Conductiometric Type Patents (Class 422/76)
  • Patent number: 9678048
    Abstract: Disclosed is a method of evaluating a final equilibrium pH of a contaminated soil on site by using a paste pH. The method includes measuring the paste pH by adding a solution to the contaminated soil, and evaluating the final equilibrium pH according to an initial pH by applying the paste pH to Final ? ? equilibrium ? ? pH = ( paste ? ? pH + 1 ) × exp ? ( - 1 initial ? ? pH ) - exp ? ( - 1 ? ( paste ? ? pH + 1 ) initital ? ? pH ) , Equation ? ? 1 in which the initial pH is a predetermined integer in a range of 1 to 10.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: June 13, 2017
    Assignee: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Pyeong-Koo Lee, Jung-Hae Choi
  • Publication number: 20150064732
    Abstract: An analytical test cartridge is provided. The analytical test cartridge can be used for medical analyses of liquid samples removed from a patient, for example blood. The analytical test cartridge is configured to provide for titration experiments. An example of a titration experiment that can be performed with the arrangement, is titration of heparin with protamine. Methods of assembly and use are provided.
    Type: Application
    Filed: February 28, 2014
    Publication date: March 5, 2015
    Inventor: Kee Van Sin
  • Patent number: 8945939
    Abstract: The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: February 3, 2015
    Assignee: Ecolab USA Inc.
    Inventors: Amy M. Tseng, Brian V. Jenkins, Robert Mack
  • Publication number: 20150024509
    Abstract: There is provided a method and device for measuring an ion concentration of a sample. The method comprises exposing a chemical sensor to the sample to provide an electrical output signal 5 representing said ion concentration and controlling a titrator exposed to the sample to release or absorb a quantity of ions to the sample. The method may use feedback means comprising Pulse Width Modulation control to drive the titrator such that the sample maintains a stable ion concentration.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 22, 2015
    Applicant: DNA ELECTRONICS LTD.
    Inventors: Christofer Toumazou, Yan Liu
  • Patent number: 8932874
    Abstract: The invention is directed towards methods and compositions for identifying the amount of ammonium acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of ammonium acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of ammonium acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the ammonium acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: January 13, 2015
    Assignee: Nalco Company
    Inventors: Amy M. Tseng, Brian V. Jenkins, Robert M. Mack
  • Patent number: 8920825
    Abstract: The present application is directed to a novel composition which acts as a barrier to noxious agents while adding self-detoxifying catalytic treatments to neutralize the noxious and harmful warfare agents when applied for example on a fabric, or other solid support.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: December 30, 2014
    Assignees: Stedfast, Inc., U.S. Army Natick Soldier Research, Development and Engineering Center, Chemical Technology Team
    Inventors: Hamid Benaddi, Heidi Schreuder-Gibson
  • Patent number: 8894932
    Abstract: A reagent preparing device capable of supplying a predetermined reagent, which includes a first liquid and a second liquid different from the first liquid, to a measurement section for measuring a specimen using the reagent, comprising: a reagent preparing section for preparing the predetermined reagent; a characteristic measurement device for measuring characteristic of the reagent prepared by the reagent preparing section; and a controller configured for performing operations comprising, controlling the supply of reagent prepared by the reagent preparing section to the measurement section according to the measurement result by the characteristic measurement device, and calibrating the characteristic measurement device based on a known characteristic value of a standard liquid having the known characteristic value and a measurement result obtained by measuring the characteristic of the standard liquid by the characteristic measurement device, is disclosed. A specimen processing system is also disclosed.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: November 25, 2014
    Assignee: Sysmex Corporation
    Inventors: Koichi Okubo, Noriyuki Nakanishi, Masahiko Oguro, Tomoyuki Asahara, Takayuki Nakajima
  • Patent number: 8828738
    Abstract: The invention is directed to methods and devices for reducing interference from heterophile antibodies in an analyte immunoassay. In one embodiment, the invention is to a method comprising the steps of (a) amending a biological sample such as a whole blood sample with non-human IgM or fragments thereof by dissolving into said sample a dry reagent to yield a non-human IgM concentration of at least about 20 ?g/mL or equivalent fragment concentration; and (b) performing an electrochemical immunoassay on the amended sample to determine the concentration of said analyte in said sample. Preferably, the sample is amended with IgG or fragments thereof in addition to the IgM of fragments thereof.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: September 9, 2014
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, John Emegbero Omakor
  • Patent number: 8716028
    Abstract: The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Nalco Company
    Inventors: Amy Tseng, Brian V. Jenkins, Robert M. Mack
  • Patent number: 8642058
    Abstract: The present application is directed to a novel composition which acts as a barrier to noxious agents while adding self-detoxifying catalytic treatments to neutralize the noxious and harmful warfare agents when applied for example on a fabric, or other solid support.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: February 4, 2014
    Assignees: U.S. Army Natick Soldier Research, Development and Engineering Center Chemical Technology Team, Stedfast Inc.
