Fluorescence Patents (Class 422/82.07)
  • Patent number: 10365213
    Abstract: Methods and devices use in two-color measurement systems. The methods and devices include methods of making corrections, methods of calculating correction factors, fluorescence scanners, and microarray chips. The said methods and devices enable a user to correct fluorescence intensities for errors caused by the occurrence of FRET and/or cross-talk when two fluorophores are used in two-color fluorescence arrays.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: July 30, 2019
    Assignee: CapitalBio Corporation
    Inventors: Jiang Zhu, Cheng Deng, Guoliang Huang, Shukuan Xu, Jing Cheng
  • Patent number: 10295846
    Abstract: The present technology relates to a light emitting device and a light emitting method which readily emit high intensity light. Unipolar noise is applied to a plurality of rod-shaped metal antennas of a light emission mechanism including the plurality of metal antennas, radiating light by oscillation of electrons in the metal antennas caused by incident light. The present technology can be applied to a device for emitting light, such as an illumination device, for example.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 21, 2019
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Kojiro Yagami
  • Patent number: 10294332
    Abstract: A functionalized siloxane network. The functionalized network comprises a ligand attached to the network. The ligand includes a pyridine-containing compound, and in one embodiment, the ligand includes a terpyridine compound. The functionalized siloxane network can be siloxane particles. The functionalized siloxane network can coordinate metal ions and can be used in luminescent articles.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: May 21, 2019
    Assignee: MOMENTIVE PERFORMANCE MATERIALS INC.
    Inventors: Karthikeyan Sivasubramanian, Vivek Khare
  • Patent number: 10107755
    Abstract: Embodiments as disclosed herein may include a sensor including a luminophor exposed to a fluid flow path. The luminophor may emit light in response to illumination by an excitation light source. The magnitude of light emitted by the luminophor in response to illumination may be determined. It can be determined if this magnitude is within a threshold of the baseline magnitude and an alarm state set based on this determination. This alarm state may indicate that the luminophor has reached an end-of-life state or otherwise should be replaced.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: October 23, 2018
    Assignee: Entegris, Inc.
    Inventors: Francisco Javier Machuca, Ronald Phillip Chiarello, Kyle William Montgomery
  • Patent number: 9945778
    Abstract: Flexibly deployable, discrete, target-analyte sensitive particulate probes and methods of manufacturing and using. The probes each comprise a porous scaffold particle coated with an optically-active, target-analyte sensitive material. The scaffold particle has at least one of (i) a volume of 0.5 to 500 mm3, and (ii) a largest dimension of 2 to 20 mm.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: April 17, 2018
    Assignee: LUXCEL BIOSCIENCES, LTD
    Inventors: Dmitri Boris Papkovsky, James Nial Hynes, Richard Fernandes
  • Patent number: 9927559
    Abstract: The disclosure relates to wavelength-controlled directivity of all-dielectric optical nanoantennas. One example embodiment is an optical nanoantenna for directionally scattering light in a visible or a near-infrared spectral range. The optical nanoantenna includes a substrate. The optical nanoantenna also includes an antenna structure disposed on the substrate. The antenna structure includes a dielectric material having a refractive index that is higher than a refractive index of the substrate and a refractive index of a surrounding medium. The antenna structure includes a structure having two distinct end portions. The antenna structure is asymmetric with respect to at least one mirror reflection in a plane that is orthogonal to a plane of the substrate.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: March 27, 2018
    Assignees: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Jiaqi Li, Niels Verellen, Pol Van Dorpe, Dries Vercruysse
  • Patent number: 9927432
    Abstract: A biosensor using a decoupled microfluidic device, which has a capture chamber and a detection chamber separate from and in fluid communication with each other. The sensing method is based on particle aggregation via homogeneous reactions, by employing microparticles having antibodies on their surfaces which can form aggregates through antigen mediation. Either size-separation or magnetic based separation is used to separate aggregates from single microparticles; the aggregates are later dissociated and the resulting single microparticles are counted to measure the amount of the antigen. Another biosensor uses a decoupled microfluidic device with a capture chamber and a detection chamber, and a 3-D structure in the capture camber to increase immobilized antibody concentration. Immunoreaction efficiency is improved by increasing the number of antibody per reaction volume in the capture chamber.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: March 27, 2018
    Assignee: KONICA MINOLTA LABORATORY U.S.A., INC.
