Utilizing Solid Sorbent, Catalyst, Or Reactant Patents (Class 423/239.1)
  • Patent number: 7993616
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 9, 2011
    Assignee: C-Quest Technologies LLC
    Inventor: Douglas C. Comrie
  • Patent number: 7993617
    Abstract: The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=?12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from the group consisting of oxides of Fe, Cu, V, Cr, Mn, and any mixtures thereof.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: August 9, 2011
    Assignee: Technical University of Denmark
    Inventors: Soren Birk Rasmussen, Arkady Kustov, Rasmus Fehrmann, Johannes Due-Hansen
  • Publication number: 20110189069
    Abstract: The invention realizes a catalyst which is hardly deteriorated even when volatile catalyst-poisoning compounds such as P and As are accumulated and which can reduce the rate of oxidation of SO2 to a level as low as a fraction of that of the catalyst in the prior art, and provides an exhaust gas purification catalyst which can maintain a high activity and a low rate of oxidation of SO2 for a long time even with any diversified coal, a method of producing the same, and an exhaust gas purification method using the same. Disclosed is an exhaust gas purification catalyst having a composition comprising oxides of titanium (Ti), molybdenum (Mo) and/or tungsten (W), vanadium (V) and bismuth (Bi), wherein the atomic ratio of Ti:(Mo and/or W):V is 75 to 98.9:1 to 0.1 to 10 and the atomic ratio of Bi/(Mo and/or W) is 0.1 to 0.8.
    Type: Application
    Filed: April 14, 2011
    Publication date: August 4, 2011
    Inventors: Yasuyoshi KATO, Keiichiro KAI, Naomi IMADA
  • Patent number: 7988940
    Abstract: A process and system (18) for reducing NOx in a gas using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream (29) with a catalyst system (38) comprising sulfated zirconia washcoat particles (41), palladium, a pre-sulfated zirconia binder (44), and a promoter (45) comprising at least one of titanium, zinc, or a mixture thereof. The presence of zinc or titanium increases the resistance of the catalyst system to a sulfur and water-containing gas stream.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: August 2, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Anatoly Sobolevskiy, Joseph A. Rossin, Michael J. Knapke
  • Patent number: 7985391
    Abstract: A method of converting nitrogen oxides in a gas stream to nitrogen comprises contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a non-zeolite base metal catalyst consisting of: (a) at least one transition metal dispersed on a mixed oxide or composite oxide or a mixture thereof as support material consisting of cerium and zirconium; or (b) cerium oxide and zirconium oxide as single oxides or a composite oxide thereof or a mixture of the single oxides and the composite oxide dispersed on an inert oxide support material, whereon is dispersed at least one transition metal.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: July 26, 2011
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Jillian Elaine Collier, Sylvie Cécile Laroze, Raj Rao Rajaram, David William Prest
  • Patent number: 7981390
    Abstract: Catalyst articles comprising substantially only a palladium precious metal component and related methods of preparation and use are disclosed. Disclosed is a catalyst article comprising a first layer formed on a carrier substrate, wherein the first layer comprises a refractory metal oxide and has a surface that is substantially uniform; and a second layer formed on the first layer, wherein the second layer comprises i) an oxygen storage component that is about 50-90% by weight of the second layer and ii) a palladium component in an amount of about 10-150 g/ft3 of palladium, wherein the palladium component is substantially the only platinum group metal component. One or more improved properties are exhibited by the catalyst article.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 19, 2011
    Assignee: BASF Corporation
    Inventors: Michael P. Galligan, Xinsheng Liu, Pascaline H. Tran, Young Gin Kim, Ye Liu
  • Patent number: 7981389
    Abstract: A process for cracking hydrocarbons at atmospheric pressure includes the following steps: providing a catalyst, passing a gaseous hydrocarbon over the catalyst and exposing the catalyst to microwave energy. The hydrocarbons are broken down into lower Carbon number molecules.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: July 19, 2011
    Assignees: Toyota Motor Corporation, Toyota Motor Engineering & Manufacturing North America, Inc., The University of Connecticut
    Inventors: Paul T Fanson, Hirohito Hirata, Masaya Ibe, Steven L Suib, Young Chan Son
  • Publication number: 20110171092
    Abstract: This invention relates to a cerium—zirconium-base composite oxide, which is useful, e.g., for the purification of exhaust gas discharged from combustion engines such as internal combustion engines and boilers and can release a high level of oxygen in a low temperature region, a method for producing the same, an oxygen storage/release component using the same, an exhaust gas purification catalyst, and an exhaust gas purification method. The cerium—zirconium-base composite oxide satisfies requirements (1) that the oxygen release initiation temperature is 380° C. or below, (2) that the oxygen release amount is not less than 485 ?mol/g, and further (3) that the oxygen release amount at 400° C. is not less than 15 ?mol/g.
