Group Viii Element Patents (Class 423/213.5)
  • Publication number: 20140147358
    Abstract: Described is a process for the preparation of a catalyst. The process comprises (i) providing a substrate which is optionally coated with one or more coating layers; (ii) impregnating one or more particulate support materials with one or more platinum group elements; (iii) adding one or more alkaline earth elements and one or more solvents to the product obtained in step (ii) to obtain a slurry; (iv) adjusting the pH of the slurry obtained in step (iii) to a value ranging from 7 to 10 (v) adjusting the pH of the slurry to a value ranging from 2 to 6; (vi) optionally milling the slurry obtained in step (v); (vii) providing the slurry obtained in step (vi) onto the optionally coated substrate in one or more coating steps. Describes is as a catalyst which is obtainable according to said process and its use in the treatment of exhaust gas.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 29, 2014
    Applicant: BASF SE
    Inventors: Marcus Hilgendorff, Alfred H. Punke, Torsten Neubauer, Gerd Grubert
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Publication number: 20140140911
    Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 22, 2014
    Applicant: Johnson Matthey Public Limited Company
    Inventors: David BERGEAL, Andrew Francis CHIFFEY, John Benjamin GOODWIN, Daniel HATCHER, Francois MOREAU, Agnes RAJ, Raj Rao RAJARAM, Paul Richard PHILLIPS, Cathal PRENDERGAST
  • Patent number: 8722000
    Abstract: Catalytic articles, systems and methods for treating exhaust gas streams are described. A catalytic article comprising a wall flow filter having gas permeable walls, a hydrolysis catalyst, an optional soot oxidation catalyst, a selective catalytic reduction catalyst permeating the walls, an ammonia oxidation catalyst and an oxidation catalyst to oxidize CO and hydrocarbons is described. Methods of treating exhaust gas streams comprising soot, an ammonia precursor such as urea, ammonia, NOx, CO and hydrocarbons are also provided.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 13, 2014
    Assignee: BASF Corporation
    Inventor: R. Samuel Boorse
  • Patent number: 8722001
    Abstract: A catalyst for the purification of exhaust gas that can be used to highly efficiently treat an exhaust gas which has moisture and fluctuates between an oxidizing atmosphere and a reducing atmosphere even after the catalyst is exposed to a high temperature is provided. The present invention relates to a catalyst for the purification of exhaust gas having a catalyst layer of catalyst components comprising a noble metal, magnesium oxide, and a refractory inorganic oxide formed on a three-dimensional structure, wherein the catalyst layer has two peaks originated from the magnesium oxide in a pore distribution obtained by mercury intrusion technique.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: May 13, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd., Umicore Shokubai USA, Inc.
    Inventors: Mariko Ono, Akihisa Okumura
  • Publication number: 20140127101
    Abstract: A method for purifying exhaust gas of an internal combustion engine including flowing an exhaust gas containing NOx and a concentration of hydrocarbons in an exhaust gas passage that contains an exhaust purification catalyst, wherein the concentration of hydrocarbons is vibrated within a predetermined range of amplitude and period, and a least a portion of the hydrocarbons are reformed by the exhaust purification catalyst; reacting the NOx contained in the exhaust gas and the reformed hydrocarbons to produce a reducing intermediate; and chemically reducing, wherein at the time of engine operation, a demanded produced amount of the reducing intermediate required for chemically reducing the NOx is calculated, and the amplitude and vibration period of the concentration of hydrocarbons flowing into the exhaust purification catalyst are controlled so that an amount of the reducing intermediate produced becomes the demanded produced amount.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuhiro UMEMOTO, Kohei YOSHIDA, Mikio INOUE, Yuki BISAIJI
  • Patent number: 8715601
    Abstract: A method and apparatus are provided for reducing emissions of particulates from diesel engines. Exhaust is passed through a diesel particular filter having at least two stages comprised of (a) a catalyst section having a platinum group metal catalyst on contact surfaces within the catalyst section and (b) a filter section comprised of passages effective to remove particulates from a moving stream of combustion gases generated by combusting the fuel in the engine and holding them therein to permit their oxidation. Carbon removal is enhanced by utilizing levels of platinum group metal composition, cerium compositions, fuels and/or optional chemical enhancers to generate NO2 in the catalyst section in amounts sufficient to form cerium nitrates in the filter section. The cerium oxide is associated with and maintains dispersion of the platinum in the filter section, and the cerium nitrates are available at the surface and within the soot particles to provide enhanced soot oxidation at a lower balance point.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: May 6, 2014