    Inventor: Noriaki Yamamoto
  • Patent number: 9778187
    Abstract: The present invention relates to a method for optically determining the concentration of a gas. The method includes using at least two luminescent dyes, the first being in-sensitive to the concentration of a gas with respect to the luminescence response (reference dye) and the second being sensitive to the concentration of a gas with respect to the luminescence response (indicator dye) the dyes show different luminescence decay times so that the resultant phase angle is indicative for the concentration of a gas, wherein the detected luminescent amplitude of the reference dye at a first moment in time is utilized to correct for sensitivity changes after the first moment.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: October 3, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Josephus Arnoldus Henricus Maria Kahlman, Nicolaas Lambert, Hans Willem Van Kesteren
  • Patent number: 9612238
    Abstract: A method of screening for compounds that module expression of specific macromolecules, the “target”. The method is particularly useful in that it does not require separation of target-bound and excess ligand and therefore enables, but is not limited to, High Throughput Screening for compounds that increase or decrease the levels or amounts of a target present in a biological sample. The method can also be used for high-throughput diagnosis of a condition leading to an increase or decrease of a cellular macromolecule.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: April 4, 2017
    Assignee: The Scripps Research Institute
    Inventors: Corinne Lasmezas, Charles Weissmann
  • Patent number: 9606094
    Abstract: A portable electronic device and a related methods are described using an integrated chemical sensor linked to a chemical sensor processing unit and being sensitive to the concentration of a component in a sample of air and one or more contextual sensors not including chemical, temperature and humidity sensors, wherein output from the contextual sensors is linked to a local or remote interpretation processor generating a constraint or correlation set transferred to the chemical sensor processing unit for use in determining a result of a chemical measurement as performed by the chemical sensor.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: March 28, 2017
    Assignee: Sensirion AG
    Inventors: Pascal Hunziker, Felix Mayer
  • Patent number: 9474448
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: October 25, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9212994
    Abstract: A microfluidic filter is disclosed. The filter can be used with onchip fluid filtration such as whole blood filtration for microfluidic blood analysis. The filter is able to filter the necessary volume of fluid and in particular blood in an acceptable time frame.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: December 15, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: George Maltezos, John Kim Lee, Axel Scherer, Emil Kartalov
  • Patent number: 9193990
    Abstract: A method for determining metal ions, both qualitatively and quantitatively, is disclosed. The method utilizes emission from fluorescence resonance energy transfer from a luciferase-carbonic anhydrase conjugate or fusion protein to an acceptor ligand in the presence of metal ion bound to the protein to measure free metal ion concentrations down to picomolar concentration ranges. The method is relatively insensitive to contaminants, and so can be used to measure metal ion concentrations in cells, body fluids or environmental samples without extensive sample preparation.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 24, 2015
    Inventor: Richard B. Thompson
  • Publication number: 20150147231
    Abstract: The invention relates to an optochemical sensor comprising a polymer matrix which is applied to a substrate and which is doped with a luminescent colorant, the emissivity of which can be modified after excitation with electromagnetic radiation by substances to be detected such as gaseous or dissolved O2, SO2, H2O2, CO2, nitrogen oxides and halogenated hydrocarbons, which polymer matrix forms a sensor layer that is also covered by an optical insulating and protective layer which can be permeated by the substance to be analysed. In the optochemical sensor, the sensor layer is formed from a layer which has an insular sensor element or a plurality of mutually separated sensor elements, the at least one sensor element being covered by a non-doped polymer matrix which chemically corresponds to the polymer matrix of the sensor layer.
    Type: Application
    Filed: June 5, 2013
    Publication date: May 28, 2015
    Inventors: Martin Tscherner, Volker Ribitsch
  • Publication number: 20150140677
    Abstract: Provided is a polymer planar optical circuit type dissolved oxygen sensor and a method of fabricating the sensor, including a polymer planar sheet embedded with a first wavelength optical signal transmission line transmitting a first wavelength optical signal emitted from a first optical source and a second wavelength optical signal transmission line transmitting a second optical signal emitted from a sensing membrane and having a fluorescent property, and the sensing membrane coated on the polymer planar sheet, and further including a second optical source emitting the second wavelength optical signal to compare an optical property of the second wavelength optical signal to an optical property of the first wavelength optical signal emitted from the first optical source.
