Fluorescence Patents (Class 422/82.07)
  • Patent number: 8137983
    Abstract: The present invention describes a system and method for accurately measuring the concentration of a substance within a filter housing. A concentration sensor and a communications device are coupled so as to be able to measure and transmit the concentration of a particular substance within the filter housing while in use. This system can comprise a single component, integrating both the communication device and the concentration sensor. Alternatively, the system can comprise separate sensor and transmitter components, in communication with one another. In yet another embodiment, a storage element can be added to the system, thereby allowing the device to store a set of concentration values. The use of this device is beneficial to many applications. For example, the ability to read concentration values in situ allows integrity tests to be performed without additional equipment.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 20, 2012
    Assignee: EMD Millipore Corporation
    Inventor: Anthony DiLeo
  • Patent number: 8119066
    Abstract: A cartridge and cartridge system for use in an apparatus for analyzing a sample are provided. The cartridge has one or more light sources and/or optical systems and other components that are specific for a certain type of application such as fluorescence, absorbance, or luminescence. The light source, optical systems, and other components for a specific application are housed in a single cartridge. The system has a plurality of cartridges for different applications for a multimode instrument. The cartridges are removably engaged with the apparatus in a “plug-in” format such that one cartridge may be removed from the apparatus and another cartridge may be easily installed.
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: February 21, 2012
    Assignee: Molecular Devices, LLC
    Inventors: Daniel M. Stock, Josef J. Atzler
  • Patent number: 8119068
    Abstract: A fluid content monitor including a cuvette, a colorimeter adapted to generate a signal indicative of contents of a fluid sample contained in the cuvette, a container for holding a reagent, and a pump assembly for delivering reagent from the container to the cuvette. The pump assembly includes a tube extending from the container to the cuvette, check valves preventing reverse flow in the tube, and a hammer driven by a solenoid for repetitively compressing the tube to pump reagent to the cuvette. The cuvette can be removed for cleaning and replacement.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: February 21, 2012
    Assignee: HF Scientific, Inc.
    Inventors: Rowan Connelly, Joel Leal
  • Patent number: 8101430
    Abstract: Binding an analyte can cause a change in fluorescence emission of a sensor. The change in fluorescence can be related to the amount of analyte present. The sensor can include a semiconductor nanocrystal linked to a fluorescent moiety. Upon excitation, the fluorescent moiety can transfer energy to the semiconductor nanocrystal, or vice versa.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: January 24, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Preston T. Snee, Rebecca C. Somers, Daniel G. Nocera, Moungi G. Bawendi
  • Patent number: 8097466
    Abstract: An optical waveguiding optical format enables consistent optical analysis of small sample volumes with minimal variation in light path length among optical formats. The optical format is comprised of an input guide, an output guide, and a sample cavity adapted to allow light to pass through a sample on its way from the input guide to the output guide. A lid removed from the light pathway within the format may be provided with a reagent for assisting fluid analysis.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: January 17, 2012
    Assignee: Bayer HealthCare LLC
    Inventor: Allen J. Brenneman
  • Patent number: 8084259
    Abstract: The present invention describes a system for accurately measuring the concentration of a substance within a filter housing. A concentration sensor and a communications device are coupled so as to measure and transmit the concentration of a particular substance within the filter housing while in use. This system allows the operator to certify the integrity of the filters within the filter housing at the customer site without additional equipment. In one embodiment, a tracer gas, such as helium or hydrogen, is added to a carrier and injected into the system. The concentration of tracer gas at a specific operating transmembrane pressure is indicative of bubble pointing specific pores in the filter. This test will give a more sensitive indication of the bubble point and the presence of defects than a standard diffusion test. In a second embodiment, two gasses, in a known ratio, are introduced into the filter housing.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: December 27, 2011
    Assignee: Millipore Corporation
    Inventor: Anthony DiLeo
  • Publication number: 20110312790
    Abstract: A microfluidic test module having an outer casing having an inlet for receiving a biological sample containing a target nucleic acid sequence, and, a hybridization chamber mounted in the casing, the hybridization chamber containing probes having a nucleic acid sequence for hybridization with the target nucleic acid sequence to form probe-target hybrids, wherein, the hybridization chamber has a volume less than 900,000 cubic microns.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi
  • Patent number: 8075841
    Abstract: A method and sensor for the detection of luminescence radiation generated by at least one luminophore is disclosed.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: December 13, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Maarten Van Herpen, Dirk J. Broer, Emiel Peeters, Derk J. W Klunder, Hendrik R. Stapert
  • Publication number: 20110294117
    Abstract: A nucleic acid sequencing device includes at least one nanochannel, a first electrode and a second electrode disposed at opposite ends of the nanochannel for applying a voltage in the lengthwise direction of the nanochannel, and a first detector that detects a location signal of a target nucleic acid passing through the nanochannel and a second detector that detects a signal from a detectable label bound to the target nucleic acid.
