Utilizing As Solid Sorbent, Catalyst, Or Reactant A Material Containing A Transition Element Patents (Class 423/213.2)
  • Publication number: 20090324470
    Abstract: The present invention relates to a process for producing an activated perovskite-based washcoat formulation suitable for reduction of carbon monoxide, volatile organic compounds, particulate matter, and nitrogen oxides emissions from an exhaust gas stream. The process includes the steps of high energy ball milling a fully synthesized perovskite structure to provide an activated nanocrystalline perovskite powder of a given surface area; mixing the activated nanocrystalline perovskite powder with dispersing media and grinding the mixture; removing partially or totally the dispersing media to obtain an activated perovskite-based catalyst washcoat formulation wherein the activated perovskite in the formulation has a specific surface area greater than that of the activated nanocrystalline perovskite powder. The process may further include a step of applying the formulation on a substrate to obtain a catalytic converter.
    Type: Application
    Filed: June 12, 2007
    Publication date: December 31, 2009
    Inventors: Houshang Alamdari, Mahbod Bassir, Purnesh Seegopaul, André Van Neste
  • Patent number: 7638452
    Abstract: Nitrogen oxide storage catalysts are used for removing the nitrogen oxides present in the lean-burn exhaust gas of lean-burn engines. Here, the purifying action is based on the nitrogen oxides being stored in the form of nitrates by the storage material of the storage catalyst during a lean-burn operating phase of the engine and the previously formed nitrates being decomposed in a subsequent rich-burn operating phase of the engine and the nitrogen oxides which are being liberated again being reacted with the reducing exhaust gas constituents over the storage catalyst to form nitrogen, carbon dioxide and water. Storage catalysts are thermally aged by high temperatures. The aging is due to sintering of the catalytically active noble metal components of the catalyst and to formation of compounds of the storage components with the support materials.
    Type: Grant
    Filed: July 15, 2006
    Date of Patent: December 29, 2009
    Assignee: Umicore AG & Co. KG
    Inventors: Meike Wittrock, Ulrich Goebel, Thomas Kreuzer, Christina Maria Casapu, Jan-Dierk Grunwaldt, Marek Maciejewski, Alfons Baiker
  • Publication number: 20090304564
    Abstract: Nitrogen oxide storage materials and methods of manufacturing nitrogen oxide storage materials are disclosed. The nitrogen oxide storage materials can be used to manufacture catalytic trap disposed in an exhaust passage of an internal combustion engine which is operated periodically between lean and stoichiometric or rich conditions, for abatement of NOx in an exhaust gas stream which is generated by the engine. In one embodiment, the nitrogen oxide storage material comprises alkaline earth material supported on ceria particles having a crystallite size of between about 10 and 20 nm and the alkaline earth oxide having a crystallite size of between about 20-40 nm.
    Type: Application
    Filed: July 6, 2009
    Publication date: December 10, 2009
    Applicant: BASF Catalysts LLC
    Inventors: Marcus Hilgendorff, Stanley A. Roth, Susanne Stiebels
  • Publication number: 20090293464
    Abstract: An exhaust treatment assembly is provided, which includes a plurality of first grid members. The assembly also includes a plurality of second grid members engaged with the first grid members, the grid members are arranged to form spaces. A plurality of exhaust filter elements is disposed in the spaces and forms an exhaust filter block. A first side wall is engaged with the first grid members, and is adjacent a first edge of the filter block. A second side wall is engaged with the second grid members, and is adjacent a second edge of the filter block. An insulator is located between the first side wall and the first edge of the filter block, and located between the second side wall and the second edge of the filter block.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Inventors: Gregory J. Kaufmann, Alexei Peter Yelistratov, Stanley Lester Davis, II
  • Patent number: 7625538
    Abstract: The invention provides a process and filter for catalytic purification of exhaust gas from a diesel engine by passing the exhaust gas through a wall flow filter provided with material being catalytic active in the reduction of nitrogen oxides to nitrogen and oxidation of carbonaceous compounds to carbon dioxide and water. The wall flow filter is prepared from silicon carbide and provided with a layer of titanium dioxide on its surface and wherein the catalytic active material comprises oxides of vanadium, tungsten and metallic palladium.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: December 1, 2009
    Assignee: Haldor Topsoe A/S
    Inventor: Gurli Mogensen
  • Patent number: 7622095