    Type: Application
    Filed: December 9, 2010
    Publication date: July 14, 2011
    Applicants: DAIICHI KIGENSO KAGAKU KOGYO CO., LTD., N.E. CHEMCAT CORPORATION
    Inventors: Takahiro Wakita, Akira Kohara, Yasuharu Kanno, Hiroaki Omoto
  • Patent number: 7976804
    Abstract: A catalyst for the decomposition of N2O under the conditions of the Ostwald process, comprising a carrier and a coating made of rhodium, rhodium/palladium or rhodium oxide applied thereto, ensures to yield NO with a particularly low content of laughing gas as the first process product.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: July 12, 2011
    Assignee: W.C. Heraeus GmbH
    Inventors: Uwe Jantsch, Jonathan Lund, Marek Gorywoda, Marcus Kraus
  • Patent number: 7976800
    Abstract: An integrated exhaust gas cooling system and method, including an expansion joint linking the system to an upstream source of exhaust gas and a pre-oxidation section through which exhaust gas travels. A hot temperature zone in which the exhaust gas is maintained at a temperature optimal for an oxidation process extends through the pre-oxidation section. An oxidation catalyst in the hot temperature zone is provided. The exhaust gas passes through the oxidation catalyst. Oxidized exhaust gas passes a post-oxidation section downstream of the oxidation catalyst. A tempering air stream is injected into the post-oxidation section to create a cool temperature zone in which the oxidized exhaust gas is cooled below the temperature in the hot temperature zone and to a temperature optimal for a reduction process. The system includes a reduction catalyst in the cool temperature zone through which the oxidized exhaust gas passes.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 12, 2011
    Assignee: Peerless MFG. Co.
    Inventors: Mark A. Buzanowski, Sean P. McMenamin
  • Patent number: 7976805
    Abstract: A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: July 12, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Anatoly Sobolevskiy, Joseph A. Rossin, Michael J. Knapke
  • Publication number: 20110165048
    Abstract: First, the emission amount of nitrogen oxides can be decreased close to zero as much as possible, and the emission amount of carbon monoxide is decreased to a permissible range. Second, energy saving by combustion at a low air ratio close to 1.0 is realized. Third, air ratio control is performed stably in a combustion region at a low air ratio.
    Type: Application
    Filed: April 13, 2007
    Publication date: July 7, 2011
    Applicant: MIURA CO., LTD.
    Inventors: Osamu Tanaka, Yukihiro Tokunaga, Yusuke Okamoto, Kenji Yasui
  • Publication number: 20110165049
    Abstract: The present invention relates to a catalyst for removal of nitrogen oxides from exhaust gas, a method of preparing the same and a method of removing nitrogen oxide in an exhaust gas using the same, and more particularly, to a catalyst for removal of nitrogen oxides from exhaust gas in which a ceramic fiber carrier is hydrothermal-treated prior to washcoating to improve the hydrothermal stability of catalyst, a method of preparing the same and a method of removing nitrogen oxide in an exhaust gas using the same. The catalyst prepared according to the present invention has excellent hydrothermal stability and an activity of the catalyst remains for a long time. Further, by using this catalyst to remove nitrogen oxides in an exhaust gas, a removal ratio of the nitrogen oxides is improved more.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 7, 2011
    Inventors: Ju-Hyung Lee, In-sik Nam, Seong-moon Jung, Jong-sik Choi, Sun-joo Kim, Hyuk-Jae Kwon, Young-jin Kim, Joon-hyun Baik
  • Publication number: 20110165050
    Abstract: A process for sealing the NO compressor and the residual gas expander in a plant for the production of nitric acid by the dual-pressure process uses a low-pressure section, a NO compressor, a high-pressure section with oxidation and absorption, at least one heat exchanger, a residual gas expander, in which ammonia and compressed air are passed into the low-pressure section of the nitric acid plant, where ammonia is oxidised via a catalyst to yield NO and water. The obtained NO is partly oxidised to yield NO2. The NO- and NO2-saturated gas is passed into the NO compressor, the compressed NO- and NO2-saturated gas is passed into the high-pressure section of the nitric acid plant where the residual NO is oxidised to yield NO2, followed by absorption of nitrogen dioxide to nitric acid. The residual gas from the high-pressure section is routed to the residual gas expander via at least one heat exchanger.
