet to receive the eluent and an outlet to emit a spray of the eluent, and a force-applying unit. The spray unit has a deformable portion defining the inlet and having an elastic modulus that is lower than an elastic modulus of the microfluidic substrate. The force-applying unit, such as a spring, is disposed to urge the deformable portion in contact with the substrate to form a substantially fluid-tight seal.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: June 17, 2014
    Assignee: Waters Technologies Corporation
    Inventors: David P. Prentice, Russell L. Keene, Stanilaw Koziol, Joseph D. Michienzi, Paul E. Linderson
  • Patent number: 8741134
    Abstract: In a preferred embodiment, a sample container storage part for storing a number of sample containers S, a nozzle for dropping a sample component separated and supplied by an LC and an additive liquid such as digestive fluid supplied from another liquid supplying part to the sample container S, a carrying mechanism for carrying and positioning the sample container at an arbitrary position under the nozzle, and a second nozzle, serving as a suction/injection mechanism, for sucking in the fractionated/collected sample component and injecting the sample component to another LC. The carrying mechanism provides a rotation mechanism. The carrying mechanism rotates over 180 degrees and carries the sample container S completed with fractionating/collecting to the position of the second nozzle, and the sample is sucked in by the second nozzle and injected to the LC of next stage.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: June 3, 2014
    Assignee: Shimadzu Corporation
    Inventors: Shuzo Maruyama, Yosuke Iwata
  • Patent number: 8741974
    Abstract: A method for forming a filter in a fluid flow path in a microfluidic device is provided. The method includes introducing a photopolymerization reaction solution into the microfluidic device; and performing polymerization of photopolymerization reaction solution to form a filter in the fluid flow path in a microfluidic device.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 3, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-eun Yoo, Jong-myeon Park
  • Publication number: 20140147921
    Abstract: A microsecond time-resolved mass spectrometry device and method of using desorption electrospray ionization (10) was described for the kinetic study of fast reactions. The device includes a liquid jet generator (64) that is configured to emit a continuous liquid jet (50) having a length. An ambient ionization source (10) is directed toward a selected variable location along the continuous liquid jet (50) to desorb at least a portion of the continuous liquid jet (50). A mass analyzer (30) analyzes a mass-to-charge ratio of an ionized sample that is within the desorbed portion of the continuous liquid jet (50). The acquired mass spectra reflect the reaction progress in different reaction times and, therefore, may be used to derive the reaction rate.
    Type: Application
    Filed: May 17, 2011
    Publication date: May 29, 2014
    Applicant: Ohio University
    Inventors: Hao Chen, Zhixin Miao
  • Patent number: 8728309
    Abstract: In a system and method for feature alignment in chromatographic systems, the system runs a first sample through a first separation column. The system determines a first set of features for the first sample run. The system runs a second sample through a second separation column and detects a second set of features for the second sample run. The system estimates a systematic shift in features between the first sample run through the first separation column and the second sample run through the second separation column. The system adjusts the second set of features detected for the second sample run through the second separation column based on the estimated systematic shift to obtain a third set of adjusted features.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 20, 2014
    Assignee: Agilent Technologies, Inc.
    Inventor: Xiangdong Don Li
  • Patent number: 8727231
    Abstract: A sealed microfluidic conduit assembly is fabricated by forming a joint through which a first conduit fluidly communicates with a second conduit, by bringing the first conduit into contact with the second conduit. A layer of malleable material surrounding one or both conduits is compressed against the joint to fluidly seal the joint, by applying a radial force to an outer surface of a jacket surrounding the conduits and malleable layer. The respective compositions and/or sizes of the first conduit and second conduit may be different.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: May 20, 2014
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Steven Edward Hobbs
  • Publication number: 20140134050
    Abstract: An apparatus for detecting analytes in a liquid sample may include an elongated primary channel through which an ionic species flows, the primary channel extending through a primary channel member, a first regenerant channel through which a regenerant flows, the first regenerant channel extending adjacent to the primary channel and being formed in a first block, a first charged barrier having exchangeable ions capable of passing ions of only one charge, positive or negative, and of blocking bulk liquid flow, the first charged barrier disposed between the primary channel member and the first block for separating the primary channel from the first regenerant channel, and a first sealing member disposed between the first charged barrier and the first block defining the first regenerant channel.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 15, 2014
    Inventors: Kannan SRINIVASAN, Glenn M. KUSE, Rong LIN, Sheetal BHARDWAJ
  • Patent number: 8722416