    Abstract: A lean NOx trap composition. The lean NOx trap composition utilizes ruthenium in place of higher cost metals such as platinum. The lean NOx trap composition provides high NOx storage efficiency and high NOx conversion efficiency when incorporated in a lean NOx trap. A method of removing harmful gases using the lean NOx trap composition is also described.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: November 24, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: John Li, Christian Goralski, Jr., William Watkins, George Graham, Harendra Gandhi
  • Patent number: 7622096
    Abstract: A layered three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Engine exhaust treatment system and methods of using the same are also provided. In one or more embodiments, the catalyst supported on a carrier has three layers, where at least two of the layers are zoned to have an oxygen storage component being present in an upstream zone in an amount that is less than the oxygen storage component present in the downstream zone.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: November 24, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Michel Deeba, Knut Wassermann, Glenn Svoboda, Harold Rabinowitz, Stephan Slemund, Xinyi Wei
  • Patent number: 7622094
    Abstract: The invention provides a method and apparatus for integrating the heat transfer zones of plate fin and tube and finned tube exchangers and a catalytic mass transfer zone. The invention also provides a method for in situ regeneration of existing coated surface and augmentation of existing coated surface, or catalyst performance.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: November 24, 2009
    Inventors: Larry Lewis, Jeff Diaz
  • Patent number: 7621981
    Abstract: An apparatus, system, and method are disclosed for dispersing heat within a particulate filter. The apparatus may include various devices for dispersing heat from a high risk portion of the particulate filter by delaying heat generation, by conducting generated heat out of the high risk portion, by absorbing the heat generated into molecular energy rather than temperature, by shifting some of the heat burden away from the particulate filter to other devices in an aftertreatment system, or out of the aftertreatment system. The delaying device may be a reduction of catalyst loading within portions of the particulate filter. The conducting device may be a plurality of thermal conduits within portions of the particulate filter. The absorption device may be a high heat capacity washcoat in portions of the particulate filter.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 24, 2009
    Assignee: Cummins Filtration IP, Inc
    Inventors: Bryan Blackwell, Conrad J. Simon, III, Thomas M. Yonushonis
  • Publication number: 20090285735
    Abstract: A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO2)SO4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.
    Type: Application
    Filed: May 27, 2009
    Publication date: November 19, 2009
    Inventors: ANATOLY SOBOLEVSKIY, JOSEPH A. ROSSIN
  • Patent number: 7618605
    Abstract: An exhaust emission control device for an internal combustion engine, which is capable of supplying a just enough amount of reducing agent to a NOx catalyst, thereby reducing exhaust emission and improving fuel economy. The device includes a three-way catalyst, a NOx catalyst provided downstream of the three-way catalyst, and an ECU. The ECU carries out rich spike control such that exhaust gases flowing into the NOx catalyst form a reducing atmosphere. During the control, the ECU calculates a reducing agent consumption amount of reducing agent in the exhaust gases consumed by the three-way catalyst, calculates a cumulative reducing agent amount as a total amount of reducing agent supplied to the NOx catalyst, depending on the reducing agent consumption amount, and terminates the control when the cumulative reducing agent amount becomes larger than a predetermined value.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: November 17, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tomoko Morita, Norio Suzuki, Hiroshi Ohno
  • Publication number: 20090274599
    Abstract: Catalytic compositions useful, e.g., for the treatment of internal combustion engine exhaust gases, are based on zirconium oxide in a weight proportion of at least 25%, from 15% to 60% of cerium oxide, from 10% to 25% of yttrium oxide, from 2% to 10% of lanthanum oxide and from 2% to 15% of another rare earth oxide, have a specific surface of at least 15 m2/g and a cubic phase, and are prepared from a mixture of zirconium, cerium, yttrium, lanthanum and the additional rare earth, by precipitating such mixture with a base, heating the precipitate in an aqueous medium, adding thereto a surfactant and calcining the precipitate.
    Type: Application
    Filed: February 13, 2007
    Publication date: November 5, 2009
    Applicant: RHODIA OPERATIONS
    Inventors: Olivier Larcher, Stephan Verdier, Emmanuel Rohart, Aimin Huang
  • Publication number: 20090269263
    Abstract: The processing of gases, in particular the exhaust gas of an internal combustion/diesel engine, entails catalytically oxidizing the carbon monoxide and hydrocarbons contained therein in an oxygen-rich medium, in the presence of a metal oxidation catalyst that includes a silica-containing zirconia support.