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Michiel Makkee, Krishna Kamasamudram, Walter G. Copan
  • Patent number: 8715602
    Abstract: A method of reducing nitrogen oxides (NOx) in a flowing combustion exhaust gas to N2, which method comprising oxidizing nitrogen monoxide to nitrogen dioxide on a transition metal/elite catalyst at catalyst bed temperatures below 50° C. and reducing NOx with the catalyst using an hydrocarbon (HC) reductant at catalyst bed temperatures below 150° C.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: May 6, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Jillian Elaine Collier, Philip Gerald Blakeman, Isabel Zoe Tingay, Paul James Millington, Raj Rao Rajaram, Andrew Peter Walker
  • Patent number: 8709365
    Abstract: The invention relates to a catalytically active particulate filter which, in addition to the properties typical of particulate filters, has hydrogen sulphide block function, and to a process for removing nitrogen oxides and particulates from the exhaust gas of internal combustion engines operated predominantly under lean conditions (so-called “lean-burn engines”) using the inventive catalytically active particulate filter. This particulate filter comprises a filter body, a copper compound and an oxidation-catalytic active coating which comprises at least one catalytically active platinum group metal. The copper compound is in a second coating applied to the filter body. The two functional coatings may be applied to the filter body consecutive in the direction of flow, i.e. zoned, or layered one on top of the other.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 29, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Franz Dornhaus, Stephanie Frantz, Ina Grisstede
  • Publication number: 20140112853
    Abstract: Described are compositions and catalytic articles comprising a copper-promoted 8-ring small pore molecular sieve and an iron-promoted 8-ring small pore molecular sieve. The catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF CORPORATION
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael J. Breen, Barbara Slawski, Makato Nagata, Yasuyuki Banno, Eunseok Kim
  • Publication number: 20140112854
    Abstract: Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF CORPORATION
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael J. Breen, Barbara Slawski, Makato Nagata, Yasuyuki Banno, Eunseok Kim
  • Publication number: 20140105799
    Abstract: A method for purifying exhaust gas of an internal combustion engine, including chemically reducing NOx that is contained in the exhaust gas when a concentration of hydrocarbons flowing into an exhaust purification catalyst is made to vibrate within a predetermined range of amplitude and within a predetermined range of period, wherein, during the chemical reduction, the NOx contained in the exhaust gas is reacted with reformed hydrocarbons to produce a reducing intermediate containing nitrogen and hydrocarbons, a reducing action of the reducing intermediate chemically reduces the NOx, and the NOx is chemically reduced without storing nitrates or with storing a fine amount of the nitrates in a basic layer of the exhaust purification catalyst.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki BISAIJI, Kohei YOSHIDA, Mikio INOUE
  • Patent number: 8685353
    Abstract: Provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap. The improved exhaust gas cleaning systems and methods allow for the sulfur released from the sulfur trap to pass through the nitrogen oxide trap with no or little poisoning of NOx storage and reduction sites, which significantly improves NSR catalyst trap lifetime and performance to meet future emissions standards. The disclosed exhaust gas cleaning systems are suitable for use in internal combustion engines (e.g., diesel, gasoline, CNG) which operate with lean air/fuel ratios over most of the operating period.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: April 1, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul James Polini
  • Patent number: 8685352
    Abstract: The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: April 1, 2014
    Assignees: ECS Holdings, Inc., Catalytic Solutions, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason Pless, Johnny Ngo, Mann Sakbodin
  • Patent number: 8685363
    Abstract: A honeycomb carrier for an exhaust gas-cleaning catalyst to clean e.g. an exhaust gas of an automobile particularly containing NOx, wherein the material for the honeycomb carrier is an aluminum magnesium titanate sintered product obtained by firing at from 1,000 to 1,700° C. a molded product formed from a raw material mixture comprising 100 parts by mass, as calculated as oxides, of a mixture comprising a Mg-containing compound, an Al-containing compound and a Ti-containing compound in the same metal component ratio as the metal component ratio of Mg, Al and Ti in an aluminum magnesium titanate represented by the empirical formula MgxAl2(1+x)Ti(1+x)O5 (wherein 0?x?1), and from 1 to 10 parts by mass of an alkali feldspar represented by the empirical formula (NayK1?y)AlSi3O8 (wherein 0?y?1).
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: April 1, 2014
    Assignee: Ohcera Co., Ltd.