    Type: Application
    Filed: May 15, 2009
    Publication date: July 7, 2011
    Inventors: Rainer Maurer, Daniel Birke, Egon Joachmann
  • Patent number: 7972581
    Abstract: First, the emission amount of nitrogen oxides can be decreased close to zero as much as possible, and the emission amount of carbon monoxide is decreased to a permissible range. Second, energy saving by combustion at a low air ratio close to 1.0 is realized. Third, air ratio control is performed stably in a combustion region at a low air ratio.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: July 5, 2011
    Assignee: Miura Co., Ltd.
    Inventors: Osamu Tanaka, Yukihiro Tokunaga, Yusuke Okamoto, Kenji Yasui
  • Patent number: 7972419
    Abstract: Disclosed is a method for reducing emissions from exhaust gas generated during the grinding and drying of cement raw meal as part of a cement manufacturing process. The invention comprises circuiting the exhaust gas between a raw mill and a clinker cooler. In the clinker cooler at least a portion of said emissions are delivered to a cement kiln in which said emissions are removed by being combusted and/or absorbed.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: July 5, 2011
    Assignee: FLSmidth A/S
    Inventors: Ove L. Jepsen, Steven Miller, Anthony Shave
  • Publication number: 20110158876
    Abstract: An integrated exhaust gas cooling system and method, including an expansion joint linking the system to an upstream source of exhaust gas and a pre-oxidation section through which exhaust gas travels. A hot temperature zone in which the exhaust gas is maintained at a temperature optimal for an oxidation process extends through the pre-oxidation section. An oxidation catalyst in the hot temperature zone is provided. The exhaust gas passes through the oxidation catalyst. Oxidized exhaust gas passes a post-oxidation section downstream of the oxidation catalyst. A tempering air stream is injected into the post-oxidation section to create a cool temperature zone in which the oxidized exhaust gas is cooled below the temperature in the hot temperature zone and to a temperature optimal for a reduction process. The system includes a reduction catalyst in the cool temperature zone through which the oxidized exhaust gas passes.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Applicant: Peerless Mfg. Co.
    Inventors: Mark A. Buzanowski, Sean P. McMenamin
  • Publication number: 20110158872
    Abstract: The present invention relates to a method and a multi-component system for adsorbing contaminants and/or pollutants from a contaminated hot fluid by using a turbulent air stream, to adiabatically cool the temperature of the fluid, in association with one or more adsorbents. The system of the present invention can also be coupled to a recovery and recycling unit to recover and recycle the contaminant and/or pollutant and the adsorbent material.
    Type: Application
    Filed: November 3, 2010
    Publication date: June 30, 2011
    Inventor: Parisa A. Ariya
  • Patent number: 7968492
    Abstract: Low temperature activity and high temperature ammonia selectivity of a vanadium-free selective catalytic reduction catalyst are controlled with a mixed oxide support containing oxides of titanium and zirconium, and a plurality of alternating layers respectively formed of a metal compound and titanium oxide present on the surface of the mixed oxide support. The metal compound is selected from the group consisting of manganese oxide, iron oxide, cerium oxide, tin oxide, and mixtures thereof.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: June 28, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventor: Steven M. Augustine
  • Publication number: 20110150731
    Abstract: A catalyst composition represented by the general formula XVO4/S wherein XVO4 stands for TransitionMetal-Vanadate, or a mixed TransitionMetal-/RareEarth-Vanadate, and S is a support comprising TiO2.