    Type: Application
    Filed: June 19, 2014
    Publication date: May 21, 2015
    Inventors: Jin Hwa RYU, Kyu Ha BAEK, Lee Mi DO, Kang Bok LEE
  • Patent number: 9028772
    Abstract: A method may involve forming one or more photoresist layers over a sensor located on a structure, such that the sensor is covered by the one or more photoresist layers. The sensor is configured to detect an analyte. The method may involve forming a first polymer layer. Further, the method may involve positioning the structure on the first polymer layer. Still further, the method may involve forming a second polymer layer over the first polymer layer and the structure, such that the structure is fully enclosed by the first polymer layer, the second polymer layer, and the one or more photoresist layers. The method may also involve removing the one or more photoresist layers to form a channel through the second polymer layer, wherein the sensor is configured to receive the analyte via the channel.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 12, 2015
    Assignee: Google Inc.
    Inventors: Huanfen Yao, Jeffrey George Linhardt, Babak Parviz
  • Patent number: 9028756
    Abstract: A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 12, 2015
    Assignee: Sysmex Corporation
    Inventors: Norimasa Yamamoto, Takashi Yamato, Naohiko Matsuo, Satoshi Iguchi
  • Publication number: 20150125347
    Abstract: Embodiments of a dissolved oxygen sensor are disclosed herein. Embodiments as disclosed herein may include a window of optically transparent material disposed in an opening in a fluid flow path, where a luminophor is attached to the side of the window exposed to the fluid in the flow path. An optical probe may be disposed opposite the window from the fluid flow path on an axis at an angle to the window fluid flow path. The optical probe includes an excitation light source for illumination of the luminophor and a reference light source. An optical reception guide is configured to conduct light from the luminophor to a photodiode adjacent to the end of the optical reception guide distal the window when the luminophor is illuminated by the excitation light source. The optical probe is configured to determine a measure of oxygen concentration of the fluid in the flow path.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventors: Francisco Javier Machuca, Kyle William Montgomery, Ronald Phillip Chiarello
  • Patent number: 9023281
    Abstract: Chemical indicator apparatuses containing one or more chemical indicators for use in monitoring the quality of water in an aquatic environment. The apparatuses are designed and configured to be submersible in the water that is being monitored. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo a physical change as levels of one or more constituents of the water change. Such indicators can be read by one or more suitable optical readers. These and other embodiments are designed and configured to be movable by a corresponding monitoring/measuring apparatus, for example, via a magnetically coupled drive. Also disclosed are a variety of features that can be used to provide a chemical indicator apparatus with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Patent number: 8992860
    Abstract: The present invention relates to systems and methods for minimizing or eliminating diffusion effects. Diffused regions of a segmented flow of multiple, miscible fluid species may be vented off to a waste channel, and non-diffused regions of fluid may be preferentially pulled off the channel that contains the segmented flow. Multiple fluid samples that are not contaminated via diffusion may be collected for analysis and measurement in a single channel. The systems and methods for minimizing or eliminating diffusion effects may be used to minimize or eliminate diffusion effects in a microfluidic system for monitoring the amplification of DNA molecules and the dissociation behavior of the DNA molecules.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 31, 2015
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Brian Murphy, Scott Corey, Alex Flamm, Ben Lane, Conrad Laskowski, Chad Schneider
  • Patent number: 8986611
    Abstract: A sample analysis apparatus configured to automatically press a start button upon installation of a sample tube is provided. The sample analysis apparatus includes: a body of the sample analysis apparatus; a door housing which may be provided in an opened state or a closed state, and configured to be coupled to the body of the sample analysis apparatus by a hinge; a tube accommodating unit included in the door housing and configured to accommodate the sample tube; a start button included in the body of the sample analysis apparatus and configured to start analysis of the sample; and an operating member positioned at a first position which is distant from the start button the sample tube is not installed in the tube accommodating unit, and a second position which is configured to operate the start button when a sample tube is installed and the door housing is closed.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong Koo Lee, Tae Soo Kim, In Duk Hwang, Seock Woo Jang, Chul Ho Yun
  • Publication number: 20150068898