    Inventors: Tsutomu Fukuda, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi
  • Patent number: 8679434
    Abstract: Described is a catalytic article for the treatment of lean burn engine exhaust gas. The catalytic article comprises a honeycomb substrate having disposed thereon a washcoat containing one or more calcined platinum group metal components dispersed on a refractory metal oxide support located on the honeycomb substrate, the platinum group metal components having an average crystallite size in the range of about 10 to about 25 nm to provide a stable ratio of NO2 to NOx when the exhaust gas flows through the honeycomb substrate. Methods of treating exhaust gas from a lean burn engine and a system for the removal of pollutants from a lean burn engine exhaust gas stream containing NOx are also described.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: March 25, 2014
    Assignee: BASF Corporation
    Inventors: Yuejin Li, Stanley A. Roth
  • Patent number: 8679433
    Abstract: Disclosed are, inter alia, methods of forming coated substrates for use in catalytic converters, as well as washcoat compositions and methods suitable for using in preparation of the coated substrates, and the coated substrates formed thereby. The catalytic material is prepared by a plasma-based method, yielding catalytic material with a lower tendency to migrate on support at high temperatures, and thus less prone to catalyst aging after prolonged use. Also disclosed are catalytic converters using the coated substrates, which have favorable properties as compared to catalytic converters using catalysts deposited on substrates using solution chemistry. Also disclosed are exhaust treatment systems, and vehicles, such as diesel vehicles, particularly light-duty diesel vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: March 25, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger, Jayashir Sarkar
  • Publication number: 20140079611
    Abstract: The present invention relates to a composition including a ?-type iron silicate, which includes all or part of iron in a ?-type framework structure, and a solid acidic porous inorganic oxide. The present invention is characterized in that the ?-type iron silicate is compounded with the porous inorganic oxide having solid acidic properties so that the solid acidic function derived from aluminum of the ?-type iron silicate, is reinforced or complemented by the porous inorganic oxide, the individual particles of which are physically isolated from each other. It is preferred that the fluorine content relative to the dry weight of the ?-type iron silicate is 400 ppm or less and the crystal particles of the ?-type iron silicate have a truncated square bipyramidal morphology. According to the present invention, a composition that is useful as a high-performance catalyst, adsorbent, or the like, can be provided.
    Type: Application
    Filed: May 17, 2012
    Publication date: March 20, 2014
    Applicant: TOSOH CORPORATION
    Inventors: Yusuke Naraki, Ko Ariga
  • Publication number: 20140072494
    Abstract: The present invention relates to a process for reducing cold start emissions in an exhaust gas stream by contacting the exhaust stream with a combination of molecular sieves comprising (1) a small pore crystalline molecular sieve or mixture of molecular sieves having pores no larger than 8 membered rings selected from the group consisting of SSZ-13, SSZ-16, SSZ-36, SSZ-39, SSZ-50, SSZ-52 and SSZ-73 and (2) a medium-large pore crystalline molecular sieve having pores at least as large as 10 membered rings selected from the group consisting of SSZ-26, SSZ-33, SSZ-64, zeolite Beta, CIT-1, CIT-6 and ITQ-4.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 13, 2014
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Stacey Ian Zones, Cabral M. Williams, Tecle S. Rufael, Allen W. Burton
  • Publication number: 20140072493
    Abstract: The purpose of the present invention is to provide a catalyst for exhaust gas purification, which is capable of effectively processing an exhaust gas, particularly carbon monoxide (CO) and hydrocarbon (HC) in the exhaust gas at a low temperature, and a method for producing the catalyst for exhaust gas purification. The purpose is achieved by a catalyst for exhaust gas purification, which is obtained by having a carrier that contains Al2O3 and one or more metal oxides selected from the group consisting of zirconium oxide (ZrO2), cerium oxide (CeO2), yttrium oxide (Y2O3), neodymium oxide (Nd2O3), silicon oxide (SiO2) and titanium oxide (TiO2) support one or more catalyst components selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru) and osmium (Os). The metal oxides have particle diameters of less than 10 nm.
    Type: Application
    Filed: February 29, 2012
    Publication date: March 13, 2014
    Applicants: UMICORE SHOKUBAI USA INC., UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Naohiro Kato, Yuta Akasaka, Yuji Ogino, Yosuke Goto
  • Patent number: 8668891
    Abstract: An exhaust system 10 for a vehicular lean-burn internal combustion engine comprises: (a) a first substrate monolith 6 comprising a SCR catalyst; (b) at least one second substrate monolith 4 comprising a catalytic washcoat coating comprising at least one platinum group metal (PGM) disposed upstream of the first substrate monolith; and (c) a third substrate monolith 2 disposed between the first substrate monolith and the or each second substrate monolith, wherein at least one PGM on the or each second substrate monolith 4 is liable to volatilise when the or each second substrate monolith 4 is exposed to relatively extreme conditions including relatively high temperatures, and wherein the third substrate monolith 2 comprises a washcoat coating comprising at least one metal oxide for trapping volatilised PGM.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 11, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Andrew Peter Walker
  • Patent number: 8667785
    Abstract: A catalysed substrate monolith 12 for use in treating exhaust gas emitted from a lean-burn internal combustion engine, which catalysed substrate monolith 12 comprising a first washcoat coating 16 and a second washcoat coating 18, wherein the first washcoat coating comprises a catalyst composition comprising at least one platinum group metal (PGM) and at least one support material for the at least one PGM, wherein at least one PGM in the first washcoat coating is liable to volatilize when the first washcoat coating is exposed to relatively extreme conditions including relatively high temperatures, wherein the second washcoat coating comprises at least one metal oxide for trapping volatilized PGM and wherein the second washcoat coating is oriented to contact exhaust gas that has contacted the first washcoat coating.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 11, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, Gavin Michael Brown, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Glen Spreitzer, Andrew Peter Walker
  • Publication number: 20140065043
    Abstract: The purpose of the present invention is to provide an oxidation catalyst for exhaust gas purification having high durability and a method for producing the catalyst. The purpose is achieved by an oxidation catalyst for exhaust gas purification containing a refractory inorganic oxide, and a catalyst component and a metal component, which are supported on the refractory inorganic oxide, wherein the catalyst component is platinum, or platinum and palladium, and the metal component is one or more selected from the group consisting of magnesium, calcium, strontium and barium.