    Type: Application
    Filed: June 27, 2006
    Publication date: October 29, 2009
    Applicant: RHODIA CHIMIE
    Inventors: Emmanuel Rohart, Stephan Verdier, Aimin Huang
  • Publication number: 20090257933
    Abstract: A layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. In one or more embodiments, the catalyst comprises three layers in conjunction with a carrier: a first layer deposited on the carrier and comprising palladium deposited on a refractory metal oxide and an oxygen storage component; a second layer deposited on the first layer and comprising rhodium deposited on a refractory metal oxide and an oxygen storage component; and a third layer deposited on the second layer and comprising palladium deposited on a refractory metal oxide.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 15, 2009
    Applicant: BASF Catalysts LLC
    Inventors: Shau-Lin F. Chen, Harold Rabinowitz, Jin Sakakibara, Tian Luo, Michel Deeba
  • Publication number: 20090255236
    Abstract: A method of reducing nitrogen oxides (NOx) in a flowing combustion exhaust gas to N2, which method comprising oxidising nitrogen monoxide to nitrogen dioxide on a transition metal/elite catalyst at catalyst bed temperatures below 50° C. and reducing NOx with the catalyst using an hydrocarbon (HC) reductant at catalyst bed temperatures below 150° C.
    Type: Application
    Filed: January 12, 2007
    Publication date: October 15, 2009
    Applicant: Johnson Matthey Public Limited Company
    Inventors: Jillian Elaine Collier, Philip Gerald Blakeman, Paul James Millington, Raj Rao Rajaram, Isabel Zoe Tingay, Andrew Peter Walker
  • Publication number: 20090257934
    Abstract: Disclosed herein is a transition metal-substituted hydrotalcite catalyst for removing nitrogen oxides using a storage-reduction method, in which a molar ratio of transition metal to magnesium is 0.2 or less, and a method of manufacturing a transition metal-substituted hydrotalcite catalyst for removing nitrogen oxides using a storage-reduction method, including the steps of preparing a hydrotalcite synthesis solution including transition metal precursors such that the molar ratio of transition metal to magnesium is 0.2 or less, and preferably 0.001 to 0.2; aging the synthesis solution; and hydrothermally treating the synthesis solution.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 15, 2009
    Inventors: HYUN-SIK HAN, YOUNG-SAN YOO, GON SEO, GI-WON PARK
  • Publication number: 20090257935
    Abstract: There is described a base metal modified Cerium containing oxide materials and their application as catalysts for the oxidation of CO and HC emissions from a compression ignition/diesel engine. These materials provide effective promotion of CO and HC oxidation function in the presence or absence of PGM and are based upon OIC/OS materials having a stable cubic crystal structure, and most especially to promoted OIC/OS materials wherein the promotion is achieved by the post-synthetic introduction of non-precious metals via a basic (alkaline) exchange process.
    Type: Application
    Filed: March 20, 2009
    Publication date: October 15, 2009
    Inventors: Barry W.L. Southward, Curt Ellis
  • Patent number: 7597865
    Abstract: Provided in a catalyst system are: a first reaction part fitted with a first catalyst containing, as active constituents, at least, a complex oxide consisting of two or more oxides selected from among silica, alumina, titania, zirconia, and tungsten oxide, and a rare earth metal or transition metal (except Cu, Co, Ni, Mn, Cr, and V); and a second reaction part fitted with a second catalyst containing, as active constituents, at least, a noble metal and a silica-alumina type complex oxide.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: October 6, 2009
    Assignees: Tokyo Roki Co., Ltd, Nissan Diesel Motor Co., Ltd.