    Type: Application
    Filed: November 24, 2010
    Publication date: December 1, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Suhyeon KIM, Joo-won RHEE
  • Patent number: 8045154
    Abstract: The apparatus for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence is a fluorometer equipped with a sample container holder that is movable in the path of the beam from the light source. Fluorescent emissions from the sample mixture pass at 90° to the excitation light path through a slit that is narrow enough that the emission intensity is effectively produced by a thin layer of the sample and focused on a monochromator, with successive thin layers receiving nonuniform excitation radiation due to reduction of intensity along the excitation light source path with increasing depth penetration and due to reabsorption of emitted fluorescence from adjacent layers. The method has a first mode in which the emission spectrum is scanned at a fixed depth, and a second mode in which the sample is moved relative to the emission monochromator slit to vary the depth while keeping the emission wavelength fixed.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 25, 2011
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Ezzat M. Hegazi
  • Patent number: 8038947
    Abstract: Provided are sensor devices, methods, systems, and kits for measuring the concentration of at least one target analyte. Sensor devices may be mounted into an optical system for measuring the target analyte. Example sensor devices may also be removably mounted in a holder that enables the sensor device to be inserted into a container that allows the sensor device to contact an analyte containing sample. Further provided are methods that include contacting a sensor device with an analyte-containing sample; determining analyte concentration; and optionally repeating these steps to determine if the analyte concentration spikes or exceeds a predetermined level, which may trigger an alarm response.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: October 18, 2011
    Assignee: University of Maryland, Baltimore
    Inventor: Richard B. Thompson
  • Patent number: 8038946
    Abstract: The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: October 18, 2011
    Assignee: Namadics, Inc.
    Inventors: Ross James Harper, Marcus la Grone, Mark Fisher
  • Patent number: 8029730
    Abstract: A flow cell for chemiluminescence analysis. The flow cell has a flat, thin, opaque plate, with a groove machined into one side of the plate. An inlet port at the center, and an outlet port at the outside end of the groove pass through the plate, which is sandwiched between a flat sapphire window and a cell cap of a housing. The groove side faces the sapphire window, forming a flow channel with one wall being the sapphire window. A light detector is inserted into the housing until it butts up against that part of the housing holding the sapphire window, placing it very close to the generated light. The other side of the plate mates with inlet and outlet ports of the housing cap.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: October 4, 2011
    Assignee: Global FIA, Inc.