    Abstract: A measuring membrane for an optochemical or amperometric sensor for determining or monitoring an analyte located in a medium, comprising a substrate material and a sensor element, which has at least one functional layer with a sensor-specific substance. The sensor element is embedded completely in a matrix, and the matrix is composed of a material, which at least in a portion facing the medium and adjoining the sensor element is permeable for the analyte.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventors: Christian Fanselow, Andreas Lobbert
  • Patent number: 8974751
    Abstract: Sample liquid is collected in a chamber downstream of a separating device. Adjoining the chamber are a plurality of channels which guide the sample liquid to one or more investigating regions.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: March 10, 2015
    Assignee: Boehringer Ingelheim Microparts GmbH
    Inventors: Tobias Rodenfels, Gert Blankenstein
  • Patent number: 8961766
    Abstract: A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: February 24, 2015
    Assignee: Sandia Corporation
    Inventors: Amy E. Herr, Anup K. Singh, Daniel J. Throckmorton
  • Patent number: 8961898
    Abstract: The present invention provides a bilayer membrane produced using a microchannel capable of easily forming bilayer membranes such as planar lipid bilayer membranes in large quantities, and a production method thereof. A process for producing a bilayer membrane of the present invention comprises forming a state where two liquid phases or liquid and gaseous phases each containing amphipathic molecules are alternately arranged in a microchannel, discharging one of the two liquid phases or the gaseous phase of the liquid and gaseous phases through branch minichannels formed in the wall on one side or in the walls on both sides to contact the remaining liquid phases adjacent to each other, and thereby forming a side-by-side arrangement of bilayer membranes comprising the amphipathic molecules.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 24, 2015
    Assignee: Tokyo Institute of Technology
    Inventors: Takasi Nisisako, Takahiro Baba
  • Patent number: 8945939
    Abstract: The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: February 3, 2015
    Assignee: Ecolab USA Inc.
    Inventors: Amy M. Tseng, Brian V. Jenkins, Robert Mack
  • Patent number: 8945472
    Abstract: The present invention provides a biosensor system comprising a light source, a cartridge adapted to be illuminated by said light source, a light detector adapted for detecting a signal originating from the cartridge, an illumination control means adapted to vary the illumination of the cartridge between at least two different states, a means for generating a first oscillation with a first frequency, and a means for generating a second oscillation with a second frequency, wherein the frame rate of the light detector is triggered by the first oscillation and the illumination control means is triggered by the second oscillation.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: February 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Josephus Arnoldus Henricus Maria Kahlman, Bart Michiels
  • Patent number: 8940237
    Abstract: An optic light guide test sensor comprises a light guide, a reagent-coated membrane, and a mesh layer. The reagent-coated membrane and the mesh layer are attached to the light guide at an output end of the light guide. The light guide test sensor is adapted to be used to test the level of an analyte in a biological fluid sample when used with a readhead. A method of manufacturing the light guide test sensor involves providing a plurality of light guides, providing a strip of reagent-coated membrane, and providing a strip of mesh layer. The reagent-coated membrane and mesh layer are attached to the light guides by ultrasonic welding. The reagent-coated membrane and mesh layer may also be attached to the light guides by adhesive.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: January 27, 2015
    Assignee: Bayer HealthCare LLC
    Inventors: Jeffery S. Reynolds, Steven C. Charlton, Sung-Kwon Jung, Suny J. George
  • Patent number: 8932874
    Abstract: The invention is directed towards methods and compositions for identifying the amount of ammonium acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of ammonium acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of ammonium acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the ammonium acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: January 13, 2015
    Assignee: Nalco Company
    Inventors: Amy M. Tseng, Brian V. Jenkins, Robert M. Mack
  • Publication number: 20150011010
    Abstract: The invention is related to an optode for determining chemical parameters of a sample wherein the optode consists of a polymer matrix consisting of sulfonated polyether ether ketone (SPEEK) in which a sensor dye is immobilized or more than one sensor dye is immobilized, wherein at least one of the immobilized sensor dyes is pH-sensitive. In addition, the present invention also concerns a method for determining the pH of a sample in which the invention-related optode is used.