    Inventors: Takayuki Mori, Nobuya Iwami, Takayuki Kumagai, Isamu Kanaya, Hiroki Ueno, Kiminobu Hirata
  • Patent number: 7597864
    Abstract: Ammonia and optionally carbon monoxide are injected into the flue gas containing metals such as mercury in a manner so that there are sufficient amounts of these materials in the flue gas when the flue gas is at a temperature of from 900° F. to 1,450° F. to oxidize the metals within the flue gas. The oxidized metals are then attracted to particulates present in the flue gas. Oxidation is facilitated by a reaction zone stabilizer through which the flue gas flows. The stabilizer provides a stable continuous ignition front. These particulates bound with oxidized metals are removed from the flue gas by a particulate removal device such as an electrostatic precipitator or baghouse. After the ammonia is injected, the flue gas can be rapidly cooled to a temperature below 500° F. to minimize decomposition of oxidized metals in the flue gas.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: October 6, 2009
    Assignee: Breen Energy Solutions
    Inventors: Bernard P. Breen, Robert A. Schrecengost
  • Patent number: 7595034
    Abstract: The invention relates to a catalytic process for reducing nitrogen oxides in flue gases, in which process a reducing agent containing composition is mixed with flue gas and the mixture achieved is brought into contact with a catalyst. In accordance with the invention, the composition contains e.g. 1 to 60% of weight of ammonium formate. Especially a low freezing point can be achieved with such water containing composition. In addition, a good reduction conversion is achieved even at low temperatures.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: September 29, 2009
    Assignee: Kemira Oyj
    Inventors: Timo Nissinen, Jari Kukkonen
  • Patent number: 7591986
    Abstract: An exhaust emission control device which is capable of supplying a just enough amount of reducing agent to a NOx catalyst while causing the amount of reducing agent consumed in an upstream catalyst to be reflected thereon. A NOx catalyst for trapping NOx and reducing NOx to change the same into harmless ingredients in a reducing atmosphere is disposed downstream of a catalyst. Reducing agent is supplied upstream of the catalyst to cause the NOx catalyst to perform a NOx-reducing action. The amount of oxygen occluded in the catalyst is calculated. During reduction control, according to the oxygen occlusion amount, the amount of reducing agent oxidized and consumed in the catalyst is calculated. According to the reducing agent consumption amount, the amount of reducing agent supplied to the NOx catalyst is calculated. The reduction control is terminated based on the reducing agent supply amount.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: September 22, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tomoko Morita, Norio Suzuki, Hiroshi Ohno
  • Patent number: 7585477
    Abstract: The invention provides a catalyst for catalytic reduction of nitrogen oxides contained in exhaust gases wherein fuel is supplied and subjected to combustion under periodic rich/lean conditions and the resulting exhaust gases are brought into contact therewith, which catalyst comprises: (A) a catalyst component A comprising (c) ceria or (d) praseodymium oxide or (e) an oxide and/or a composite oxide of at least two elements selected from the group consisting of cerium, zirconium, praseodymium, neodymium, terbium, samarium, gadolinium and lanthanum; (B) a catalyst component B comprising (d) a noble metal catalyst component selected from the group consisting of platinum, rhodium, palladium and oxides thereof and (e) a carrier; and (C) a catalyst component C comprising (f) a solid acid, and (g) a solid acid supporting an oxide of at least one element selected from the group consisting of vanadium, tungsten, molybdenum, copper, iron, cobalt, nickel and manganese.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: September 8, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadao Nakatsuji, Norio Suzuki, Hiroshi Ohno, Naohiro Sato, Tomoko Morita, Katsuji Wada
  • Patent number: 7585478
    Abstract: An exhaust-gas purifying catalyst includes a mantle, two or more honeycomb-shaped supports fastened in the mantle so as to be separated at intervals, and a catalytic layer disposed on the respective honeycomb-shaped supports. The honeycomb-shaped supports include a first honeycomb-shaped support, disposed on a most upstream side of the mantle with respect to a flow of exhaust gases, and a second honeycomb-shaped support, disposed next to the first honeycomb-shaped support on a downstream side of the mantle with respect to the flow of exhaust gases. The catalytic layer includes a loading layer formed on the respective honeycomb-shaped supports, and a catalytic ingredient loaded on the loading layer. The catalytic layer disposed on the first honeycomb-shaped support includes at least Rh in a loading amount of 0.8 g or more with respect to 1 L of an apparent volume of the first honeycomb-shaped support.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: September 8, 2009
    Assignee: Cataler Corporation
    Inventors: Junya Shirahata, Kohei Tomiyasu, Kazunori Ito
  • Publication number: 20090220398
    Abstract: Catalyst compositions for the treatment of vehicular exhaust gases are based on zirconium and cerium oxides, have a cerium oxide content of at most 50% by weight, a level of reducibility of at least 95% after calcination in air at 600°, and a specific surface area after calcination for 4 hours at 1100° of at least 15 m2/g; such compositions are prepared by forming an aqueous mixture containing zirconium and cerium compounds, by heating this mixture to at least 100° and, after the heating, adjusting it to a basic pH, by adding a surfactant additive to the precipitate obtained from this mixture and by calcinating the precipitate in an inert gas or under vacuum at a temperature of at least 900° and then in an oxidizing atmosphere at a temperature of at least 600°.