    Abstract: An analytical method comprising performing a first fractionation of a polymer sample based on differences in crystallizability to provide a first set of sample fractions, performing a first analysis on the first set of sample fractions, performing a second fractionation of the first set of sample fractions to produce a second set of sample fractions, performing a second analysis on the second set of sample fractions, and synchronizing the first fractionation and second fractionation to provide about concurrent analysis of the polymer sample.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: May 13, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Youlu Yu, Chung C. Tso, Paul J. DesLauriers
  • Patent number: 8721892
    Abstract: Systems and methods for monitoring analytes in real time using integrated chromatography systems and devices. Integrated microfluidic liquid chromatography devices and systems include multiple separation columns integrated into a single substrate. Using such a device, parallel analysis of multiple samples can be performed simultaneously and/or sequential analysis of a single sample can be performed simultaneously on a single chip or substrate. The devices and systems are well suited for use in high pressure liquid chromatography (HPLC) applications. HPLC chips and devices including embedded parylene channels can be fabricated using a single mask process.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: May 13, 2014
    Assignee: California Institute of Technology
    Inventors: Chi-Yuan Shih, Yu-Chong Tai, Jun Xie, Darron K. Young, Po-Jui Chen
  • Patent number: 8716025
    Abstract: A control device for a sample separation apparatus, the sample separation apparatus including a first separation unit and a second separation unit downstream of the first separation unit and supplied with the fluidic sample after treatment by the first separation unit. A control device is configured for controlling the first separation unit to execute a primary separation sequence within a time interval for separating the fluidic sample into fractions, and for controlling the second separation unit to execute secondary separation sequences within the time interval for further separating the separated fractions into sub-fractions, wherein the secondary separation sequences form part of a common sample separation method defined by a common specification of the sample separation involving a set of parameters, and adjusting, over a progress of the primary separation sequence, at least one parameter according to which at least one of the plurality of secondary separation sequences is executed.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 6, 2014
    Assignee: Agilent Technologies, Inc.
    Inventor: Klaus Witt
  • Patent number: 8709792
    Abstract: A method and device for detecting analytes in a test sample. Embodiments include methods for quantitatively detecting analytes within a range of concentrations. In an embodiment the method includes a lateral flow test strip with multiple test areas for capturing a labeled receptor to provide a detectable signal.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: April 29, 2014
    Assignee: Charm Sciences, Inc.
    Inventors: Steven J. Saul, Mark E. Tess, Robert J. Markovsky
  • Patent number: 8702983
    Abstract: The present invention relates to axial flow chromatography columns, methods for separating one or more analytes in a liquid by the use of such columns, and systems employing such columns. The column comprises a first port and a second port, the first port and said second port being at essentially the same level or elevation above the level of the bed space on the chromatography column.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 22, 2014
    Assignee: GE Healthcare Bio-Sciences AB
    Inventor: Klaus Gebauer
  • Patent number: 8703494
    Abstract: Described herein are systems and methods for assaying a sample to quantitatively determine the percentage of glycated hemoglobin in the sample.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: April 22, 2014
    Assignee: Relia Diagnostic Systems, LLC
    Inventors: William J. Rutter, Jang H. Han, Taewoo Kwon
  • Patent number: 8703491
    Abstract: Disclosed herein is a sample supply device that alternates between the supply of samples from one sample line while cleaning a second sample line and then supplying a second sample from the second sample line while cleaning the first sample line. This is repeated in rapid succession to allow greater speed in analyzing a plurality of samples in a shorter amount of time.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: April 22, 2014
    Assignee: Vivia Biotech S.L.
    Inventor: Alex Okun
  • Patent number: 8696901
    Abstract: The present invention relates to a polymeric porous material characterized in that: the porous material has a bimodal pore size distribution attributable to macropores having a pore size of at least 50 nm and mesopores having a pore size of from 2 nm to less than 50 nm, the proportion of the specific surface area of the macropores to the specific surface area of all pores of the porous material is at least 10%, and the porous material is produced by (1) polymerizing a monomer in the presence of a polymerization initiator using as a porogen a solution obtained by dissolving a polymer having a weight-average molecular weight of at least 100,000 and a molecular weight distribution Mw/Mn of not more than 1.5 in a good solvent for the monomer, and (2) removing the porogen from the resultant product.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: April 15, 2014
    Assignees: National University Corporation Kyoto Institute of Technology, Emaus Kyoto, Inc.