    Type: Application
    Filed: March 21, 2012
    Publication date: March 6, 2014
    Applicants: UMICORE SHOKUBAI USA INC., UMICORE SHOKUBAI JAPAN CO., LTD
    Inventors: Naohiro Kato, Yosuke Goto, Yuta Akasaka
  • Publication number: 20140065044
    Abstract: Ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O and leakage of ammonia. The ammonia oxidation catalyst (AMOX) removes surplus ammonia, in selectively reducing nitrogen oxides by adding urea or ammonia and using a selective catalytic reduction (SCR) catalyst, into exhaust gas, wherein the ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal element on a composite oxide (A) having titania and silica as main components, and a catalyst layer (upper layer) including a composite oxide (C) consisting of tungsten oxide, ceria, and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Application
    Filed: November 17, 2011
    Publication date: March 6, 2014
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoaki Ito, Toshinori Okajima, Makoto Nagata
  • Patent number: 8663588
    Abstract: A double-layer three-way catalyst for purification of the exhaust gases from internal combustion engines which has excellent activity and thermal stability is described. The catalyst contains active aluminum oxide and a first cerium/zirconium mixed oxide which are both catalytically activated with palladium in the first layer applied to a catalyst support. In the second layer which is in direct contact with the exhaust gas, the catalyst likewise contains an active aluminum oxide and a second cerium/zirconium mixed oxide which are both catalytically activated with rhodium. The second cerium/zirconium mixed oxide has a higher zirconium oxide content than the first mixed oxide.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: March 4, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Dieter Lindner, Martin Roesch, Raoul Klingmann, Anke Wolf, Joerg-Michael Richter
  • Patent number: 8652429
    Abstract: The invention provides an exhaust gas cleaning oxidation catalyst and in particular to an oxidation catalyst for cleaning the exhaust gas discharged from internal combustion engines of compression ignition type (particularly diesel engines). The invention further relates to a catalysed substrate monolith comprising an oxidizing catalyst on a substrate monolith for use in treating exhaust gas emitted from a lean-burn internal combustion engine. In particular, the invention relates to a catalysed substrate monolith comprising a first washcoat coating and a second washcoat coating, wherein the second washcoat coating is disposed in a layer above the first washcoat coating.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: February 18, 2014
    Assignees: Johnson Matthey Public Limited Company, Johnson Matthey Japan Godo Kaisha
    Inventors: Satoshi Sumiya, Lifeng Wang, Hanako Oyamada, Philip Gerald Blakeman, Michael Gavin Brown, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Andrew Peter Walker
  • Publication number: 20140044630
    Abstract: An exhaust system for internal combustion engines, and a catalyzed substrate for use in an exhaust system, is disclosed. The exhaust system comprises a lean NOx trap and the catalyzed substrate. The catalyzed substrate has a first zone and a second zone, wherein the first zone comprises a platinum group metal loaded on a support and the second zone comprises copper or iron loaded on a zeolite. The first zone or second zone additionally comprises a base metal oxide or a base metal loaded on an inorganic oxide. Also provided are methods for treating an exhaust gas from an internal combustion engine using the exhaust system. The exhaust system is capable of storing NH3 generated in rich purging, reacting the NH3 with slip NOx from the NOx trap, controlling H2S released from NOx trap desulfation, and oxidizing slip hydrocarbons and carbon monoxide. When the catalyzed substrate is a filter substrate, it is also capable of removing soot from exhaust system.
    Type: Application
    Filed: September 11, 2013
    Publication date: February 13, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: DANIEL SWALLOW, ANDREW FRANCIS CHIFFEY, PAUL RICHARD PHILLIPS
  • Publication number: 20140044629
    Abstract: The invention relates to a method for treating a gas containing nitrogen oxides (NOx), in which an NOx-reduction reaction is carried out using a nitrogen-containing reducing agent, which invention is characterized in that the catalyst used for the reduction reaction is a catalytic system containing a composition comprising zirconium, niobium in the following percentages by weight, expressed in terms of the weight of oxide: 10-50% of cerium, 5-20% of niobium and the remainder consisting of zirconium.