    Type: Application
    Filed: April 16, 2010
    Publication date: June 23, 2011
    Applicant: TREIBACHER INDUSTRIE AG
    Inventors: Karl Schermanz, Amod Sagar, Alessandro Trovarelli, Marzia Casanova
  • Publication number: 20110150732
    Abstract: A selective catalytic reduction reactor (8), which comprises at least one catalyst layer (14), is operative for removing NOx from a flow of process gas of a process plant, such as a combustion plant or an incineration plant. A device for controlling the feeding of a reducing agent, such as urea or ammonia, to said at least one catalyst layer (14), which has an attack area (A) facing the flow (P) of process gas, comprises at least one supply nozzle (32) which is operative for supplying reducing agent in at least one supply area (34) which corresponds to a part of the attack area (A), and a moving device (36) which is operative for moving said supply area (34) over the attack area (A).
    Type: Application
    Filed: August 31, 2009
    Publication date: June 23, 2011
    Inventor: Mikael Larsson
  • Patent number: 7964167
    Abstract: An after-treatment system architecture and method for oxidizing the nitric oxide component of an exhaust stream from a hydrocarbon fueled power source operated with a fuel lean combustion mixture.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: June 21, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, Wei Li, Kevin A Dahlberg
  • Patent number: 7964163
    Abstract: A solid ammonia storage and delivery material comprising an ammonia absorbing/desorbing solid material, said storage and delivery material having been compacted to a density above 50% of the theoretic skeleton density provides a solid ammonia storage material which is easy to produce and handle and has a very high density of stored ammonia which is readily released under controlled conditions even though the porosity of the material is very low, and which storage material is safe for storage and transport of ammonia without special safety measures.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: June 21, 2011
    Assignee: Amminex A/S
    Inventors: Tue Johannessen, Christensen Claus Hviid, Norskov Jens Kehlet, Sorensen Rasmus Zink, Quaade Ulrich
  • Patent number: 7959883
    Abstract: Particulate pollutants such as carbonaceous particles are removed from an engine exhaust stream by passing the exhaust stream through an exhaust gas reactor, the exhaust stream first traversing a charging zone wherein the particles are charged via a corona discharge, and thereafter traversing a downstream collection zone wherein the charged particles are collected and eliminated by a collector/reactor having an oppositely charged reactive collecting surface.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: June 14, 2011
    Assignee: Corning Incorporated
    Inventors: Christopher W Drewnowski, Martin Andrew Sala
  • Patent number: 7951742
    Abstract: A gas stream containing nitrous oxide and ammonia is contacted with a catalyst composition containing a zeolite. N2O is reduced to N2 and H2O at low temperatures in a highly efficient manner. Ammonia-mediated reduction of nitrous oxide can be effectuated from gas streams having N2O concentrations as low as 1%. The gas stream may also contact a catalytic composition selective for the reduction of NOx. In this way, N2O and NOx treatment may be effectuated in a single process stream.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: May 31, 2011
    Assignee: BASF Corporation
    Inventors: James Chen, Pascaline Tran, Michael Durilla, Stanley Mack
  • Patent number: 7947241
    Abstract: The present application relates to the use of a solution for the treatment of exhaust gases at the outlet of on-board or stationary diesel engines. It also relates to its use in any device for the treatment of these exhaust gases, regardless of whether the engines are engines of heavy goods vehicles or engines for light vehicles or also engines for stationary industrial engine applications.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: May 24, 2011
    Assignee: Total Raffinage Marketing
    Inventors: Pierre Schmelzle, Leire Oro-Urrea, Stéphanie Escoffier, Françoise Douce
  • Publication number: 20110116999
    Abstract: An exhaust gas purification catalyst is provided which contains titanium oxide as a main component and an oxide of one element or two or more elements selected from the group consisting of tungsten (W), molybdenum (Mo), and vanadium (V) as an active component, wherein the exhaust gas purification catalyst contains phosphoric acid or a water soluble phosphoric acid compound so that the atomic ratio of phosphorus (P) to a catalytically active component represented by the following formula is more than 0 and 1.0 or less; P/catalytically active component (atomic ratio)=number of moles of P/(number of moles of W+number of moles of Mo+number of moles of V).