    Inventors: Hamid Benaddi, Heidi Schreuder-Gibson
  • Patent number: 8628724
    Abstract: Methods and systems to collect a sample of bodily fluid from a patient using an integrated needle and test strip assembly are provided. In this novel assembly, the test strip and needle form one unit that captures the sample of blood or interstitial fluid from the patient once the apparatus is pressed to the skin. The hollow aspiration needle includes more than one opening at a distal end, each opening coming into contact with the bodily fluid when disposed within a cutaneous or subcutaneous layer of the patient's skin. The disclosed test strip includes at least one reaction site for testing analyte concentrations and a means for linking to many commercially available test strip meters to provide readout of the analyte concentration. The sample may be captured by capillary flow, by an integrated aspirator, or by a differential vacuum device resident on the test strip meter.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: January 14, 2014
    Assignee: Charleston Area Medical Center, Inc.
    Inventor: J. Todd Kuenstner
  • Patent number: 8585973
    Abstract: In one embodiment, a method is provided for the manufacture of a nano-sensor array. A base having a sensing region is provided along with a plurality of nano-sensors. Each of the plurality of nano-sensors is formed by: forming a first nanoneedle along a surface of the base, forming a dielectric on the first nanoneedle, and forming a second nanoneedle on the dielectric layer. The first nanoneedle of each sensor has a first end adjacent to the sensing region of the base. The second nanoneedle is separated from the first nanoneedle by the dielectric and has a first end adjacent the first end of the first nanoneedle. The base is provided with a fluidic channel. The plurality of nano-sensors and the fluidic channel are configured and arranged with the first ends proximate the fluidic channel to facilitate sensing of targeted matter in the fluidic channel.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 19, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Hesaam Esfandyarpour
  • Patent number: 8029731
    Abstract: A device for measuring/determining a physical quantity of a medium. The device comprises a sensor part and an electronic part, whereby at least the electronic part is arranged inside a housing and at least one fuel cell is provided which at least partially covers the energy demand of the device.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: October 4, 2011
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Michael Krause, Florian Stengele
  • Patent number: 8008082
    Abstract: A method and system for switching the dispensing of a first solution from a first vessel to dispensing a second solution from a second vessel when a parameter of the first solution crosses a threshold is described. In one embodiment, a fluid dispensing apparatus includes a first vessel and a second vessel. The first vessel includes an output conduit adapted to dispense the first solution from the first vessel into a fluid receiving region. The second vessel includes an output conduit adapted to dispense the second solution from the second vessel into the fluid receiving region. The apparatus includes a first sensor positioned to measure a parameter of the first solution before the first fluid enters the fluid receiving region. The apparatus also includes a second sensor positioned to measure a parameter of the second solution before the second solution enters the fluid receiving region.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: August 30, 2011
    Inventors: David R. Howland, Matt Hayas
  • Patent number: 7977106
    Abstract: This invention is a disposable cartridge for use at the patient side to perform traditional coagulation assays on fresh whole blood or blood derivative samples. The cartridge, in use with an electronic analyzer allows a fluid sample to be metered and quantitatively mixed with reagents which activate the coagulation cascade. An artificial substrate for thrombin, the enzyme whose action results in clot formation is also provided. Clot formation is subsequently detected using a microfabricated sensor also housed within the cartridge which detects electrochemically the product of the thrombin reaction upon the synthetic substrate.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: July 12, 2011
    Assignee: Abbott Point of Care Inc.