    Type: Application
    Filed: March 19, 2007
    Publication date: September 3, 2009
    Applicant: RHODIA OPERATIONS
    Inventors: Stephan Verdier, Olivier Larcher, Emmanuel Rohart, Bernard Pacaud, Hirofumi Takemori, Eisaku Suda
  • Publication number: 20090208393
    Abstract: A device for removing harmful constituents from exhaust gases of internal combustion engines comprises a first housing for conducting exhaust gases, the first housing containing a front, middle, and rear area with at least one intake in the front area and at least one outlet in the rear area. A first structure containing a plurality of contiguous cavities covers the cross-section of the first housing at least partially. The following are disposed in the housing in any sequence: a second structure which contains and/or is coated with a first metal oxide; a third structure which contains and/or is coated with a catalyst for converting or degrading contaminants; and a fourth structure which contains and/or is coated with a second metal oxide. The first housing contains or is at least partially made of or coated with porous aluminum oxide, mullite, cordierite, silicon nitride, tialite, steatite, zircon, zircon dioxide and/or silicon carbide.
    Type: Application
    Filed: September 15, 2006
    Publication date: August 20, 2009
    Inventors: Lothar Wenzel, Bernhard Nibbrig
  • Publication number: 20090208394
    Abstract: An emission treatment system including a catalyzed soot filter comprising a wall flow monolith and a catalyst comprising at least two types of support particles is described. The first support particle contains at least a platinum component, the second support particles contains at least a palladium component. The wall flow monolith may be washcoated with a slurry comprising at least two types of particles without applying a passivation layer to the wall flow monolith.
    Type: Application
    Filed: February 14, 2008
    Publication date: August 20, 2009
    Inventor: Yuejin Li
  • Patent number: 7575792
    Abstract: A honeycomb filter, for removing from exhaust gas fine solid particles containing carbon, is an aluminum magnesium titanate sintered product obtained by firing at from 1000 to 1700° C. a product formed from a mixture comprising a Mg-containing compound, an Al-containing compound and a Ti-containing compound in the same metal component ratio as the metal component ratio of Mg, Al and Ti in aluminum magnesium titanate represented by the empirical formula MgxAl2(1?x)Ti(1+x)O5 (wherein 0<x<1), or a mixture comprising 100 parts by mass, as calculated as oxides, of the above-mentioned mixture and from 1 to 10 parts by mass of an alkali feldspar represented by the empirical formula (NayK1?y)AlSi3O8 (wherein 0?y?1).
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 18, 2009
    Assignee: Ohcera Co., Ltd.
    Inventors: Tsutomu Fukuda, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi
  • Publication number: 20090202408
    Abstract: A catalyst of one or more complex oxides having a nominal composition as set out in formula (1): AxB1-y-zMyPzOn (1) wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with atomic number 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with atomic number 25 to 30; P is selected from one or more elements with atomic number 44 to 50 and 76 to 83; x is defined as a number where 0<x?1; y is defined as a number where 0?y<0.5; and z is defined as a number where 0<z<0.2.
    Type: Application
    Filed: April 12, 2007
    Publication date: August 13, 2009
    Inventors: Peter Cade Talbot, Jose Antonio Alarco, Geoffrey Alan Edwards
  • Patent number: 7569197
    Abstract: The invention provides a process and system for purification of an exhaust gas stream from a combustion engine containing hydrocarbons, soot, carbon monoxide and sulphur dioxide. The process comprises the steps of oxidising the hydrocarbons and part of the soot in a first reactor in the presence of a first catalyst active in oxidising hydrocarbons and soot without oxidising sulphur dioxide and forming a partly purified exhaust gas stream, of cooling of the partly purified exhaust gas stream, of converting the carbon monoxide of the partly purified exhaust gas stream in a second reactor in presence of a second catalyst active in oxidising carbon monoxide without oxidising sulphur dioxide and of withdrawing a purified exhaust gas stream.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: August 4, 2009
    Assignee: Haldor Topsoe A/S
    Inventor: Keld Johansen
  • Publication number: 20090185967
    Abstract: The invention concerns a composition based on zirconium oxide and cerium oxide and, optionally, an oxide of another rare earth, characterized in that it contains tin oxide in a proportion of more than 25 wt. % of oxide. Said composition is obtained by a method which consists in forming a mixture comprising zirconium, cerium and tin compounds and, optionally a compound of another rare earth; in bringing said mixture in the presence of a basic compound whereby a precipitate is obtained; heating said precipitate in an aqueous medium and calcining same. The composition can be used as catalyst, in particular for treating motor vehicle exhaust gases.