    Type: Application
    Filed: January 18, 2013
    Publication date: January 8, 2015
    Inventors: Doerte Steinbrueck, Elmar Schmaelzlin, Hans-Gerd Loehmannsroeben
  • Patent number: 8926906
    Abstract: The present application is directed to a technological platform with integrated microfluidic and optical modules for bio-detection. The platform enables in-situ detection by integrating fluidics with optical source and detection capabilities within a fabricated microchip. The platform is a polymer-based microfluidic chip having integrated excitation source and detection elements in a vicinity of a microfluidic reaction chamber configured to contain a micro-volume of a test sample. The principle of detection is based on an excitation source induced fluorescence of the test sample within the microfluidic reaction chamber.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 6, 2015
    Assignee: Concordia University
    Inventors: Muthukumaran Packirisamy, Ashwin L. Acharya
  • Patent number: 8920749
    Abstract: A microchip capable of sending liquid in a micro flow channel to a predetermined place irrespective of the pressure difference and sending a mixture of two or more liquid masses to a predetermined place even if the channel structure is simple. The microchip comprises an intermediate reservoir portion provided in a micro flow channel and adapted for temporarily holding liquid sent through the micro flow channel. The microchip is characterized in that the intermediate reservoir portion has a side channel, the volume of the intermediate reservoir portion is smaller than the total volume of the liquid sent into the intermediate reservoir portion, the side channel is provided for communication of a micro flow channel on the upstream side of the intermediate reservoir portion with a micro flow channel on the downstream side thereof, and the cross-section area of the side channel is smaller than that of the micro flow channel.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: December 30, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Youichi Aoki, Akihisa Nakajima, Kusunoki Higashino, Yasuhiro Sando, Yoshikazu Kurihara
  • Patent number: 8900515
    Abstract: The present invention provides a biosensing device, comprising an input unit, an analysis unit, a process unit, and a set unit for storing resulting data values as the basis for calibrating the biosensing device, to set up the calibration parameters of a strip of the biosensing device.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: December 2, 2014
    Assignee: Health & Life Co., Ltd.
    Inventor: Meng Yi Lin
  • Publication number: 20140349383
    Abstract: A fluorescent sensor includes a detecting substrate, an indicator, a filter layer, a light blocking layer, and an LED chip. In the detecting substrate, a PD element for converting fluorescence into electric signals is positioned on wall surfaces of a through-hole which penetrates a first main surface and a second main surface. The indicator is arranged inside the through-hole and generates fluorescence of intensity corresponding to analyte density when the indicator receives excitation light. The filter layer covers the PD element, transmits fluorescence and blocks excitation light. The light blocking layer, through which an analyte can pass, covers an opening of the first main surface of the through-hole. The LED chip covers a region just below an opening of the second main surface of the through-hole, and generates excitation light.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Applicant: TERUMO KABUSHIKI KAISHA
    Inventors: Ryo OTA, Atsushi Matsumoto
  • Patent number: 8884250
    Abstract: A sensor that detects a fuel property of a mixed fuel of a biofuel and a hydrocarbon fuel includes: a light emitting device that emits light with a wavelength of 250 nm to 400 nm onto the mixed fuel; and a light receiving device that receives light emitted by the mixed fuel under the effect of light from the light emitting device and generates an output corresponding to the received light. When the fuel property is determined, in a case where the mixed fuel is irradiated by light with a predetermined wavelength generated due to voltage application to the light emitting device, the light emitted by the mixed fuel is detected by the light receiving device. The fuel property of the mixed fuel is detected according to the detected light.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: November 11, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuntaro Yoshida, Noriyasu Amano, Kazuhiro Wakao, Mie Sasai, Keiichiro Aoki
  • Patent number: 8883079
    Abstract: A water-quality monitoring system for an aquatic environment that includes a monitoring unit and a chemical indicator wheel designed and configured to be submerged in the water being monitored. The chemical indicator wheel includes a holder that supports a number of chemical indicators selected for use in measuring levels of constituents of the water. When in use, the wheel is drivingly engaged with a monitoring/measuring unit that includes at least one reader for reading the chemical indicators. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo an optically detectable physical change as levels of one or more constituents of the water change. Also disclosed are a variety of features that can be used to provide the monitoring system with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: November 11, 2014
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Patent number: 8865403