    Type: Application
    Filed: March 25, 2009
    Publication date: May 19, 2011
    Inventors: Yasuyoshi Kato, Naomi Imada, Keiichiro Kai
  • Publication number: 20110113761
    Abstract: Provided are selective catalytic reduction catalytic articles, emission treatment systems and methods for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalytic articles have a Selective Catalytic Reduction (SCR) catalyst uniformly coated over the outlet portion of wall flow filter walls resulting in reduction of NO2 and combustion of the soot without substantially increasing the system backpressure.
    Type: Application
    Filed: November 10, 2010
    Publication date: May 19, 2011
    Applicant: BASF Corporation
    Inventors: R. Samuel Boorse, Martin Dieterie
  • Publication number: 20110117000
    Abstract: An object of this invention is to diminish a ratio of a concentration of N2O in the dilution air to a concentration of N2O in the measurement object gas diluted by the dilution air as much as possible by removing N2O in a dilution air so that a measurement accuracy of a concentration of N2O in a measurement object gas can be improved. A heater 33 that applies heat to the dilution air, a Pd catalyst 341 and a Pt catalyst 342 are arranged in this order on a flow channel where a dilution air used for diluting the measurement object gas flows, and N2O in the dilution air is oxidized to NOx or reduced to N2 by the Pd catalyst 341 and the Pt catalyst 342.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 19, 2011
    Applicant: HORIBA, LTD.
    Inventors: Shigeru Nakatani, Yoshinori Kato, Tomomi Yamauchi, Yoshitaka Iida, Masato Koshikawa
  • Publication number: 20110110835
    Abstract: The present invention relates to a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support for decomposition of N2O in gases containing NO. The catalyst may also contain 0.01-2 weight % ZrO2. The invention further comprises a method for performing a process comprising formation of N2O. The N2O containing gas is brought in contact with a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support, at 250-1000° C. The method may comprise that ammonia is oxidized in presence of an oxidation catalyst and that the thereby formed gas mixture is brought in contact with the catalyst comprising the cobalt component on cerium oxide support at a temperature of 500-1000° C.
    Type: Application
    Filed: October 26, 2009
    Publication date: May 12, 2011
    Inventors: Øystein Nirisen, Klaus Schöffel, David Waller, Dag Øvrebø
  • Patent number: 7939038
    Abstract: An exhaust gas treating apparatus removes nitrogen oxides and mercury in exhaust gas from a boiler using an ammonia denitration catalyst, including: an ammonium chloride powder feed unit for feeding ammonium chloride, in powder form, into a vicinity of an entrance of an economizer provided to a combustion gas flue of the boiler and/or an economizer bypass unit, the fed ammonium chloride in powder form being sublimed by a combustion gas, to thereby feed hydrogen chloride and ammonia into the flue; and an ammonium chloride liquid feed unit for feeding ammonium chloride, in liquid form, into a vicinity of the entrance of the economizer and/or the economizer bypass unit, the ammonium chloride liquid feed unit also being capable of feeding ammonium chloride, vaporization of the fed ammonium chloride in liquid form by the combustion gas also allowing hydrogen chloride and ammonia to be fed into the flue.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 10, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masashi Kiyosawa, Shintaro Honjo
  • Patent number: 7931881
    Abstract: An air pollution control system includes an emission treatment system configured to receive flue gas, to reduce at least one pollutant therefrom, and to output emission treated flue gas. A first air heater in fluid communication with the emission treatment system includes a heat exchanger for heating forced air introduced thereto above a base temperature and thereby cooling emission treated flue gas from the emission treatment system to a stack discharge temperature. A second air heater in fluid communication with the first air heater to receive heated forced air therefrom includes a heat exchanger for heating forced air introduced thereto to a preheat temperature for combustion in a boiler and thereby cooling flue gas introduced from a boiler to the second air heater to an emission treatment temperature. The second air heater is in fluid communication with the emission treatment system to introduce cooled flue gas thereto.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: April 26, 2011
    Assignee: Babcock Power Environmental Inc.