    Inventors: Ken Hosoya, Hiroshi Aoki, Norio Ishizuka, Katsuya Yamamoto
  • Patent number: 8695813
    Abstract: Methods and apparatus for desolvating flowing liquid streams while retaining temporal resolution of dissolved substrates are disclosed. A novel small-scale self-regulating spray dryer preserves temporal resolution while desolvating a liquid chromatography eluent stream and depositing the solute onto an optical surface for infrared spectrographic analysis. The liquid eluent is pumped through a heated nebulizer to create a high-speed jet of solute containing liquid and solvent vapor. This jet is directed circumferentially inside a hot cylindrical cavity. Centrifugal force causes the larger liquid droplets to travel along the outer diameter of the cavity. The cavity surface is heated to cause the droplets to film boil. Film boiling reduces droplet contact with the cavity surface thereby retaining the solute in the droplets. The solute temperature is limited by controlling the pressure into which the solvent evaporates from the droplets.
    Type: Grant
    Filed: December 8, 2007
    Date of Patent: April 15, 2014
    Assignee: Spectra Analysis Instruments, Incorporated
    Inventors: William W. Carson, Sidney Bourne
  • Patent number: 8696902
    Abstract: An analytical instrument fitting assembly for coupling first and second analytical fluid conduits is provided. The fitting assembly includes a first fitting defining a central passage adapted to receive a first fluid conduit defining an internal diameter of no greater than 0.040 inch and a second fitting. The second fitting defines a central passage extending between first and second ends and is in fluid communication with the first fitting. A separation device is disposed within a central passages of the first and second fittings to selectively separate liquids passing therethrough. The fitting assembly further includes a retractable end fitting having a housing, a tube extending within the housing, and a biasing member. Selective positioning of the tube within the housing minimizes dead space between the tube and the second end.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: April 15, 2014
    Assignee: Optimize Technologies, Inc.
    Inventors: Douglas W. Ford, Robert DeLine
  • Publication number: 20140099727
    Abstract: Techniques related to printing using a metal-surface charging element. A printing system includes a metal-surface charging element and a power supply. The charging element is disposed to deposit electric charge on an imaging surface. The power supply may provide electric power with an alternating current (AC) component and a direct current (DC) component to the charging element.
    Type: Application
    Filed: May 7, 2012
    Publication date: April 10, 2014
    Inventor: Harmesh K. Saini
  • Publication number: 20140093866
    Abstract: The specification generally discloses systems and methods for mixing and delivering fluids in microfluidic systems. The fluids can contain, in some embodiments reagents that can participate in one or more chemical or biological reactions. Some embodiments relate to systems and methods employing one or more vent valves to controllably flow and/or mix portions of fluid within the microfluidic system. Advantageously, fluid control such as a sequence of fluid flow and/or a change in flow rate, can be achieved by opening and closing one or more vent valves and by applying a single source of fluid flow (e.g., a vacuum) operated at a substantially constant pressure. This can simplify the operation and use of the device by an intended user.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: OPKO Diagnostics, LLC
    Inventors: Enqing Tan, Vincent Linder, Jason Taylor, David Steinmiller
  • Patent number: 8679346
    Abstract: An enantiomeric isomer separating agent includes a polysaccharide derivative supported by particles of a support by chemical bonding and has a concentration of eluted component (in terms of mass proportion), as determined through a liquid passing test of 20 ppm or lower.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: March 25, 2014
    Assignee: Daicel Corporation
    Inventor: Yasuhiro Kagamihara
  • Publication number: 20140073062
    Abstract: A specimen solution assay device includes a specimen solution dropping device which drops a specimen solution sequentially onto each of sample pads of immunochromatographic sensors positioned adjacent to each other in a transverse direction of each of the immunochromatographic sensors, and an image information acquisition device which acquires image information of a test area of each of the immunochromatographic sensors onto which the specimen solution is dropped by the specimen solution dropping device.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 13, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Akitake TAMURA
  • Patent number: 8669519
    Abstract: Provided are methods for determining the amount of reverse T3 in a sample using mass spectrometry. The methods generally involve ionizing reverse T3 in a sample and detecting and quantifying the amount of the ion to determine the amount of reverse T3 in the sample.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: March 11, 2014
    Assignee: Quest Diagnostics Investments, Inc.
    Inventors: J. Fred Banks, Peter P. Chou, Noriya M. Matt
  • Publication number: 20140065725
    Abstract: An object of the invention is to provide a nucleic acid detection method which takes advantage of the high specificity of hybridization techniques, reduces the time length and the number of steps required for detection of PCR products, and allows for easy and highly accurate detection by visual observation without the need of special equipment; and a nucleic acid detection device or kit. The invention provides a method for detecting a target nucleic acid in a sample, which includes performing amplification of the target nucleic acid sequence to synthesize an amplification product having a partially double-stranded structure where a single-stranded region is added to each end of the target sequence, and hybridizing a nucleic acid sequence bound to a development medium and a nucleic acid sequence labeled with a labeling compound with the single-stranded regions of the amplification product to form a sandwich hybridization complex; and a detection device thereof.