    Inventors: Cindra A. Widrig Opalsky, David Opalsky, Andrzej Maczuszenko, Imants R. Lauks, Rhonda J. Cheadle
  • Patent number: 7923256
    Abstract: This invention is a disposable cartridge for use at the patient side to perform traditional coagulation assays on fresh whole blood or blood derivative samples. The cartridge, in use with an electronic analyzer allows a fluid sample to be metered and quantitatively mixed with reagents which activate the coagulation cascade. An artificial substrate for thrombin, the enzyme whose action results in clot formation is also provided. Clot formation is subsequently detected using a microfabricated sensor also housed within the cartridge which detects electrochemically the product of the thrombin reaction upon the synthetic substrate.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: April 12, 2011
    Assignee: Abbott Point of Care Inc.
    Inventors: Cindra A. Widrig Opalsky, David Opalsky, Andrzej MacZuszenko, Imants R. Lauks, Rhonda J. Cheadle
  • Patent number: 7875461
    Abstract: An analyte test strip is provided that includes a generally planar substrate and a plurality of conductive areas disposed on the substrate to define five distinct conductive portions comprising at least five contact lands defining respective vertices of a polygon, and in which two contact lands are located in a single conductive portion. System and method utilizing the test strip are also described.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: January 25, 2011
    Assignee: Lifescan Scotland Limited
    Inventors: Edward Docherty, Mahyar Z. Kermani
  • Publication number: 20100247379
    Abstract: A reagent preparing apparatus capable of being connected to a sample measuring section for measuring a sample using a diluted reagent prepared by the reagent preparing apparatus, comprising: a reagent preparing section for preparing a diluted reagent containing a predetermined reagent and pure water; a pH measuring section for measuring hydrogen ion concentration of the diluted reagent prepared by the reagent preparing section; and a controller for performing predetermined processing, wherein the controller is configured to change the process to be performed based on the hydrogen ion concentration measured by the pH measuring section, is disclosed. A sample analyzer is also disclosed.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 30, 2010
    Inventor: Carola Schmidt
  • Patent number: 7722813
    Abstract: A urea concentration identification device comprising a concentration identification sensor unit (2) and a support unit (4) attached at the bottom end thereof with this sensor unit and provided at the top end thereof with a mounting unit (4a) to a urea solution tank opening. The concentration identification sensor unit (2) has an indirectly-heated concentration detector and liquid temperature detector provided with metal fins (21c),(22c), respectively, for heat-exchanging with urea solution. The concentration identification sensor unit (2) is provided with a cover member (2d) that forms an opposite-ends-opened urea solution induction passage so as to surround the metal fins (21c), (22c).
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: May 25, 2010
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Shinichi Inoue, Akiko Kubota, Takayuki Takahata
  • Patent number: 7713477
    Abstract: A system operable to monitoring bio/chemical activities includes a first measurement probe, a second measurement probe and a comparator. The first measurement probe is operable to interrogate one or more physical properties of a sample at a first location of the sample, and to output, in response, a first measurement signal. The second measurement probe is operable to interrogate one or more physical properties of the sample at a second location of the sample, and to output, in response, a second measurement signal. The comparator is coupled to receive the first and second measurement signals, the comparator configured to output a difference signal comprising the difference between the first and second measurement signals, the difference signal corresponding to the difference in one or more bio/chemical activities occurring at the first location of the sample relative to the second location of the sample.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: May 11, 2010
    Inventors: John J. Hefti, Dean M. Drako
  • Publication number: 20090145777
    Abstract: A titration apparatus comprising a titration reservoir for a non-flowing sample solution to be titrated; an ion source reservoir comprising an ion source solution of selected ions; an ion exchange membrane barrier capable of passing ions from the ion source solution to the titration reservoir, but of blocking bulk liquid flow; a first electrode in electrical communication with the ion source reservoir; and a second electrode in electrical communication with the titration reservoir. Also, an electrolytic titrant generator for use in the titration apparatus.