    Inventors: Richard F. Abrams, Mark R. Lewis, Jeffrey Penterson
  • Publication number: 20110091367
    Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the colour is maintained and the quality of the air is improved.
    Type: Application
    Filed: March 31, 2008
    Publication date: April 21, 2011
    Inventors: Marino Sergi, Christian Egger
  • Publication number: 20110085956
    Abstract: A mixer and mixer assembly for turbulent mixing and enhancing a chemical reaction is provided. A method for using a mixer and mixer assembly for treatment of fluids is also provided. The mixer generally includes a first and second end, a surface configured for turbulent mixing, a catalyst supported thereon, and surface structure configured to increase interaction of catalyst and reactant. The mixer assembly generally includes a mixer inserted inside a fluid container or a tube and may also include a catalytic sleeve for enhancing interaction between catalyst and reactant.
    Type: Application
    Filed: December 21, 2010
    Publication date: April 14, 2011
    Inventor: Gary R. JERNBERG
  • Patent number: 7922988
    Abstract: A layered three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Engine exhaust treatment system and methods of using the same are also provided. The catalytic material can be provided in layers such that a larger amount of oxygen storage component is provided in a downstream zone as compared to an upstream zone. For example, the upstream zone can be configured to have one, two, or three layers, and the downstream zone can be independently configured to have one, two, or three layers. In one or more embodiments, the catalyst supported on a carrier has three layers, where at least two of the layers are zoned to have an oxygen storage component being present in an upstream zone in an amount that is less than the oxygen storage component present in the downstream zone.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 12, 2011
    Inventors: Michel Deeba, Stephan Siemund, Xinyi Wei, Stefan Kotrel, Knut Wassermann, Glenn Svoboda, Harold Rabinowitz
  • Patent number: 7922643
    Abstract: A method for reducing the emission of greenhouse gases, such as for example carbon dioxide, into the atmosphere above a ground surface, the method comprising injecting a gas stream comprising one or more than one greenhouse gas into a subsurface injection formation, where the subsurface injection formation comprises a water-laden layer comprising formation water, and where some or all of the greenhouse gases present in the gas stream become dissolved in the formation water in the subsurface injection formation, sequestering the one or more than one greenhouse gas in the subsurface injection formation, separating non-greenhouses gas in situ from the greenhouse gas, venting the non-greenhouse gas from the formation and thereby reducing the emission of greenhouse gases into the atmosphere.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: April 12, 2011
    Inventors: Michael S. Bruno, Roman Bilak, Leo Rothenburg, Maurice B. Dusseault
  • Publication number: 20110076215
    Abstract: An air pollution control system includes an emission treatment system configured to receive flue gas, to reduce at least one pollutant therefrom, and to output emission treated flue gas. A first air heater in fluid communication with the emission treatment system includes a heat exchanger for heating forced air introduced thereto above a base temperature and thereby cooling emission treated flue gas from the emission treatment system to a stack discharge temperature. A second air heater in fluid communication with the first air heater to receive heated forced air therefrom includes a heat exchanger for heating forced air introduced thereto to a preheat temperature for combustion in a boiler and thereby cooling flue gas introduced from a boiler to the second air heater to an emission treatment temperature. The second air heater is in fluid communication with the emission treatment system to introduce cooled flue gas thereto.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Applicant: Babcock Power Environmental Inc.