    Abstract: An object of the present invention relates to distinguishing, from a fluorophore of an unreacted substrate, a single fluorophore attached to a nucleotide that is incorporated into a probe by a nucleic acid synthesis. The present invention relates to a nucleic acid analyzing device that analyzes a nucleic acid in sample by fluorescence, wherein a localized surface plasmon is generated by illumination, and a probe for analyzing the nucleic acid in the sample is on the site where the surface plasmon is generated. According to the present invention, since it is possible to efficiently produce fluorescence intensifying effects due to the surface plasmon and to immobilize the probe to a region within the reach of the fluorescence intensifying effects, it becomes possible to measure a nucleic acid synthesis without removing unreacted nucleotide to which fluorophores are attached.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: October 21, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masatoshi Narahara, Toshiro Saito, Naoshi Itabashi, Jiro Yamamoto, Hiroyuki Uchiyama
  • Patent number: 8865075
    Abstract: The present invention relates to an immunoaffinity device for capturing one or more analytes present at high or low concentrations in simple or complex matrices. The device is designed as a modular, multi-task immunoaffinity device secured to a peripheral box and connected to capillary electrophoresis or liquid chromatography for the isolation, enrichment, separation and identification of polymeric macromolecules, primarily protein biomarkers. In one embodiment, two devices are coupled in-tandem to perform separately and sequentially microreactions and concentrations of proteins. In this embodiment, biological samples containing proteins can be subjected to proteolytic processing in the first device, and the resulting peptides subjected to selective purification and concentration in the second device.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 21, 2014
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8852508
    Abstract: The present invention discloses a microinjection apparatus (100) for microinjection of substances into individual substances comprising at least one carrier (120, 130) on which at least one sample is immobilizable. In embodiments, the apparatus comprises at drivable support (110) on which at least one carrier is positioned, wherein the support drives the at least one carrier in a closed loop to a respective plurality of stations along the loop. The plurality of stations constitutes at least one sample-substance-providing station (141), at least one sample-substance microinjection station (142) and at least one sample-extraction station (143).
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: October 7, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpement
    Inventors: Siegfried Graf, Helmut Knapp
  • Patent number: 8845981
    Abstract: A device for volumetric metering a liquid biologic sample is provided. The device includes an initial chamber, a second chamber, a third chamber, a first valve, a second valve and a third valve. The chambers are each configured so that liquid sample disposed in the respective chamber is subject to capillary forces. Each chamber has a volume, and the volume of the initial chamber is greater than the volume of either the second or the third chambers. The valves each have a burst pressure. The burst pressure of the first valve is greater than the third burst pressure. The first valve is in fluid communication with the second chamber. The second valve is disposed between, and is in fluid communication with, the initial chamber and the third chamber. The third valve is in fluid communication with the third chamber.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: September 30, 2014
    Assignee: Abbott Point of Care, Inc.
    Inventor: Manav Mehta
  • Patent number: 8840774
    Abstract: Described herein is an apparatus comprising an electrochemical cell that employs a capacitive counter electrode and a faradaic working electrode. The capacitive counter electrode reduces the amount of redox products generated at the counter electrode while enabling the working electrode to generate redox products. The electrochemical cell is useful for controlling the redox products generated and/or the timing of the redox product generation. The electrochemical cell is useful in assay methods, including those using electrochemiluminescence. The electrochemical cell can be combined with additional hardware to form instrumentation for assay methods.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: September 23, 2014
    Assignee: Board of Regents of the University of Texas System
    Inventors: Allen J. Bard, Chong-Yang Liu
  • Patent number: 8840850
    Abstract: A flow channel structure includes a substrate having a flow channel formed therein, and plural fibrous bristles extending from the inner wall of the flow channel. The flow channel is configured to allow a solution to flow through the flow channel. The inner wall of the flow channel is made of silicon. The flow channel is configured to allow a solution to flow through the flow channel. This flow channel structure can homogenize the solution inside the flow channel.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: September 23, 2014
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Makoto Takahashi, Hiroshi Ushio, Takeki Yamamoto
  • Patent number: 8834796
    Abstract: A chromatographic optical detection system includes an optical detector disposed to receive light scattered from a stream of particles and configured to convert the received light to an electrical signal; a signal-processing unit in signal communication with the optical detector to receive the electrical signal, and configured to convert the electrical signal to digital pulses and count the digital pulses to output a first signal corresponding to a number of particles detected in a time interval, and configured to integrate and digitize the electrical signal to output a second signal corresponding to the number of particles detected in the time interval; and a data station in signal communication with the signal-processing unit, and configured to select the first signal, if the number of particles detected in the time interval is less than a threshold criterion, and to select the second signal if the number of particles detected in the time interval exceeds the threshold criterion.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: September 16, 2014