    Type: Application
    Filed: December 6, 2007
    Publication date: June 11, 2009
    Applicant: Dionex Corporation
    Inventor: Kannan Srinivasan
  • Patent number: 7153690
    Abstract: A multicomponent fluid composition monitoring and compositional control system, in which a component analysis is effected by titration or other analytical procedure, for one or more components of interest, and a computational means then is employed to determine and responsively adjust the relative amount or proportion of the one or more components in the multicomponent fluid composition, to maintain a predetermined compositional character of the multicomponent fluid composition. The system is usefully employed in semiconductor manufacturing photoresist and post-etch residue removal, in which the cleaning medium is a semi-aqueous solvent composition, and water is the monitored and responsively adjusted component.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: December 26, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Russell Stevens, Thomas Kloffenstein, Todd Aycock, Joseph W. Evans, Richard Bhella
  • Patent number: 6875613
    Abstract: A device for accessing biological fluid, sampling biological fluid constituents and determining the concentration of at least one target constituent within the accessed biological fluid is provided. The device has at least one micro-piercing member used to penetrate the skin to a selected depth and to access biological fluid, a constituent sampling means and a constituent measuring means. The constituent sampling means comprises a constituent transfer medium, such as a hydrophilic gel material, by which sampled constituents are transferred from the micro-piercing member to the measuring means. The measuring means includes an electrochemical cell having at least one porous electrode through which at least one sampled constituent is caused to enter into the electrochemical cell. Methods of sampling constituents within the skin and measuring the sampled constituents, as well as kits for practicing the invention are provided.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: April 5, 2005
    Assignee: LifeScan, Inc.
    Inventors: Robert Shartle, Koon-wah Leong, Ernest J. Kiser
  • Patent number: 6846639
    Abstract: The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: January 25, 2005
    Assignee: The Regents of the University of California
    Inventors: Robin R. Miles, Kodumudi S. Venkateswaran, Christopher K. Fuller
  • Patent number: 6803228
    Abstract: The present invention relates to a method to produce a biochip and to a biochip, said biochip being composed particularly of biological probes grafted onto a conductive polymer. The method according to the invention comprises the following steps: a) structuring of a substrate so as to obtain on said substrate microtroughs comprising in their base a layer of a material capable of initiating and promoting the adhesion onto said layer of a film of a pyrrole and functionalised pyrrole copolymer by electropolymerisation, b) collective electropolymerisation, so as to form an electropolymerised film of a pyrrole and functionalised pyrrole copolymer on the base of said microtroughs, c) direct or indirect fixation of functionalised oligonucleotides by microdeposition or a liquid jet printing technique.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: October 12, 2004
    Assignee: Commissariart A L'Energie Atomique
    Inventors: Patrice Caillat, Charles Rosilio
  • Publication number: 20040002161
    Abstract: An analytical test cartridge is provided. The analytical test cartridge can be used for medical analyses of liquid samples removed from a patient, for example blood. The analytical test cartridge is configured to provide for titration experiments. An example of a titration experiment that can be performed with the arrangement, is titration of heparin with protamine. Methods of assembly and use are provided.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 1, 2004
    Applicant: Diametrics Medical, Inc.
    Inventor: Kee Van Sin
  • Patent number: 6593090
    Abstract: The present invention provides methods and devices for detecting a target nucleic acid molecule. A set of oligonucleotide probes integrated into an electric circuit, where the oligonucleotide probes are positioned such that they can not come into contact with one another, are contacted with a sample. If the sample contains a target nucleic acid molecule, one which has sequences complimentary to both probes, the target nucleic acid molecule can bridge the gap between the probes. The resulting bridge can then carry electrical current between the two probes, indicating the presence of the target nucleic acid molecule.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: July 15, 2003
    Assignee: Integrated Nano-Technologies, LLC
    Inventor: Dennis Michael Connolly
  • Patent number: 6576460
    Abstract: The present invention relates to a filtration-detection device for detecting or quantifying an analyte in a test sample including a filtration device having a first binding material immobilized thereto, wherein the first binding material is capable of binding to a portion of the analyte, and a detection assembly positioned relative to the filtration device to detect or quantify analyte bound to the first binding material. The present invention also relates to methods of using the filtration-detection device.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: June 10, 2003
    Assignees: Cornell Research Foundation, Inc., Innovative Biotechnologies International, Inc.