    Type: Application
    Filed: March 11, 2005
    Publication date: July 23, 2009
    Inventors: Alain Demourgues, Stephan Verdier
  • Patent number: 7563422
    Abstract: A method for reducing the particle and nitrogen oxide proportion in an exhaust gas flow of an internal combustion engine includes supplying a reducing agent to the exhaust gas flow, subjecting the exhaust gas flow containing the reducing agent to particle filtering, and then carrying out a selective catalytic reduction of at least a portion of the nitrogen oxides in the exhaust gas flow. The method and an exhaust gas treatment unit make it possible to simultaneously reduce the proportion of particles and nitrogen oxides in the exhaust gas. Ammonia, in particular, is used as the reducing agent. Regeneration of the particle filter is promoted by leading an ammonia-containing flow of gas through the particle filter. The method and device make it possible to consume less fuel with the same reaction rate and, at the same time to reduce available installation space, in comparison with existing corresponding prior art systems.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: July 21, 2009
    Assignee: Emitec Gesellschaft Fuer Emissiontechnologie mbH
    Inventor: Eberhard Jacob
  • Publication number: 20090180942
    Abstract: Catalysts, methods and systems for treating diesel engine exhaust streams are described. In one or more embodiments, the catalyst comprises a refractory metal oxide, a transition metal oxide, and platinum, the catalyst being effective to oxidize ammonia at temperatures less than about 300° C. and exhibiting no significant decrease in ammonia oxidation efficiency upon hydrothermal aging. Methods and systems including such catalysts are also provided.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 16, 2009
    Inventor: Matthew T. Caudle
  • Publication number: 20090175772
    Abstract: Several embodiments of high-efficiency catalytic converters and associated systems and methods are disclosed. In one embodiment, a catalytic converter for treating a flow of exhaust gas comprising a reaction chamber, a heating enclosure enclosing at least a portion of the reaction chamber, and an optional coolant channel encasing the heating enclosure. The reaction chamber can have a first end section through which the exhaust gas flows into the reaction chamber and a second end section from which the exhaust gas exits the reaction chamber. The heating enclosure is configured to contain heated gas along the exterior of the reaction chamber, and the optional coolant channel is configured to contain a flow of coolant around the heating enclosure. The catalytic converter can further include a catalytic element in the reaction chamber.
    Type: Application
    Filed: December 26, 2008
    Publication date: July 9, 2009
    Applicant: in the works...
    Inventors: Todd K. Hansen, David A. Endrigo
  • Publication number: 20090169451
    Abstract: A system for NOx reduction in combustion gases, especially from diesel engines, incorporates an oxidation catalyst to convert at least a portion of NO to NO2, a particulate filter, a source of reductant such as NH3 and an SCR catalyst. Considerable improvements in NOx conversion are observed.
    Type: Application
    Filed: February 27, 2009
    Publication date: July 2, 2009
    Inventors: Anders Andreasson, Guy Richard Chandler, Claus Friedrich Goersmann, James Patrick Warren, Georg Huethwohl
  • Patent number: 7550125
    Abstract: An exhaust-gas purification unit for purifying the exhaust gas from an internal combustion engine which is preferably operated in lean-burn mode, in particular a diesel engine used in motor vehicles, has a particulate filter and a SCR catalytic converter arranged in the exhaust pipe in succession in the direction of flow, and a reducing-agent supply. Ammonia can be added to the exhaust gas from the internal combustion engine on the entry side of the SCR catalytic converter by the reducing-agent supply. The exhaust-gas purification unit includes a hydrogen-generating unit for enriching the exhaust gas from the internal combustion engine with the hydrogen which it generates.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 23, 2009
    Assignee: Daimler AG
    Inventors: Frank Duvinage, Christian Goerigk, Arno Nolte, Markus Paule, Henning Sander
  • Patent number: 7550124
    Abstract: A layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. In one or more embodiments, the catalyst comprises three layers in conjunction with a carrier: a first layer deposited on the carrier and comprising palladium deposited on a refractory metal oxide and an oxygen storage component; a second layer deposited on the first layer and comprising rhodium deposited on a refractory metal oxide and an oxygen storage component; and a third layer deposited on the second layer and comprising palladium deposited on a refractory metal oxide.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: June 23, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Shau-Lin F. Chen, Harold Rabinowitz, Jin Sakakibara, Tian Luo
  • Publication number: 20090148369
    Abstract: [PROBLEMS] To provide an oxygen storage substance which has higher oxygen storage capacity than conventional substances and is inexpensive. [MEANS FOR SOLVING PROBLEMS] The oxygen storage substance is a calcium aluminosilicate (mayenite), i.e., a substance of a crystal structure which is synthesized by hydrothermally treating a mixture of calcium oxide, alumina (sol), and amorphous silica, has a three-dimensional network composed of AlO4 tetrahedrons and (Al,Si)O4 tetrahedrons in which part of the aluminum atoms have been replaced with silicon atoms, with vertex oxygen atoms being shared, and has oxide ions (O2?) occluded in microspaces in the structure. Part of the calcium atoms may be replaced with atoms of a transition metal, e.g., copper.