    Inventors: Don C. Olson, Duane K. Wolcott, Graham D. Marshall
  • Patent number: 8029733
    Abstract: A reaction vessel having a reaction chamber for holding a sample is fabricated by producing a housing having a rigid frame defining the minor walls of the chamber. The housing also defines a port for introducing fluid into the chamber. At least one sheet or film is attached to the rigid frame to form at least one major wall of the chamber. In preferred embodiments, two sheets or films are attached to opposite sides of the rigid frame to form two opposing major walls of the chamber, the major walls being connected to each other by the minor walls.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 4, 2011
    Assignee: Cepheid
    Inventors: Ronald Chang, Lee A. Christel, Gregory T. A. Kovacs, William A. McMillan, M. Allen Northrup, Kurt E. Petersen, Farzad Pourahmadi, Steven J. Young, Robert Yuan, Douglas B. Dority
  • Patent number: 8030094
    Abstract: A microsphere-based analytic chemistry system is disclosed in which self-encoding microspheres having distinct characteristic optical response signatures to specific target analytes may be mixed together while the ability is retained to identify the sensor type and location of each sensor in a random dispersion of large numbers of such sensors in a sensor array using an optically interrogatable encoding scheme. An optical fiber bundle sensor is also disclosed in which individual microsphere sensors are disposed in microwells at a distal end of the fiber bundle and are optically coupled to discrete fibers or groups of fibers within the bundle. The identities of the individual sensors in the array are self-encoded by exposing the array to a reference analyte while illuminating the array with excitation light energy.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: October 4, 2011
    Assignee: Trustees of Tufts College
    Inventors: David R. Walt, Todd A. Dickinson
  • Publication number: 20110236264
    Abstract: A microfluidic device for separating emulsion solution into separate particles by passing the emulsion solution through a passive filter. The separated particles can then be sorted into separate chambers through active filtering.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 29, 2011
    Inventors: Aditya RAJAGOPAL, Michael WOODS
  • Patent number: 8026108
    Abstract: An ultra sensitive method for detection of biomolecules includes the step of providing a plurality of bioreceptor functionalized nanoparticle probes. The nanoparticles can include metal, semiconductor, radioactive isotope or fluorescent dye molecules. A sample solution suspected of including the target is contacted with the probes, wherein if present, the target binds to the bioreceptor. After such binding a separating step follows. In the separating step, probes having the target bound thereto are separated from probes not having the target bound thereto. In one embodiment probes having the target bound thereto are then decomposed to generate ions, or broken into discrete radioactive isotopes or fluorescent dye molecules to form a solution including a large plurality of metal ions, radioactive isotopes or dye molecules.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: September 27, 2011
    Assignee: The University of Central Florida Research Foundation, Inc.
    Inventors: Qun Huo, Xiong Liu, Qiu Dai
  • Patent number: 8007725
    Abstract: An electrophoresis apparatus is generally disclosed for sequentially analyzing a single sample or multiple samples having one or more analytes in high or low concentrations. The apparatus comprises a relatively large-bore transport capillary which intersects with a plurality of small-bore separation capillaries and includes a valve system. Analyte concentrators, having antibody-specific (or related affinity) chemistries, are stationed at the respective intersections of the transport capillary and separation capillaries to bind one or more analytes of interest. The apparatus allows the performance of two or more dimensions for the optimal separation of analytes. The apparatus may also include a plurality of valves surrounding each of the analyte concentrators to localize each of the concentrators to improve the binding of one or more analytes of interest.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 30, 2011
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8007724
    Abstract: An electrophoresis apparatus is generally disclosed for sequentially analyzing a single sample or multiple samples having one or more analytes in high or low concentrations. The apparatus comprises a relatively large-bore transport capillary which intersects with a plurality of small-bore separation capillaries and includes a valve system. Analyte concentrators, having antibody-specific (or related affinity) chemistries, are stationed at the respective intersections of the transport capillary and separation capillaries to bind one or more analytes of interest. The apparatus allows the performance of two or more dimensions for the optimal separation of analytes. The apparatus may also include a plurality of valves surrounding each of the analyte concentrators to localize each of the concentrators to improve the binding of one or more analytes of interest.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 30, 2011
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8008029
    Abstract: The invention concerns a method for differentiating and counting cellular components present in a biological fluid sample comprising a primary cytological analysis step typically implemented by a flow cytometry equipment (1) to obtain a set of primary results enabling the set of cellular components of the sample to be differentiated and counted in different populations; and a complementary step of cytological analysis of a particular type of cellular components, based on an identified cellular peculiarity, to obtain complementary results enabling at least one cell population or subpopulation of the sample to be differentiated and counted for identification of said cellular peculiarity. The invention is applicable in particular to hematological analyses.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: August 30, 2011