    Inventors: Antje J. Baeumner, Richard A. Montagna
  • Patent number: 6537822
    Abstract: Free fluorine is measured in a hydrofluoric acid-containing solution with a coexistent metallic ion based on a total fluorine concentration, a total acid concentration, a metallic ion concentration, the equilibrium constant of hydrofluoric acid, and equilibrium constants of metal fluoride complexes. It is possible to accurately analyze free fluorine in a hydrofluoric acid-containing solution without being affected by a coexistent metal and by the passage of time. This technique may be used to accurately control the concentration of free fluorine in a hydrofluoric acid-containing mixed acid pickling solution at the production site of a stainless steel so that improvement in descaling capability as well as reduction in the amount of chemical materials can be achieved.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: March 25, 2003
    Assignee: Kawasaki Steel Corporation
    Inventors: Hisao Yasuhara, Makoto Shimura
  • Publication number: 20030024817
    Abstract: The present invention relates to an apparatus for monitoring the progress of membrane fouling that occurs on pores as well as on the surface of a membrane by means of variations of zeta potential (&zgr;) of a hollow-fiber membrane according to time passage of filtration of a suspension, wherein colloid particles, biopolymers and other inorganic particles are dispersed, and the method thereof. Moreover, the present invention also relates to a method to identify the effect of concentration polarization layer and cake layer which can vary according to the axial position of a hollow-fiber and the developing progress of a membrane fouling by measuring the position-dependent zeta potential of the hollow-fiber membrane.
    Type: Application
    Filed: July 18, 2001
    Publication date: February 6, 2003
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung-Suk Chun, Jae-Jin Kim, Sang Yup Lee
  • Patent number: 6509148
    Abstract: Disclosed is a method for fabricating biosensors, using hydrophilic polyurethane. Bio-active reagents, including enzymes, antibodies, antigens, cells and receptors, are mixed with hydrophilic polyurethane and the mixture is directly coated over a signal transducer to form a sensing film which serves as a signal detector. The method using hydrophilic polyurethane allows the simplification of the fabrication of biosensors without conducting complicated chemical reactions and washing steps, such as crosslinking. The bio-active reagent entrapped within the hydrophilic polyurethane film can retains its high activity for an extended period of time and the intrinsic potentiometric response of the underlying ion-selective polymeric membrane is not affected by the bio-active reagent immobilized polyurethane film coated on its sensing surface. Therefore, the biosensors are superior in specificity, selectivity, and stability.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: January 21, 2003
    Assignee: i-Sens, Inc.
    Inventors: Geun Sig Cha, Hakhyun Nam, Jae Ho Shin
  • Patent number: 6495372
    Abstract: A test method and apparatus for determining the content of carboxylic acid-based corrosion inhibitors in a coolant or heat exchange fluid. The amount of acidic reagent added to the coolant or fluid between two pH equilibrium points is measured to determine the amount of inhibitors. The refractive index can be measured to determine the amount of freezing point depressant.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: December 17, 2002
    Assignee: Texaco Inc.
    Inventors: Jean-Pierre Maes, Peter Roose, Filip Van Kenhove
  • Patent number: 6399303
    Abstract: The present invention provides methods and devices for detecting a target nucleic acid molecule. A set of oligonucleotide probes integrated into an electric circuit, where the oligonucleotide probes are positioned such that they can not come into contact with one another, are contacted with a sample. If the sample contains a target nucleic acid molecule, one which has sequences complimentary to both probes, the target nucleic acid molecule can bridge the gap between the probes. The resulting bridge can then carry electrical current between the two probes, indicating the presence of the target nucleic acid molecule.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: June 4, 2002
    Assignee: Integrated Nano-Technologies, LLC
    Inventor: Dennis Michael Connolly
  • Patent number: 6337051
    Abstract: This invention relates to monitors used in the oxidation of hydrocarbons to respective acids, which monitors are capable to detect formation of a second liquid phase in the reaction mixture. The reactions are conducted in a single liquid phase, and formation of a second liquid phase is highly undesirable. The information gathered by the detector is provided to a controller, which controller in turn takes measures to re-establish operation of the reaction in a single liquid phase.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: January 8, 2002
    Assignee: RPC Inc.