    Type: Application
    Filed: February 28, 2012
    Publication date: February 13, 2014
    Applicants: MAGNESIUM ELEKTRON LIMITED, RHODIA OPERATIONS
    Inventors: Laure Bisson, Julien Hernandez, Rui Miguel Jorge Coelho Marques, Emmanuel Rohart, Mila Bortun, Deborah Jayne Harris, Clare Jones
  • Publication number: 20140037525
    Abstract: We disclose a novel filter and process that converts the wastes in automotive exhausts into carbon nanotubes. The filter surface is composed of iron of similar catalyst. The filter is placed along the pathway of exhaust streamlines preferably at an angle of more than 5°. and less than 15°. The filter is heated to temperatures in the range of 200-1000° C. The filter described in this invention can work in its own or supplement existing filtration systems. The end product of this filtration system is a material that is commercially valuable. The synthesized carbon nanotubes are purified using ionic liquid solution that is capable of removing undesirable carbonated material and leaving 95% purified carbon nanotubes. The purified carbon nanotubes have a diameter of 20-50 nm and a length of 1-10 micro meters.
    Type: Application
    Filed: July 9, 2013
    Publication date: February 6, 2014
    Inventors: Yousef Haik, Saud Aldajah, Emad Elnajjar
  • Publication number: 20140038814
    Abstract: A method of making a supported catalytic species comprising an alloy of at least two metals, comprises the steps of: (i) combining a particulate support material, a solution of a first metal compound, a solution of a second metal compound, and a solution of an alkaline precipitating agent to form a slurry mixture; (ii) agitating the resultant mixture; and (iii) contacting the solids with a reducing agent, wherein the first metal in the first metal compound and the second metal in the second metal compound is each independently selected from the group consisting of gold, palladium, platinum, rhodium, iridium, silver, osmium and ruthenium; and wherein the first metal is not the same as the second metal.
    Type: Application
    Filed: March 5, 2012
    Publication date: February 6, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Bergeal David, Andrew Francis Chiffey, Peter Johnston, Francois Moreau, Paul Richard Phillips
  • Patent number: 8640440
    Abstract: Disclosed herein is a catalytically active particulate filter, an exhaust gas cleaning system and a process for cleaning the exhaust gases of predominantly stoichiometrically operated internal combustion engines, which are suitable, as well as the gaseous CO, HC and NOx pollutants, also for removing particulates from the exhaust gas. The particulate filter comprises a filter body and a catalytically active coating consisting of two layers. The first layer is in contact with the incoming exhaust gas, the second layer with the outgoing exhaust gas. Both layers contain alumina. The first layer contains palladium. The second layer contains, in addition to rhodium, an oxygen-storing cerium/zirconium mixed oxide.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 4, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Raoul Klingmann, Martin Roesch, Dieter Lindner
  • Patent number: 8641993
    Abstract: A NOx absorber catalyst comprising an extruded solid body comprises either: (A) 10-95% by weight of at least one binder/matrix component; and 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof, which catalyst comprising at least one metal comprising (a) at least one precious metal; and (b) at least one alkali metal or at least one alkaline earth metal, wherein (a) and (b) are carried in one or more coating layer(s) on a surface of the extruded solid body; or (B) 10-95% by weight of at least one binder/matrix component; and 5-80% by weight optionally stabilized ceria, which catalyst comprising at least one metal comprising (a) at least one precious metal; and (b) at least one alkali metal or at least one alkaline earth metal.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: February 4, 2014
    Assignee: Johnson Matthey Public Limited Co.
    Inventors: Ralf Dotzel, Rainer Leppelt, Elizabeth Hazel Mountstevens, Jörg Werner Münch, Paul Richard Phillips, Hubert Schedel, Daniel Swallow
  • Publication number: 20140030176
    Abstract: A method of making composite nanoscale particles comprising subjecting a starting material to laser energy so as to form a vapor and condensing the vapor so as to form the composite nanoscale particles, wherein said composite nanoscale particles comprise a first metal and/or a first metal oxide incorporated in nanoscale particles of an oxide of a second metal, the first metal being different than the second metal. The starting material can comprise first and second metals or compounds of the first and second metals. The composite nanoscale particles can be formed in a reaction chamber wherein a temperature gradient is provided. The atmosphere in the chamber can be an inert atmosphere comprising argon or a reactive atmosphere comprising oxygen. The composite nanoscale particles are useful for low-temperature and near-ambient temperature catalysis.