    Assignee: Horiba ABX SAS
    Inventor: Didier Lefevre
  • Patent number: 8008066
    Abstract: An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: August 30, 2011
    Assignee: Gen-Probe Incorporated
    Inventors: Gary D. Lair, Thanh N. Nguyen, Haitao Li, Florence F. Li, Byron J. Knight, Robert E. Heinz, Jerzy A. Macioszek, Christopher B. Davis, Robert F. Scalese
  • Patent number: 7968343
    Abstract: A chemical sensor including a substrate having at least two faces, at least one of the faces being covered by a thin film that includes a sensitive material, and a means for measuring a change in a physical property of the sensitive material; and, methods of detecting the presence of a nitro compound with the chemical sensor.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: June 28, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Didier Poullain, Eric Pasquinet, Lionel Hairault
  • Patent number: 7964390
    Abstract: A sensor probe suited for implanting into the skin of a person includes a sensor body which may be formed from a polymer which includes 2-hydroxyethyl methacrylate (HEMA). A sensing system is supported by the body. The sensing system exhibits a detectable change when the probe is exposed to the analyte in the fluid. The sensing system may include an enzyme capable of catalyzing a reaction of the analyte to form a reaction product and a dye system which absorbs in the infrared region of the spectrum in response to the reaction product.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: June 21, 2011
    Assignee: Case Western Reserve University
    Inventors: George Rozakis, Miklos Gratzl, Koji Tohida, Jian Yang
  • Patent number: 7964412
    Abstract: An optical waveguiding optical format enables consistent optical analysis of small sample volumes with minimal variation in light path length among optical formats. The optical format is comprised of an input guide, an output guide, and a sample cavity adapted to allow light to pass through a sample on its way from the input guide to the output guide. A lid removed from the light pathway within the format may be provided with a reagent for assisting fluid analysis.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: June 21, 2011
    Assignee: Bayer HealthCare LLC
    Inventor: Allen J. Brenneman
  • Patent number: 7959861
    Abstract: Device and method for detecting the presence of known or unknown toxic agents in a fluid sample. Targets in the sample are bound to releasable receptors immobilized in a reaction region of a micro- or nano-fluidic device. The receptors are selected based on their affinity for classes of known toxic agents. The receptors are freed and the bound and unbound receptors separated based on differential electrokinetic mobilities while they travel to a detection device.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: June 14, 2011
    Assignee: STC.UNM
    Inventors: Gabriel Lopez, Linnea Ista, Steven R J Brueck, Aurelio Evangelista Lara, Mangesh Bore
  • Patent number: 7961315
    Abstract: Enhancement of fluorescence emission from fluorophores bound to a sample and present on the surface of two-dimensional photonic crystals is described. The enhancement of fluorescence is achieved by the combination of high intensity near-fields and strong coherent scattering effects, attributed to leaky photonic crystal eigenmodes (resonance modes). The photonic crystal simultaneously exhibits resonance modes which overlap both the absorption and emission wavelengths of the fluorophore. A significant enhancement in fluorescence intensity from the fluorophores on the photonic crystal surface is demonstrated.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: June 14, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Brian T. Cunningham, Nikhil Ganesh, Patrick C. Mathias, Ian D. Block
  • Patent number: 7955858
    Abstract: A detection method and indicator are disclosed that includes quantum dots that fluoresce under illumination of a first light having a first wavelength to indicate the presence of a predetermined condition, and in particular, a corrosion condition. The quantum dots are surrounded by a shell material that under normal conditions reflect the first light and reacts in the presence of the predetermined condition to permit the first light to illuminate the quantum dot to excite the quantum dot to emit a second light having a second wavelength, which when detected, indicates the presence of the predetermined condition.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: June 7, 2011
    Assignee: The Boeing Company
    Inventors: Keith J. Davis, Nicole L. Dehuff, Morteza Safai
  • Patent number: 7947509
    Abstract: The invention relates to optoelectronic systems for detecting one or more target particles. The system includes a reaction chamber, a specimen collector, an optical detector, and a reservoir containing cells, each of the cells having receptors which are present on the surface of each cell and are specific for the target particle to be detected, where binding of the target particle to the receptors directly or indirectly activates a reporter molecule, thereby producing a measurable optical signal.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: May 24, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: James Douglas Harper, Richard Hart Mathews, Bernadette Johnson, Martha Susan Petrovick, Ann Rundell, Frances Ellen Nargi, Timothy Stephens, Linda Marie Mendenhall, Mark Alexander Hollis, Albert M. Young, Todd H. Rider, Eric David Schwoebel, Trina Rae Vian
  • Patent number: 7947442
    Abstract: Subject of the present invention is to provide an apparatus, an instrument, and a method particularly useful in multiplex PCR applications permitting short sample measuring times of many samples combined with high sensitivity.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: May 24, 2011
    Assignee: Roche Molecular Systems, Inc.