    Inventors: Richard F. Abrams, Mark Lewis, Jeffrey Penterson
  • Patent number: 7914743
    Abstract: Various systems, devices, NO2 absorbents, NO2 scavengers and NO2 recuperator for generating nitric oxide are disclosed herein. According to one embodiment, an apparatus for converting nitrogen dioxide to nitric oxide can include a receptacle including an inlet, an outlet, a surface-active material coated with an aqueous solution of ascorbic acid and an absorbent wherein the inlet is configured to receive a gas flow and fluidly communicate the gas flow to the outlet through the surface-active material and the absorbent such that nitrogen dioxide in the gas flow is converted to nitric oxide.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: March 29, 2011
    Assignee: Geno LLC
    Inventors: David Fine, Gregory Vasquez, David P. Rounbehler
  • Patent number: 7914747
    Abstract: A system is provided for reducing NOx emission. The system includes a gas production source configured to produce a gas stream comprising NOx, and an oxidation catalyst positioned downstream of the gas production source. The oxidation catalyst is configured to oxidize NO gas molecules in the gas stream to yield higher order NxOy molecules. A removal system is positioned downstream of the oxidation catalyst and is configured to remove higher order NxOy molecules from the gas stream by solvent absorption or reaction. The system further includes a secondary NOx trimming system positioned downstream of the oxidation catalyst, wherein the secondary NOx trimming system is configured to inject a reactant into the gas stream, the reactant configured to react with NOx molecules present in the gas stream.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: March 29, 2011
    Assignee: General Electric Company
    Inventor: Gilbert Otto Kraemer
  • Publication number: 20110070138
    Abstract: The invention relates to the use of iron oxide particles coated with titanium dioxide, and in particular to their use for decomposing air pollutants photocatalytically. The invention is further directed to the use of iron oxide particles being at least partially coated with titanium dioxide, for photocatalytically decomposing air pollutants selected from nitrogen oxides (NOx) and volatile organic compounds (VOC), that come into contact with said particles.
    Type: Application
    Filed: March 31, 2008
    Publication date: March 24, 2011
    Inventors: Claudia Menini, Marino Sergi
  • Publication number: 20110070140
    Abstract: A nitrogen oxide removing catalyst has a porous material having fine holes with controlled diameters and a catalyst having an active ingredient supported in the fine holes are used. In one instance, the diameter of the plurality of fine holes is within a range of 8-9 ?. The fine hole diameter is preferably from 8-9 ? when the diameter is measured in a gas adsorption method in which fine holes with diameters of 3.4-14 ? can be measured. The fine hole diameter is also preferably from 8-9 ? when the fine hole diameter is calculated from a crystal structure. In another instance, the porous material is mesoporous silica. The primary particle diameter of the mesoporous silica is preferably within a range of 150-300 nm. The nitrogen oxide removing catalyst having superior durability and a method of removing nitrogen oxides are also provided.
    Type: Application
    Filed: November 23, 2010
    Publication date: March 24, 2011
    Applicant: BABCOCK-HITACHI K.K.
    Inventors: Noriko YOSHIDA, Hidehiro IIZUKA, Yasuyoshi KATO, Yoshinori NAGAI, Toshiaki ARATO
  • Publication number: 20110070139
    Abstract: One embodiment of the invention may include a product comprising a catalyst combination comprising a perovskite catalyst and a second catalyst that is not a perovskite catalyst.
    Type: Application
    Filed: October 19, 2010
    Publication date: March 24, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Chang H. Kim, David B. Brown, Wei Li, Steven J. Schmieg, Gongshin Qi
  • Patent number: 7910075
    Abstract: A method of protecting a NOx reducing catalyst 140 from fouling, where the NOx reducing catalyst 140 is downstream of a circulating fluidized bed (CFB) boiler 120 and upstream of a particulate removal device 150. The method includes introducing a SOx removing reagent 212 in a calcium to sulfur molar ratio greater than that required for SO2 removal from a flue gas 122 generated by a CFB 120, thereby preventing SO3 formation and fouling of the NOx reducing catalyst 140.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: March 22, 2011
    Assignee: ALSTOM Technologies Ltd.