    Assignee: Waters Technologies Corporation
    Inventor: Joseph A. Jarrell
  • Patent number: 8831783
    Abstract: A biochemical processing apparatus is provided having a stage receiving a biochemical reaction cartridge which includes chambers and flow paths communicating therebetween, a moving system for moving liquid via the flow paths, and a detector for detecting the presence of the liquid in a chamber and/or the amount of the liquid. In addition, a determining device determines a result of the movement of the liquid from the information of the liquid in the chamber detected by the detector.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: September 9, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yasuyuki Numajiri
  • Patent number: 8825214
    Abstract: A method is provided for the measurement of parameters of a gas present in a gas turbine combustion chamber. The method includes tuning a laser to a range containing the absorption lines of species to be analyzed in the gas, and directing the laser light through the combustion chamber and detecting laser light reflected off boundary walls of the combustion chamber. In order to analyze the absorption spectrum measured at high temperatures and pressures, a signature recognition algorithm is applied to the spectrum. The measured absorption spectrum is cross-correlated with a calibration absorption model spectrum for the absorption lines at several temperatures, pressures, and concentrations generated prior to the measurement. Values for pressure, temperature, and concentrations of selected species in the gas are determined simultaneously allowing direct control of the combustion chamber process. An apparatus for carrying out the method is also provided.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: September 2, 2014
    Assignee: Alstom Technology Ltd.
    Inventor: Ken Yves Haffner
  • Patent number: 8815158
    Abstract: The present invention provides nanoparticles having bright fluorescence, where the total number of photons emitted from a single nanoparticle upon excitation with an excitation wavelength of the nanoparticle is at least 107, and giant Raman enhancements, where Raman signal for a molecule near a single nanoparticle increases at least 107 times. The nanoparticles of the invention comprise a plurality of crystallites that are each about 0.6 nm to about 10 nm in size. The present invention also provides methods for making the nanoparticles, which include mixing a matrix material with a reactant capable of being thermally reduced to form the nanoparticle; forming a mixed solid phase; and thermally reducing the mixed solid phase to form the nanoparticle.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: August 26, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Jie Zheng, Xiaowei Zhuang
  • Patent number: 8795595
    Abstract: A sensing apparatus may include a substrate having a first side for a sensing element and a second side for electronics, the substrate may have a at least one via from the first side of the substrate to the second side of the substrate, the at least one via may be hermetically sealed with an optically transmissive material.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: August 5, 2014
    Assignee: Medtronic Minimed, Inc.
    Inventor: Rajiv Shah
  • Patent number: 8784736
    Abstract: An isothermal reaction and analysis system may include a receiver to receive sample holders, a thermal control subsystem to control a temperature of the receiver, an excitation subsystem, a detection subsystem and an analysis subsystem. Excitation sources and/or detectors are positioned to enhance data collection. Sample holders may include filters, selectively blocking and passing wavelengths or bands of electromagnetic radiation.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: July 22, 2014
    Assignee: Keck Graduate Institute
    Inventors: Robert W. Doebler, II, Christopher Cooney, Anna Hickerson, James D. Sterling, Ali Nadim
  • Patent number: 8784749
    Abstract: This invention provides a digital microfluidic manipulation device and a manipulation method thereof. This device comprises a PDMS membrane having a surface comprising a plurality of hydrophobic microstructures; a plurality of air chambers arranged in an array and placed under the PDMS membrane; and a plurality of air channels, each of which connects to a corresponding one of the plurality of air chambers. When a suction force is transmitted via one of the plurality of air channels to the corresponding air chamber, a portion of the PDMS membrane above the air chamber deforms toward the air chamber, so that the surface morphology and the contact angle of the liquid/solid interface of the surface comprising the plurality of hydrophobic microstructures are altered and thereby to drive droplets.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 22, 2014
    Assignee: National Taiwan University
    Inventors: Jing-Tang Yang, Chao-Jyun Huang, Chih-Yu Hwang
  • Patent number: 8778279
    Abstract: The present disclosure relates to microfluidic devices adapted for facilitating cytometry analysis of particles flowing therethrough. In certain embodiments, the microfluidic devices have onboard sterilization capabilities. In other embodiments, microfluidic devices have integral collection bags and methods for keeping the microfluidic channels clean.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: July 15, 2014
    Assignees: Sony Corporation, Sony Corporation of America
    Inventor: Gary P. Durack