    Inventors: Ader M. Rostami, David C. DeCoster, Eustathios Vassiliou, Mark W. Dassel, Sharon M. Aldrich
  • Patent number: 6183695
    Abstract: An improved apparatus and method is disclosed utilizing hydrogen absorption in combination with photolysis and/or electrolysis for in situ generation, i.e., without the need for adding chemical oxidizing agents, or enhancement of oxidizing conditions used to promote oxidation of organic compounds to form carbon dioxide, and the use of the same in connection with high-accuracy determination of even extremely low levels of organic and/or inorganic carbon compounds both in flowing aqueous streams and in bulk solutions.
    Type: Grant
    Filed: May 11, 1998
    Date of Patent: February 6, 2001
    Assignee: Sievers Instruments, Inc.
    Inventors: Richard D. Godec, Paul P. Kosenka, Richard S. Hutte
  • Patent number: 6060023
    Abstract: A molecular sensing apparatus comprises a first electrode (10), a second electrode (12), a first molecule (20), a second molecule (22), and a third molecule (34). The first molecule (20) has a first chain of nucleic bases (30) and a first group (24). The first group (24) is bound to the first electrode (10). The second molecule (22) has a second chain of nucleic bases (32) and a second group (26). The second group (26) is bound to the second electrode (12). The third molecule (34) is bound to the first molecule (20) and the second molecule (22). A method which uses the molecular sensing apparatus is disclosed.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: May 9, 2000
    Assignee: Motorola, Inc.
    Inventor: George N. Maracas
  • Patent number: 5827482
    Abstract: Binding of a molecule to a molecular receptor is sensed using a transistor having a gate located at a binding site. The channel conductance of the transistor is modified by a charge associated with the molecule when the molecule binds with the molecular receptor. A modified electrical characteristic of the transistor which results is sensed to sense the binding event. Electric field enhancement is provided by applying a voltage to the gate. A second sensing transistor can be coupled to the sensing transistor to form a differential pair. The differential pair allows for enhancing and sensing of differential binding events.
    Type: Grant
    Filed: August 20, 1996
    Date of Patent: October 27, 1998
    Assignee: Motorola Corporation
    Inventors: Chan-Long Shieh, Donald E. Ackley
  • Patent number: 5653939
    Abstract: A method and apparatus are disclosed for identifying molecular structures within a sample substance using a monolithic array of test sites formed on a substrate upon which the sample substance is applied. Each test site includes probes formed therein to bond with a predetermined target molecular structure or structures. A signal is applied to the test sites and certain electrical, mechanical and/or optical properties of the test sites are detected to determine which probes have bonded to an associated target molecular structure.
    Type: Grant
    Filed: August 7, 1995
    Date of Patent: August 5, 1997
    Assignees: Massachusetts Institute of Technology, Houston Advanced Research Center, Baylor College of Medicine
    Inventors: Mark A. Hollis, Daniel J. Ehrlich, R. Allen Murphy, Bernard B. Kosicki, Dennis D. Rathman, Chang-Lee Chen, Richard H. Mathews, Barry E. Burke, Mitch D. Eggers, Michael E. Hogan, Rajender Singh Varma
  • Patent number: 5618495
    Abstract: The invention relates to colorimetric titration method, a titrator and colorimeter device. The titrating apparatus comprises radiant energy means for producing radiant energy. The device includes means for modulating an amplitude of an intensity of the radiant energy at a modulation frequency. The radiant energy is partially absorbed by an adjacent solution within a sample beaker having a color indicator dissolved therein. Radiant energy focusing means focuses the modulated radiant energy transmitted through the sample and beaker on radiant energy detection means. The radiant energy detection means produces a transmitted signal wherein an intensity of the transmitted signal is directly proportional to the intensity of transmitted energy. Filtering means filters the transmitted signal, such that a center frequency of the filtering means matches the modulation frequency of the radiant energy means.