    Type: Application
    Filed: September 20, 2006
    Publication date: June 11, 2009
    Inventor: Toshiaki Mori
  • Patent number: 7541010
    Abstract: A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: June 2, 2009
    Assignee: Caterpillar Inc.
    Inventors: Paul Worn Park, Virgil Raymond Hester, Christie Susan Ragle, Carrie L. Boyer
  • Patent number: 7527774
    Abstract: The present invention is directed to an improved dual phase muffler for the abatement of reduction of sound and emission pollutants such as hydrocarbons, carbon monoxide, and nitrogen oxides. More specifically, the muffler comprises a muffler casing, an inner chamber formed in the muffler, and a catalytically coated supported material contained within the inner chamber. The present invention is also directed to a catalytically coated metallic foam catalyst support, which optionally can be pre-coat with a metallic thermal arc sprayed layer.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 5, 2009
    Assignee: BASF Catalysts LLC
    Inventor: Michael Patrick Galligan
  • Publication number: 20090110621
    Abstract: A boron-containing molecular sieve having the CHA crystal structure and comprising (1) silicon oxide and (2) boron oxide or a combination of boron oxide and aluminum oxide, iron oxide, titanium oxide, gallium oxide and mixtures thereof is prepared using a quaternary ammonium cation derived from 1-adamantamine, 3-quinuclidinol or 2-exo-aminonorbornane as structure directing agent.
    Type: Application
    Filed: December 8, 2008
    Publication date: April 30, 2009
    Inventors: Lun-Teh Yuen, Stacey I. Zones
  • Patent number: 7524474
    Abstract: The invention concerns a process for preparing an oxide based on zirconium and titanium in which a liquid medium containing a zirconium compound and a titanium compound is formed; said medium is then heated; the precipitate obtained from the end of the preceding step is recovered and optionally, said precipitate is calcined. The invention also concerns an oxide based on zirconium and titanium. Said oxide can comprise in the range 30% to 40% by weight of titanium oxide and in this case it has a pure ZrTiO4 type structure or a mixture of phases of structure type ZrTiO4 and structure type anatase. Said oxide can also comprise in the range 10% to 20% by weight of titanium oxide and it then has a specific surface area of at least 40 m2/g after calcining for 5 hours at 800° C.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: April 28, 2009
    Assignee: Rhodia Electronics & Catalysis
    Inventor: Catherine Hedouin
  • Patent number: 7521031
    Abstract: A method for treating exhaust gas includes: adsorbing target components in the exhaust gas with an adsorbent (5); introducing a nitrogen gas with an oxygen concentration of 10 vol % or less and a purity of 90 vol % or more into the adsorbent (5); and applying (6, 7, 8) nonthermal plasma to the adsorbent (5). After the adsorbent (5) adsorbs the target components in the exhaust gas, the nitrogen gas is introduced into the adsorbent (5), and then an electric discharge is generated so that the nonthermal plasma of the nitrogen gas is applied to the adsorbent (5) and causes desorption of the target components and regeneration of the adsorbent (5). This method can remove the target components effectively from oxygen-containing exhaust gas by using nitrogen gas plasma with high activity as a result of ionization of a nitrogen gas and combining adsorption, desorption by the nitrogen gas plasma, and nitrogen plasma treatment.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: April 21, 2009
    Assignee: Osaka Industrial Promotion Organization
    Inventors: Masaaki Okubo, Toshiaki Yamamoto, Tomoyuki Kuroki
  • Patent number: 7520909
    Abstract: Methods for the production of hydrogen comprise heating a hydrogen-bearing feed material capable of undergoing a hydrogenation reaction in the presence of a hydrogen donor material, a catalyst promoting catalytic transfer hydrogenation, and a base at a temperature of from about 150° C. to about 450° C. for a time sufficient to hydrogenate the feed material and to dehydrogenate the hydrogenated feed material to produce hydrogen and carbon, and collecting the resulting hydrogen.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: April 21, 2009
    Assignee: Rogers Family Revocable Living Trust
    Inventor: Charles J. Rogers
  • Patent number: 7521033
    Abstract: The present invention is directed to an improved apparatus and method of minimizing catalyst poisoning from exhaust gas streams containing inorganic deposits and particulate matter. More specifically, the present invention is directed to an upstream metallic foam trap and a downstream monolithic precious metal catalyst, wherein the trap physically blocks inorganic deposits and particulate matter from poisoning the downstream catalyst. The present invention is also directed to a metallic foam trap containing a coat comprising a first metallic thermal arc sprayed layer and optionally a second refractory metal oxide.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: April 21, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Michael Patrick Galligan, Joseph Charles Dettling
  • Publication number: 20090098032
    Abstract: An aluminosilicate coated alumina structure that is substantially free of alkaline metal impurities contains an aluminosilicate coating at least partially surrounding an alumina core. The aluminosilicate coated alumina structure is useful as a catalyst or catalyst support.