    Inventor: Roger Iten
  • Patent number: 7943390
    Abstract: A device and a method for measuring viscosity that includes attaching molecular rotors to a solid surface, exposing the solid surface to a fluid having a viscosity to be measured, and taking optical measurements to determine viscosity. The solid surface is preferably quartz, polystyrene or silicate glass, such as a fiber optic probe or a glass cuvette. The molecular rotors are of the type that includes an electron-donor group and electron-acceptor group that are linked by a single bond so that the groups may rotate with respect to one another, and that exhibit a fluorescence emission when rotation is hindered.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: May 17, 2011
    Assignees: The Curators of the University of Missouri, The Regents of the University of California, La Jolla Bioengineering Institute
    Inventors: Mark A. Haidekker, Sheila Grant, Emmanuel Theodorakis, Marcos Intaglietta, John A. Frangos
  • Patent number: 7935489
    Abstract: Methods for detecting one or more analytes, such as a protein, in a fluid path are provided. The methods include resolving, immobilizing and detecting one or more analytes in a fluid path, such as a capillary. Also included are devices and kits for performing such assays.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: May 3, 2011
    Assignee: Cell Biosciences, Inc.
    Inventors: Roger A. O'Neill, Marc Glazer, Tom Weisan Yang
  • Patent number: 7935308
    Abstract: Methods for detecting one or more analytes, such as a protein, in a fluid path are provided. The methods include resolving, immobilizing and detecting one or more analytes in a fluid path, such as a capillary. Also included are devices and kits for performing such assays.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 3, 2011
    Assignee: Cell Biosciences, Inc.
    Inventors: Roger A. O'Neill, Marc Glazer, Tom Weisan Yang
  • Patent number: 7935479
    Abstract: Methods for detecting one or more analytes, such as a protein, in a fluid path are described herein. In some embodiments a method includes resolving one or more analytes in a fluid path, such as, for example, a capillary. After the one or more analytes are resolved, the one or more analytes are bound to the fluid path upon activation of one or more triggerable agents disposed within the fluid path. The one or more analytes that are bound to the fluid path are detected within the fluid path.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: May 3, 2011
    Assignee: Cell Biosciences, Inc.
    Inventors: Roger A. O'Neill, Marc Glazer, Tom W. Yang, Daniel J. Suich, Karl O. Voss
  • Patent number: 7932081
    Abstract: An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: April 26, 2011
    Assignee: Gen-Probe Incorporated
    Inventors: Gary D. Lair, Thanh N. Nguyen, Haitao Li, Florence F. Li, Byron J. Knight, Robert E. Heinz, Jerzy A. Macioszek, Christopher B. Davis, Robert F. Scalese
  • Patent number: 7927547
    Abstract: The biosensor comprises a modular biorecognition element and a modular flexible arm element. The biorecognition element and the flexible arm element are each labeled with a signaling element. The flexible arm contains an analog of an analyte of interest that binds with the biorecognition element, bringing the two signaling elements in close proximity, which establishes a baseline fluorescence resonance energy transfer (FRET). When an analyte of interest is provided to the biosensor, the analyte will displace the analyte analog, and with it, the signaling module of the modular flexible arm, causing a measurable change in the FRET signal in a analyte concentration dependent manner. The modularity of different portions of the biosensor allows functional flexibility. The biosensor operates without additional development reagents, requiring only the presence of analyte or target for function.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: April 19, 2011
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Igor L Medintz, J Matthew Mauro, Ellen R Goldman, George P Anderson
  • Patent number: 7923261
    Abstract: This invention is directed to a method for determining a source of carbon feed used in manufacturing product produced from the carbon feed. The invention further provides a method for tracking products, particularly MTO products, derived from a particular carbon feed. In general, the method involves a variety of steps that include one or more of determining, comparing, inventorying, and tracking the 13C:12C ratio (or HD:H2 ratio) of the product that is being tracked to the measured or predetermined 13C:12C ratio (or HD:H2 ratio) of the feed used to make the product.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 12, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Thomas H. Colle
  • Patent number: 7910376
    Abstract: A method for detecting trace explosives which includes obtaining a sample believed to contain explosives residue and contacting the sample and a carrier container containing the sample with a reagent. The sample and the carrier is illuminated by an appropriate laser or other light source while it is contained within a light tight box. The sample and the carrier is observed during the elimination to determine photoluminescence of the sample as an indication that it contains trace explosives. The reagent may be an alkaline containing substance, a lanthanide complex, a lanthanide complex containing sensitizing ligands or nanocrystals.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: March 22, 2011