    Type: Grant
    Filed: April 5, 1995
    Date of Patent: April 8, 1997
    Inventors: Andrew S. Mount, Douglas Paul, Alfred P. Wheeler
  • Patent number: 5466589
    Abstract: The present invention is directed to coated substrates having a coating of biological macromolecules, preferably proteins, which are capable of being immobilized on a substrate surface and have a marker. These proteins usually are mutant proteins obtained by mutagenesis of the gene encoding a random positioning protein. When a mutant protein molecule is immobilized on the substrate, the marker of the mutant protein molecule is in a select spatial relationship with both the substrate and the markers of adjacent protein molecules. A substrate coated with an oriented layer of the mutant proteins exhibits improved or different properties when compared to a substrate having a randomly positioned layer of proteins thereon.
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: November 14, 1995
    Assignee: Biotechnology Research & Development Corporation
    Inventors: Jill M. Olinger, Stephen G. Sligar, Mark A. McLean, Paul W. Bohn, Patrick Stayton
  • Patent number: 5380490
    Abstract: An apparatus is so constructed as to measure a specific substance in a test specimen by the degree of the aggregation of carrier particles in a reaction solution in which the test specimen is mixed with the carrier particles which carry a substance specifically binding to the specific substance. The apparatus includes a substrate having comb-shaped electrodes mounting the reaction solution and amplifier and alternating oscillator for displaying a variable voltage to the comb-shaped electrodes. The test specimen measuring apparatus having the structure accelerates the aggregation of the reaction solution by applying an alternating voltate to the comb-shaped electrodes in a state that the reaction solution is being mounted on the substrate, and detects the spatial spectrum of the comb-shaped electrodes on which the reaction solution is mounted, thus performing the qualitative or quantitative detection of the presence of the substance in the test specimen.
    Type: Grant
    Filed: January 16, 1992
    Date of Patent: January 10, 1995
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroaki Hoshi, Matsuomi Nishimura, Kazumi Tanaka, Takeshi Miyazaki, Toshikazu Ohnishi, Hidehito Takayama
  • Patent number: 5302253
    Abstract: A method and apparatus for automatically measuring the acidity of overhead water in an oil refinery, and dispensing a neutralizing agent into the refinery system at a rate responsive to that measurement. A sample of overhead water is collected and passed through a filter and cation exchange resin. The acid concentration of the sample is then automatically measured and a signal generated based on the concentration. The signal goes to a controller which controls the dispensation rate of neutralizing agent into the refinery system, thus reducing the acidity of the overhead water and limiting the corrosive effects of such acidity.
    Type: Grant
    Filed: April 13, 1992
    Date of Patent: April 12, 1994
    Assignee: Nalco Chemical Company
    Inventors: Ronald B. Lessard, Paul Fearnside
  • Patent number: 5296193
    Abstract: A titration apparatus, which operated volumetrically and/or coulometrically, includes a basic apparatus with a control and actuation arrangement for the volumetric metering of reagents, a metering unit for the volumetric titration removably attached to the basic apparatus, and mechanical coupling elements for connecting the metering unit to the actuation device. Instead of the volumetric unit or in addition thereto, a coulometric titration cell may be connected with the basic apparatus directly or by an adapter unit, while using the same control device as the metering unit.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: March 22, 1994
    Assignee: Deutsche Metrohm Gesellschaft mit beschrankter Haftung & Co. elektronische Messgerate
    Inventors: Hubert Reger, Gunther Zimmermann
  • Patent number: 5254461
    Abstract: A method of determining populations of live, whole bacteria electrochemically. The bacteria are filtered, and the filtrate is employed in association with an electrochemical measuring unit to determine the bacteria density. In accordance with a flow-through method, the average signal over the predetermined time period of the test is employed, in conjunction with a constant, to determine the population. In accordance with the bypass method, reagent is passed through a bypass line to the electrochemical measuring unit, and the resulting signal is subtracted from the signal resulting from the filtrate, a constant being employed to correlate the resulting remainder with bacteria count. A changing-concentration method employs a changing concentration of bacteria in the same fluid to determine populations of bacteria. A saved-sample method employs a second test of the same filtrate, after a predetermined time period, to compensate for any contaminants that may be present.