    Inventors: Lawrence J. Czarnecki, Mikael Larsson
  • Patent number: 7906090
    Abstract: A mercury reduction system according to the present embodiment is a mercury reduction system that reduces NOx and Hg in flue gas discharged from a boiler, and includes an NH4Cl solution spraying unit that sprays an NH4Cl solution into a flue of the boiler in a liquid state, a mixed gas spraying unit that is provided downstream of the NH4Cl solution spraying unit and sprays mixed gas containing NH3 gas and HCl gas into the flue, a reduction denitration apparatus that includes a denitration catalyst reducing NOx in the flue gas with NH3 and oxidizing Hg in the presence of HCl, and a wet desulfurization apparatus that reduces Hg oxidized in the reduction denitration apparatus with a limestone-gypsum slurry.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: March 15, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Nobuyuki Ukai, Moritoshi Murakami, Susumu Okino, Tatsuto Nagayasu, Seiji Kagawa
  • Patent number: 7901645
    Abstract: A mercury reduction system according to the present embodiment is a mercury reduction system that reduces NOx and Hg in flue gas discharged from a boiler, and includes a chemical supplying unit that mixes an NH4Cl solution, an NH3 solution, and an HCl solution in liquid states, and supplies a mixed solution into a flue provided downstream of the boiler, a reduction denitration apparatus that includes a denitration catalyst reducing NOx in the flue gas with NH3 and oxidizing Hg in the presence of HCl, and a wet desulfurization apparatus that reduces Hg oxidized in the reduction denitration apparatus with limestone-gypsum slurry.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: March 8, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Nobuyuki Ukai, Moritoshi Murakami, Susumu Okino, Tatsuto Nagayasu, Seiji Kagawa
  • Patent number: 7901647
    Abstract: An apparatus and method for achieving increased NOx removal efficiency from an emissions control portion of a fossil fuel fired boiler while controlling ammonia slip provides excess levels of ammonia above those levels conventionally employed in SCR and/or SNCR applications. The apparatus and methods comprise, in part, use of a NOx reduction system comprising at least one selective catalytic reduction system which receives ammonia in higher amounts than conventional practice from an upstream ammonia injection point, and an ammonia reduction system positioned downstream of one or more ammonia injection points and the NOx reduction system. The excess ammonia achieves increased NOx removal, while the ammonia reduction system contains at least one ammonia destruction catalyst which permits the NOx reduction system to be operated at an increased NOx removal efficiency without a corresponding increase in ammonia slip.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: March 8, 2011
    Inventors: William Downs, Larry A. Hiner, Xiaoyu Guo
  • Publication number: 20110052468
    Abstract: There is provided an effective method for removing mercury comprising injecting NaClO2 into an emission gas containing elemental mercury and NOx; converting the elemental mercury to oxidized mercury by using oxidizing agents produced by the NaClO2 and the NOx; and removing oxidized mercury from the emission gas.
    Type: Application
    Filed: July 17, 2009
    Publication date: March 3, 2011
    Applicant: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Dong Nam Shin, Dong Jun Koh, Youngchul Byun, Kiman Lee
  • Publication number: 20110052467
    Abstract: Ceramic nanofibers contain nanosize metal catalyst particles on the surface thereof. The catalyst-ceramic nanofibers when supported as by larger fibers form a medium that effectively catalyze various reactions as in fluid flow processes.
    Type: Application
    Filed: January 12, 2009
    Publication date: March 3, 2011
    Applicant: University of Akron
    Inventors: George G. Chase, G. R. Newkome, Sphurti Bhargava, Soo-Jin Park, Sneha Swaminathan
  • Patent number: 7892508
    Abstract: An internal combustion engine exhaust gas purification apparatus purifies exhaust gas using a NOx storage-reduction catalyst unit and a NOx selective reduction catalyst unit. The NOx selective reduction catalyst unit is provided downstream of the NOx storage-reduction catalyst unit in an exhaust gas passage. An urea injecting mechanism, for example an injection valve, injects urea into the exhaust gas passage. An urea injection controller prohibits urea injection from the urea injecting mechanism if at least one of the temperatures of the NOx storage-reduction catalyst unit and the NOx selective reduction catalyst unit is equal to or lower than a reference temperature. As such, production of cyanic acid is minimized, and therefore leaks of cyanic acid from the NOx storage-reduction catalyst unit and/or the NOx selective reduction catalyst unit can be suppressed.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: February 22, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenji Katoh
  • Patent number: 7891324
    Abstract: A heater and a method for heating a circulating liquid in a gas-to-liquid heat exchanger and an indirect heat exchanger to produce a hot liquid stream for use for heat exchange in a selected process to supply heat to the process. One particularly useful application of the present invention is the revaporization of liquefied natural gas (LNG).
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: February 22, 2011
    Inventors: David A. Franklin, Martin J. Rosetta