    Type: Application
    Filed: October 11, 2007
    Publication date: April 16, 2009
    Applicant: BASF CATALYSTS LLC
    Inventors: Xiaolin Yang, Robert Ianniello
  • Patent number: 7517510
    Abstract: A layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. In one or more embodiments, the catalyst comprises three layers in conjunction with a carrier: a first layer deposited on the carrier and comprising palladium deposited on a refractory metal oxide and an oxygen storage component; a second layer deposited on the first layer and comprising rhodium deposited on a refractory metal oxide and an oxygen storage component; and a third layer deposited on the second layer and comprising palladium deposited on a refractory metal oxide.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: April 14, 2009
    Assignee: Basf Catalysts LLC
    Inventors: Shau-Lin F. Chen, Harold Rabinowitz, Jin Sakakibara, Tian Luo
  • Patent number: 7517511
    Abstract: Mercury emissions in an exhaust gas are mitigated. Mercury dichloride is formed upon a surface from a substantial portion of the mercury in the exhaust gas. The mercury dichloride sublimes from the surface, and the sublimed mercury dichloride is subsequently removed from the exhaust stream.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: April 14, 2009
    Assignee: The Regents of the University of California
    Inventor: Keith Schofield
  • Patent number: 7514055
    Abstract: Methods of controlling emissions from a diesel engine are provided. The method includes contacting the emissions with a perovskite-type catalyst consisting essentially of a metal oxide composition represented by the general formula Aa?xBxMOb, in which A is a mixture originally in the form of single phase mixed lanthanides collected from bastnasite; B is a divalent or monovalent cation; M is at least one element selected from the group consisting of M is at least one element selected from the group consisting of elements of an atomic number of from 22 to 30, 40 to 51, and 73 to 80; a is 1 or 2; b is 3 when a is 1 or b is 4 when a is 2; and x is a number defined by 0<x<0.7. The perovskite-type catalyst may be used to oxidize hydrocarbons and carbon monoxide and to control particulate emissions in the diesel exhaust.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: April 7, 2009
    Assignee: Catalytic Solutions, Inc.
    Inventor: Stephen J. Golden
  • Publication number: 20090087363
    Abstract: The present invention provides an encapsulation technology and methods of using the encapsulation technology in processes involving the conversion of carbon monoxide to carbon dioxide.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 2, 2009
    Inventors: Arvind Vyas Harinath, Ramya Vedaiyan, Jagannathan Sankar
  • Publication number: 20090087364
    Abstract: An exhaust gas purifying apparatus for an internal combustion engine is provided with a NOx removing device and a particulate filter in an exhaust system. A temperature of the exhaust system is detected. A switching control is performed for alternately performing a process for removing sulfur oxide accumulated in said NOx removing device and a regeneration process for burning particulates trapped in said particulate filter, when it is determined to be necessary to perform at least one of the removal of the sulfur oxide in said NOx removing device and the regeneration of the particulate filter. The switching control is performed according to the detected exhaust system temperature.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 2, 2009
    Applicant: Honda Motor Co., Ltd.
    Inventors: Akira Odajima, Isao Kaneko, Shingo Tsuruta, Yoshihiko Watanabe, Hidetaka Maki