    Type: Application
    Filed: June 21, 2013
    Publication date: January 30, 2014
    Applicant: Philip Morris USA Inc.
    Inventors: Sarojini Deevi, Rangaraj S. Sundar, Yezdi B. Pithawalla
  • Patent number: 8636970
    Abstract: An exhaust purification device and an exhaust purification method that utilizes this exhaust purification device enable effective utilization of exhaust gas heat and allow reduction in the size of the device. The exhaust purification device has an oxidation catalyst that is disposed in an exhaust passage of a diesel engine and purifies CO and HC in exhaust gas; a urea injection nozzle that is disposed downstream of the oxidation catalyst and generates ammonia through atomization of urea water into the exhaust gas; a turbine of a turbocharger, this turbine being disposed downstream of the urea injection nozzle and accelerating decomposition of urea through agitation of the atomized urea water; a DPF that is disposed downstream of the turbine and traps PM in the exhaust gas; and a selective reduction catalyst that is disposed downstream of the DPF and detoxifies NOx in the exhaust gas through a reduction reaction with ammonia.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: January 28, 2014
    Assignee: Isuzu Motors Limited
    Inventor: Kazuo Osumi
  • Patent number: 8636959
    Abstract: The present invention is an exhaust gas purification catalyst equipment, and a method of use thereof, formed by arranging a selective catalytic reduction type catalyst for purifying nitrogen oxides in exhaust gas exhausted from lean combustion engines using ammonia or urea as a reducing agent, it is provided with a selective catalytic reduction type catalyst, characterized in that said catalyst comprises a lower-layer catalyst layer (A) having an oxidative function for nitrogen monoxide (NO) in exhaust gas and an upper-layer catalyst layer (B) having an adsorbing function for ammonia on the surface of a monolithic structure type carrier (C), and that the lower-layer catalyst layer (A) comprises a noble metal component (i), an inorganic base material constituent (ii) and zeolite (iii), and the upper-layer catalyst layer (B) comprises substantially none of component (i) but the component (iii), in a flow path of exhaust gas, characterized in that a spraying means to supply an urea aqueous solution or an aqueous
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: January 28, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Patent number: 8629781
    Abstract: A method of assessing overall efficiency of a selective-catalytic-reduction catalyst includes monitoring instantaneous efficiency of the catalyst. The method also includes determining the overall efficiency by summing instantaneous efficiency values weighted by a first set of coefficients if the most recent instantaneous efficiency value is above an instantaneous efficiency threshold. The method additionally includes determining the overall efficiency by summing instantaneous efficiency values weighted by a second set of coefficients if the most recent instantaneous efficiency value is equal to or below the instantaneous efficiency threshold. Furthermore, the method includes determining whether the overall efficiency has dropped below an overall efficiency threshold and reporting when the overall efficiency has dropped below the overall efficiency threshold.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: January 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Janean E. Kowalkowski, Stephen Paul Levijoki, John F. Van Gilder
  • Patent number: 8628742
    Abstract: A method of using a hybrid oxidation catalyst system for remediating a lean emission from a vehicle includes the step of oxidizing the hydrocarbons and carbon monoxide in an engine emission comprising hydrocarbons, carbon monoxide, NOx including NO and NO2, and oxygen with a first catalyst. The first catalyst includes noble metal particles supported in a first ceramic layer. The method further includes oxidizing the NO with a second catalyst having base metal oxide particles supported in a second ceramic layer to form NO2. The first catalyst is disposed upstream of the second catalyst and the system is capable of converting at least 10% of the amount of NO to NO2 at a temperature ranging from 75° C. to 225° C.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: January 14, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Andrew Robert Drews, Robert J. Kudla
  • Patent number: 8617498
    Abstract: Systems and methods are disclosed that include an exhaust gas stream produced by an engine and an aftertreatment system including an SCR catalyst element receiving at least a portion of the exhaust gas stream. An exhaust outlet flow path has an inlet fluidly coupled to the exhaust gas stream at a position downstream of at least a portion of the SCR catalyst element that bypasses at least a portion of exhaust gas stream to provide for compositional measurement of the exhaust gas with a compositional sensor located downstream of a diagnostic catalyst positioned in the exhaust outlet flow path.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 31, 2013
    Assignee: Cummins Inc.