    Type: Application
    Filed: November 24, 2011
    Publication date: March 6, 2014
    Applicant: KANEKA CORPORATION
    Inventors: Koji Takahashi, Shigehiko Miyamoto, Takaaki Jikihara, Jun Tomono
  • Publication number: 20140065647
    Abstract: The invention relates to methods of reliably and quantitatively determining the amount of an analyte of interest in a fluid sample using a flow-induced assay, such as an immunochromatographic assay, in which spatiotemporal measurements are recorded during the course of the assay reaction, generating a spatiotemporal dataset, and subsequently analyzed. The invention also relates to a system incorporating instruments for recording spatiotemporal datasets (spatiotemporal data recorders), devices comprised of flow-induced assays configured for analysis on a spatiotemporal recorder, and programs for analyzing the recorded spatiotemporal datasets.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 6, 2014
    Inventor: Edward L Mamenta
  • Publication number: 20140057292
    Abstract: The present invention is directed to provide a highly quantitative immunochromatographic device. It is an immunochromatographic device comprising: a glass plate including: a sample application portion for applying a sample containing an antigen to the device; a sample recovery portion for recovering the sample applied to the sample application portion from the device; a developing portion for developing the sample from the sample application portion to the sample recovery portion; and an antibody-carrying portion for carrying an antibody capable of binding to the antigen in the developing portion; wherein the developing portion comprises a transparent plate, the glass plate and the transparent plate are placed in parallel with each other with a gap, and the sample can migrate in the gap of the developing portion by capillary action.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: MORINAGA & CO., LTD.
    Inventor: Tsutomu HONJO
  • Patent number: 8652420
    Abstract: The present invention relates to a chromatographic separation device comprising a first substrate body carrying a micro-fabricated separation channel recessed on one of its surfaces and covered by a second substrate body, both perforated with connection-holes for the supply and withdrawal of a sample and carrier liquid. The present device is characterized in that said micro-fabricated separation channel is preceded or succeeded by a flow distribution region that is filled with an array of micro-fabricated pillars, having a shape, size and positioning pattern selected such that said flow distribution region has a ratio of transversal to axial permeability of at least 2.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: February 18, 2014
    Assignee: Vrije Universiteit Brussel
    Inventor: Gert Desmet
  • Patent number: 8647576
    Abstract: An acid or base is generated in an aqueous solution by the steps of: (a) providing a source of first ions adjacent an aqueous liquid in a first acid or base generation zone, separated by a first barrier (e.g., anion exchange membrane) substantially preventing liquid flow and transporting ions only of the same charge as said first ions, (b) providing a source of second ions of opposite charge adjacent an aqueous liquid in a second acid or base generation zone, separated by a second barrier transporting ions only of the same charge as the second ions, and (c) transporting ions across the first barrier by applying an electrical potential through said first and second zones to generate an acid-containing aqueous solution in one of said first or second zones and a base-containing aqueous solution in the other one which may be combined to form a salt. Also, electrolytic apparatus for performing the above method.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: February 11, 2014
    Assignee: Dionex Corporation
    Inventors: Yan Liu, Nebojsa Avdalovic
  • Publication number: 20140038217
    Abstract: A method (100) for analyzing chemicals includes fractionating a complex sample into at least two sample portions that each includes potions of two polypeptides though in different concentration ratios, digesting and performing LC/MS on each of the sample portions (110, and associating precursor ions observed via LC/MS with their corresponding polypeptide in response to LC/MS provided intensity data (170). A set of precursor ions that has substantially similar intensity ratios in both sample portions is determined to be associated with the same polypeptide.
    Type: Application
    Filed: April 16, 2013
    Publication date: February 6, 2014
    Applicant: Waters Technologies Corporation
    Inventor: Waters Technologies Corporation
  • Patent number: 8642351
    Abstract: The invention provides improved methods and apparatus for fluid chromatography, and is particularly appropriate to high-pressure liquid chromatography carried out using eluent flow rates less than 1 ?l/minute, for example on nanoflow columns. In both single- and multi-dimensional chromatography systems, especially those comprising trapping media to facilitate injection of relatively large volumes of sample on to nanoflow columns, the on-line addition of a diluting solvent enables stronger eluents and sample solvents to be employed without causing premature release of analytes from the trapping media or the degradation of the second dimension chromatographic separation. The invention may be advantageously used for two-dimension reverse phase/reverse phase separations, especially for the separation of complex mixtures of peptides.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: February 4, 2014
    Assignee: Waters Technologies Corporation
    Inventors: Hongji Liu, Jeffrey W. Finch