    Inventor: Roland E. Menzel
  • Patent number: 7910357
    Abstract: The present invention is characterized by the following points: In a biochip reader used for reading a measurement sample image by light beam irradiation, a correction method for the distribution of quantity of light which is devised to remove the influence of shading for the whole image and such a biochip reader can be realized by correcting non-uniformity in said quantity of light in light beam irradiation by dividing the quantities of light of pixels in a measured image obtained from the measurement of a measurement sample by a distribution of quantity of light in an image obtained from the measurement of a uniform fluorescent plate that presents a uniform fluorescent light distribution, the positions of pixels in the measured image being correspondent to those in the image obtained through the above uniform fluorescent plate measurement.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: March 22, 2011
    Assignee: Yokogawa Electric Corporation
    Inventors: Yumiko Sugiyama, Takeo Tanaami
  • Patent number: 7897109
    Abstract: Apparatus or systems which employ luminescence quenching to produce an oxygen concentration indicative signal. Components of such systems include: (1) an airway adapter, sampling cell, or the like having a sensor which is excited into luminescence with the luminescence decaying in a manner reflecting the concentration of oxygen in gases flowing through the airway adapter or other flow device; (2) a transducer which has a light source for exciting a luminescable composition in the sensor into luminescence and a light sensitive detector for converting energy emitted from the luminescing composition as that composition is quenched into an electrical-signal indicative of oxygen concentration in the gases being monitored; and (3) subsystems for maintaining the sensor temperature constant and for processing the signal generated by the light sensitive detector. Sensors for systems of the character just described, methods of fabricating those sensors, and methods for installing the sensors in the flow device.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: March 1, 2011
    Assignee: RIC Investments, LLC
    Inventors: Lawrence L. Labuda, Perry R. Blazewicz, Leslie E. Mace, Jerry R. Apperson, Walter A. Cooke
  • Patent number: 7897108
    Abstract: A sensor has a sensor substance, an electromagnetic energy source, and a detector. The sensor substance may be able to emit electromagnetic energy different than that provided by the energy source when an analyte of interest is in contact with the sensor substance and electromagnetic energy is received by the sensor substance. The energy source and the detector may be provided on the same side of the sensor substance. In a method according to the invention, a determination may be made as to whether an analyte is present in a sample. Such a method may provide a sensor, such as that described above. Electromagnetic energy may be provided to the sensor substance using the energy source, and the sensor substance may be contacted with a sample. Electromagnetic energy may be emitted from the sensor substance and received at the detector. The detector may provide a signal indicating the type of electromagnetic energy emitted from the sensor substance.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: March 1, 2011
    Assignee: The Research Foundation of State University of New York
    Inventors: Albert H. Titus, Frank V. Bright, Alexander N. Cartwright
  • Patent number: 7897402
    Abstract: Applicants have produced a chromophore and a polymer that are highly sensitive to the presence of various agents, including organophosphates, pesticides, neurotoxins, metal ions, some explosives, and biological toxins. The detection is accomplished by detecting a change in the fluorescence characteristics of the chromophore or polymer when in the presence of the agent to be detected. The chromophore and polymer may be incorporated into sensors of various types, and they are adaptable for potential field use in areas where detection of these types of agents is desired.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: March 1, 2011
    Assignee: NDSU-Research Foundation
    Inventors: Johnson Thomas, Philip Boudjouk
  • Patent number: 7883900
    Abstract: A method of enhancing fluorescence emission in a fluorophore-mediated sensing, biosensing, imaging, and bioimaging. An example of biosensing is a fluorophore-mediated sandwich immunoassay with a 1° monoclonal antibody against a target analyte and a fluorophore-linked 2° monoclonal antibody, exposing the immunoassay to an enhancing agent, applying excitation light to the immunoassay, and measuring an emission signal from the immunoassay.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: February 8, 2011
    Assignee: University of Louisville Research Foundation, Inc.