    Inventors: Mert Geveci, Aleksey Yezerets
  • Patent number: 8617496
    Abstract: Provided are exhaust systems and components suitable for use in conjunction with gasoline engines to treat gaseous emissions such as hydrocarbons, nitrogen oxides, and carbon monoxides. Layered three-way conversion (TWC) catalysts comprise an outer layer whose rhodium is supported by an oxygen storage component, such as a ceria-zirconia composite, and the outer layer is substantially free from alumina as a support. The rhodium-containing layer can be free of all other precious metals, such as platinum and palladium. A lower palladium layer is provided where the palladium is supported by a refractory metal oxide. The lower palladium layer can be free of rhodium and platinum and can contain an oxygen storage component that is the same or different from that in the rhodium-containing layer. Methods of making and using these catalysts are also provided.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 31, 2013
    Assignee: BASF Corporation
    Inventors: Junmei Wei, Attilio Siani, Mirko Arnold, Stefan Kotrel, Stephan Siemund, Knut Wassermann
  • Publication number: 20130336866
    Abstract: The invention relates to a catalytically active material for reacting nitrogen oxides with ammonia in the presence of hydrocarbons. The material consists of an inner core (1) made of a zeolite exchanged with one or more transition metals or a zeolite-like compound exchanged with one or more transition metals. The core of the catalytically active material is encased by a shell (2), which is made of one or more oxides selected from silicon dioxide, germanium dioxide, aluminum oxide, titanium oxide, tin oxide, cerium oxide, zirconium dioxide, and mixed oxides thereof.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 19, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: Nicola Soeger, Katja Adelmann, Michael Seyler, Thomas R. Pauly, Gerald Jeske
  • Publication number: 20130336865
    Abstract: A NOx absorber catalyst comprising a substrate monolith coated with one or more washcoat layers and comprising a first component comprising a nitrogen oxide storage component, at least one precious metal and a dispersed rare earth oxide supported on a refractory support material, and a second component comprising a precious metal supported on a bulk reducible oxide that is substantially free of nitrogen oxide storage material, wherein the precious metal present in the second component comprises Pt, Pd or a combination of both Pt and Pd and wherein the bulk reducible oxide is an oxide, a composite oxide or a mixed oxide comprising at least one of manganese, iron, cobalt, copper, tin or cerium.
    Type: Application
    Filed: December 21, 2011
    Publication date: December 19, 2013
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Robert James Brisley, Kenneth David Camm, Noelia Cortes Felix, Fiona-Mairead McKenna, Paul James Millington, Elizabeth Hazel Mountstevens, Daniel Swallow
  • Publication number: 20130336864
    Abstract: Provided are composites of mixed metal oxides comprising: a ceria-zirconia-alumina composite, wherein the alumina is present in an amount in the range of 1 to less than 30% by weight of the composite and the mixed metal oxide composite has a ceria reducibility of at least 50% after 12 hours of hydrothermal aging at 1050° C. In preparation thereof, a ceria-zirconia solid solution can optionally further comprise at least one rare earth oxide other than ceria and the alumina may be formed by using a colloidal alumina precursor. Methods of making and using these composites are also provided.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Applicant: BASF Corporation
    Inventors: Xiaolai Zheng, Xiaoming Wang, Knut Wassermann
  • Patent number: 8609047
    Abstract: A wall-flow filter comprises a catalyst for converting oxides of nitrogen in the presence of a reducing agent, which wall-flow filter comprising an extruded solid body comprising: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% by weight optionally stabilized ceria, which catalyst comprising at least one metal, wherein: the at least one metal is present throughout the extruded solid body alone or in combination with: is also present in a higher concentration at a surface of the extruded solid body; is also carried in one or more coating layer(s) on a surface of the extruded solid body; or both.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: December 17, 2013
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Ralf Dotzel, Rainer Leppelt, Jörg Werner Münch, Hubert Schedel
  • Publication number: 20130330258
    Abstract: Aspects of the invention relate to a base metal catalyst composition effective to catalyze the abatement of hydrocarbons, carbon monoxide and nitrogen oxides under both rich and lean engine operating conditions comprising a support including at least 10% by weight of reducible ceria doped with up to about 60% by weight of one or more of oxides selected from the group Al, Pr, Sm, Zr, Y, Si, Ti and La; and a base metal oxide on the reducible ceria support, the base metal selected from one or more of Ni, Fe, Mn, Cu, Co, Ba, Mg, Ga, Ca, Sr, V, W, Bi and Mo, the base metal catalyst composition effective to promote a steam reforming reaction of hydrocarbons and a water gas shift reaction to provide H2 as a reductant to abate NOx. Other aspects of the invention relate to methods of using and making such catalysts.