    Type: Grant
    Filed: November 30, 1990
    Date of Patent: October 19, 1993
    Assignee: Infometrix, Incorporated
    Inventors: Gilson H. Rohrback, Elmond A. Holmes
  • Patent number: 5196345
    Abstract: A method for determining the concentration of an acidic metal carbonyl hydride in an organic liquid by measuring the conductivity or pH of the liquid. The air addition to a continuous air demetallating unit may be controlled by feedback from the conductivity or pH measurement of the effluent.
    Type: Grant
    Filed: February 28, 1991
    Date of Patent: March 23, 1993
    Assignee: Eastman Kodak Company
    Inventors: James L. Cooper, Jack M. Bogle
  • Patent number: 5186895
    Abstract: An automatic analytical apparatus in which a series of operations ranging from the sampling into a treating receptacle, pretreatment, analysis and discharge of a fluid sample to the preparation for the next analysis are repeated automatically in order, wherein the time-dependent variation of the composition is traced successively. This permits the presence of the composition variation or the course of the composition variation to be confirmed or the composition variation to be controlled, automatically.
    Type: Grant
    Filed: February 15, 1991
    Date of Patent: February 16, 1993
    Assignee: Mitsui Toatsu Chemicals, Incorporated
    Inventors: Mitsuo Onofusa, Nobuyoshi Hashimoto, Kimiteru Tagawa, Michiro Hagiwara
  • Patent number: 5141717
    Abstract: Apparatus for measuring the concentration of carbon compounds in water, the apparatus including a reaction zone for converting such carbon compounds to free and/or combined carbonaceous acids, a device for introducing at least a portion of the water to be analyzed as liquid or vapor into such zone, a device for contacting such acids with weakly basic anion exchange resin and a device for measuring the electrical impedance of at least a portion of such resin.
    Type: Grant
    Filed: December 24, 1990
    Date of Patent: August 25, 1992
    Assignee: Ionics, Incorporated
    Inventor: Wayne A. McRae
  • Patent number: 5096669
    Abstract: A system comprising a disposable device and hand held reader can perform a variety of electrochemical measurements on blood or other fluids. In operation, a fluid sample is drawn into the disposable device through an orifice by capillary action. The orifice is sealed off and the disposable device is inserted into the reader. The reader which controls the test sequence and flow of fluid causes a calibrant pouch located inside the device to be pierced, releasing the calibrant fluid to flow across the sensor arrays to perform calibration. Next an air bladder located in the device is depressed, forcing the sample across the sensors where measurements are performed and read by the reader which performs the calibrations. Once the measurements are made, the device can be withdrawn from the reader and discarded.
    Type: Grant
    Filed: September 15, 1988
    Date of Patent: March 17, 1992
    Assignee: I-Stat Corporation
    Inventors: Imants R. Lauks, Henry J. Wieck, Michael P. Zelin, Philip Blyskal
  • Patent number: 5091317
    Abstract: A method for determining the concentration of an acidic metal carbonyl hydride in an organic liquid by measuring the conductivity or pH of the liquid. The air addition to a continuous air demetallating unit may be controlled by feedback from the conductivity or pH measurement of the effluent.
    Type: Grant
    Filed: August 12, 1988
    Date of Patent: February 25, 1992
    Assignee: Eastman Kodak Company
    Inventors: James L. Cooper, Jack M. Bogle
  • Patent number: RE42953
    Abstract: An electrochemical biosensor test strip with four new features. The test strip includes an indentation for tactile feel as to the location of the strips sample application port. The sample application port leads to a capillary test chamber, which includes a test reagent. The wet reagent includes from about 0.2% by weight to about 2% by weight polyethylene oxide from about 100 kilodaltons to about 900 kilodaltons mean molecular weight, which makes the dried reagent more hydrophilic and sturdier to strip processing steps, such as mechanical punching, and to mechanical manipulation by the test strip user. The roof of the capillary test chamber includes a transparent or translucent window which operates as a “fill to here” line, thereby identifying when enough test sample (a liquid sample, such as blood) has been added to the test chamber to accurately perform a test. The test strip may further include a notch located at the sample application port. The notch reduces a phenomenon called “dose hesitation”.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: November 22, 2011
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: William F. Crismore, Nigel A. Surridge, Richard J. Bodensteiner, Eric R. Diebold, R. Dale Delk, David W. Burke, Jiaxiong Jason Ho