    Inventor: Kyung A. Kang
  • Patent number: 7871573
    Abstract: A method of enhancing fluorescence emission in a fluorophore-mediated sensing, biosensing, imaging, and bioimaging. An example of biosensing is a fluorophore-mediated sandwich immunoassay with a 1° monoclonal antibody against a target analyte and a fluorophore-linked 2° monoclonal antibody, exposing the immunoassay to an enhancing agent, applying excitation light to the immunoassay, and measuring an emission signal from the immunoassay.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: January 18, 2011
    Assignee: University of Louisville Research Foundation, Inc.
    Inventor: Kyung A. Kang
  • Patent number: 7862775
    Abstract: The present invention provides sensors and methods for determination of an analyte. The analytes may be determined by monitoring, for example, a change in an optical signal of an emissive material upon exposure to an analyte. In some embodiments, the analyte and the emissive material may interact via a chemical reaction, or other chemical, biochemical or biological interaction (e.g., recognition), to form a new emissive species. In some cases, the present invention may be used for the detection of analytes such as explosives (e.g., RDX, PETN). Methods of the present invention may be advantageous in that the high sensitivity of luminescence (e.g., fluorescence) spectroscopy can allow for the reliable detection of small changes in luminescence intensity.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: January 4, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Trisha L. Andrew, Samuel W. Thomas, III, Jean Bouffard
  • Patent number: 7846658
    Abstract: The invention relates to a method for improving the detection sensitivity in homogenous TR-FRET based bioaffinity assays. The sensitivity is improved by the use of long lifetime donors together with a high energy transfer efficiency and by carrying out the detection of the energy transfer based emission of the acceptor in a time window which is opened after a delay of 1 microsecond or more, but less than 50 microseconds, calculated from the donor excitation, and which time window has a width of 1 microsecond or more, but less than 100 microseconds. The invention concerns also the use of the improved method in multianalyte assays. Furthermore, the invention concerns a device suitable for carrying out the improved method.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: December 7, 2010
    Assignee: Wallac Oy
    Inventor: Ville Laitala
  • Patent number: 7846390
    Abstract: The apparatus for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence is a fluorometer equipped with a sample container holder that is movable in the path of the beam from the light source. Fluorescent emissions from the sample mixture pass at 90° to the excitation light path through a slit that is narrow enough that the emission intensity is effectively produced by a thin layer of the sample and focused on a monochromator, with successive thin layers receiving nonuniform excitation radiation due to reduction of intensity along the excitation light source path with increasing depth penetration and due to reabsorption of emitted fluorescence from adjacent layers. The method has a first mode in which the emission spectrum is scanned at a fixed depth, and a second mode in which the sample is moved relative to the emission monochromator slit to vary the depth while keeping the emission wavelength fixed.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: December 7, 2010
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Ezzat M. Hegazi
  • Patent number: 7833480
    Abstract: Apparatus or systems which employ luminescence-quenching to produce a signal indicative of oxygen concentration.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: November 16, 2010
    Assignee: RIC Investments, Inc.
    Inventors: Perry R. Blazewicz, Leslie E. Mace, Jerry R. Apperson
  • Patent number: 7829341
    Abstract: The invention relates to a class of glucose-responsive, polyviologen boronic acid quenchers that may be used in combination with fluophores to achieve real-time measurement of glucose levels in vivo.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: November 9, 2010
    Assignee: Glumetrics, Inc.
    Inventors: Soya Gamsey, Ritchie A. Wessling
  • Patent number: 7824918
    Abstract: Novel fluorescent dyes are disclosed for use in analyte detection. In particular, mono- and bis-substituted HPTS dyes and methods of making them are provided.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: November 2, 2010
    Assignee: Glumetrics, Inc.
    Inventor: Jeff T. Suri
  • Patent number: 7820107
    Abstract: An optical waveguiding optical format enables consistent optical analysis of small sample volumes with minimal variation in light path length among optical formats. The optical format is comprised of an input guide, an output guide, and a sample cavity adapted to allow light to pass through a sample on its way from the input guide to the output guide. A lid removed from the light pathway within the format may be provided with a reagent for assisting fluid analysis.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: October 26, 2010
    Assignee: Bayer HealthCare LLC
    Inventor: Allen J. Brenneman