    Type: Application
    Filed: April 22, 2013
    Publication date: December 12, 2013
    Applicant: BASF Corporation
    Inventors: Pascaline Harrison Tran, Xinsheng Liu, Ye Liu, Michael P. Galligan, Qinglin Zhang
  • Publication number: 20130330259
    Abstract: A filter for filtering particulate matter (PM) from exhaust gas emitted from a positive ignition engine or a compression ignition engine, which filter comprising a porous substrate having inlet surfaces and outlet surfaces, wherein the inlet surfaces are separated from the outlet surfaces by a porous structure containing pores of a first mean pore size, wherein the porous substrate is coated with a washcoat comprising a plurality of solid particles wherein the porous structure of the washcoated porous substrate contains pores of a second mean pore size, and wherein the second mean pore size is less than the first mean pore size.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 12, 2013
    Applicant: Johnson Matthey Public Limited Company
    Inventors: LOUISE CLARE ARNOLD, ROBERT JAMES BRISLEY, CHRISTOPHER GOUGH MORGAN
  • Patent number: 8603940
    Abstract: An automobile exhaust gas catalytic converter includes a first catalyst layer; a second catalyst layer located on a downstream side as compared to the first catalyst layer; and a base material on which the first catalyst layer and the second catalyst layer are respectively located. In the exhaust gas catalytic converter, the proportion (LB/LS) of a coating length (LB) of the second catalyst layer from a downstream end of the base material with respect to a total length (LS) of the base material in the exhaust gas flow direction is approximately 50 to 90%, the proportion of an amount of Rh contained in the second catalyst layer with respect to a total amount of Rh contained in the first catalyst layer and the second catalyst layer is approximately 50 to 90% by mass, and the rest of Rh is contained together with Pd or Pt in the first catalyst layer.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 10, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihide Segawa
  • Patent number: 8603423
    Abstract: A three way catalyst includes an extruded solid body having: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve; and 0-80% by weight optionally stabilized ceria. The catalyst further includes at least one precious metal and optionally at least one non-precious metal. The at least one precious metal is carried in a coating layer on a surface of the extruded solid body; at least one metal is present throughout the extruded solid body and at least one precious metal is also carried in a coating layer on a surface of the extruded solid body; or at least one metal is present throughout the extruded solid body, is present in a higher concentration at a surface of the extruded solid body and at least one precious metal is also carried in a coating layer on the surface of the extruded solid body.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: December 10, 2013
    Assignee: Johnson Matthey Public Limited Co.
    Inventors: Paul Joseph Andersen, Ralf Dotzel, Kwangmo Koo, Rainer Leppelt, Jörg Werner Münch, Jeffery Scott Rieck, Hubert Schedel, Duncan John William Winterborn, Todd Howard Ballinger, Julian Peter Cox
  • Publication number: 20130315808
    Abstract: Provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap. The improved exhaust gas cleaning systems and methods allow for the sulfur released from the sulfur trap to pass through the nitrogen oxide trap with no or little poisoning of NOx storage and reduction sites, which significantly improves NSR catalyst trap lifetime and performance to meet future emissions standards. The disclosed exhaust gas cleaning systems are suitable for use in internal combustion engines (e.g., diesel, gasoline, CNG) which operate with lean air/fuel ratios over most of the operating period.
    Type: Application
    Filed: July 2, 2013
    Publication date: November 28, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul James Polini
  • Patent number: 8580228
    Abstract: The present invention relates to a process for reducing cold start emissions in an exhaust gas stream (such as from an internal combustion engine) by contacting the exhaust stream with a combination of molecular sieves comprising (1) a small pore crystalline molecular sieve or mixture of molecular sieves having pores no larger than 8 membered rings selected from the group consisting of SSZ-13, SSZ-16, SSZ-36, SSZ-39, SSZ-50, SSZ-52 and SSZ-73 molecular sieve and having a mole ratio at least 10 of (a) an oxide of a first tetravalent element to (b) an oxide of a trivalent element, pentavalent element, second tetravalent element which is different from said first tetravalent element or mixture thereof and (2) a medium-large pore crystalline molecular sieve having pores at least as large as 10 membered rings selected from the group consisting of SSZ-26, SSZ-33, SSZ-64, zeolite Beta, CIT-1, CIT-6 and ITQ-4 and having a mole ratio of at least 10 of (a) an oxide of a first tetravalent element to (b) an oxide of a tr
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 12, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Cabral M. Williams, Tecle S. Rufael, Allen W. Burton
  • Publication number: 20130294989
    Abstract: Ag/Al2O3 materials may be packaged in a suitable flow-through reactor, close coupled to the exhaust manifold of a diesel engine, and upstream of other exhaust gas treatment devices, such as a diesel oxidation catalyst and a selective reduction catalyst for NOx. The silver/alumina catalyst material uses hydrogen in a cold-start engine exhaust and serves to oxidize NO to NO2 in the relatively low temperature, hydrocarbon-containing, exhaust during a short period following the engine cold start, and to temporarily store NOx during the start-up period. After the exhaust has heated downstream catalytic devices, the silver yields its nitrogen oxides for conversion to nitrogen by the then-operating devices before NOx is discharged to the atmosphere.
    Type: Application
    Filed: October 31, 2012
    Publication date: November 7, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: CALVIN K. KOCH, GONGSHIN QI, STEVEN J. SCHMIEG, WEI LI