Silica Patents (Class 423/335)
  • Publication number: 20100061910
    Abstract: A production method of amorphous silica comprises a step of preparing organic waste containing silicon oxide as a starting material, a step of immersing the organic waste in a carboxylic acid aqueous solution having a hydroxyl group, a step of washing the organic waste in water, and a step of heating the organic waste in the air atmosphere.
    Type: Application
    Filed: October 17, 2007
    Publication date: March 11, 2010
    Inventors: Katsuyoshi Kondoh, Yoshisada Michiura, Junko Umeda
  • Patent number: 7674374
    Abstract: A process is disclosed for the production of acidic solutions of activated silica for water treatment. Activated silica is formed during the process of acidifying a sodium silicate solution to below pH 4 with sulfuric acid. A polyvalent metal salt is then added to stabilize the acidified activated silica.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: March 9, 2010
    Inventor: Antonio T. Robles
  • Publication number: 20100051583
    Abstract: Disclosed herein is a method for preparing a porous material using nanostructures. The method comprises the steps of producing nanostructures using a porous template, dispersing the nanostructures in a source or precursor material for the porous material, aligning the nanostructures in a particular direction, and removing the nanostructures by etching. According to the method, the size, shape, orientation and regularity of pores of the porous material can be easily controlled, and the preparation of the porous material is simplified, leading to a reduction in preparation costs. Further disclosed is a porous material prepared by the method.
    Type: Application
    Filed: May 31, 2006
    Publication date: March 4, 2010
    Inventors: Kyung Sang Cho, Byoung Lyong Choi, Eun Kyung Lee, Soon Jae Kwon, Jae Ho Lee
  • Publication number: 20100054867
    Abstract: An aggregate of mesoporous microparticles that comprises two or more of covalently bound mesoporous microparticles is described. The aggregate of mesoporous microparticles can be used for many applications, including slowing or reversing desertification.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Inventor: KWANGYEOL LEE
  • Publication number: 20100051877
    Abstract: Micelle-templated superficially porous particles having a solid core and an outer porous shell with ordered pore structures and a narrow particle size distribution, such as about ±5% (one sigma), and a high specific surface area of about 5 to about 1000 m2/g.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Applicant: Agilent Technologies, Inc.
    Inventors: Ta-Chen Wei, Wu Chen, William E. Barber
  • Patent number: 7670580
    Abstract: A filler for a dental resin composition is disclosed, comprising silica particles derived from a nanoparticulate silica sol, the filler material having at least one crystalline phase. The filler material provides improved wear resistance and other properties.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: March 2, 2010
    Assignee: Pentron Clinical Technologies, LLC
    Inventors: Weitao Jia, Shuhua Jin
  • Patent number: 7662363
    Abstract: An amorphous silica suitable for use in a dental composition has a weight mean particle size in the range 3 to 15 ?m with at least 90 per cent by weight of particles having a size below 20 ?m, a Radioactive Dentine Abrasion (RDA) determined on an aqueous slurry of the silica powder of 100 to 220, a Pellicle Cleaning Ratio (PCR), when incorporated in a dental composition at 10 per cent by weight, greater than 85, the ratio of PCR to RDA being in the range 0.4:1 to less than 1:1 and having a Plastics Abrasion Value (PAV) in the range 11 to 19. A silica having the above properties is prepared by a precipitation route. The silica made available by the invention is also useful as an anti-blocking agent in plastics.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: February 16, 2010
    Assignee: PQ Silicas UK Limited
    Inventors: Peter W. Stanier, Simon R. Stebbing
  • Publication number: 20100029473
    Abstract: Stable high strength porous metal oxide articles suitable, for example, for use as catalyst supports, are prepared by predisposing fine metal oxide particles in water followed by fine dispersion under high shear, and subjecting the dispersion to a change in pH to coagulate the metal oxide particles and form a moldable viscoelastic composition. The moldings are substantially free of impurity atoms.
    Type: Application
    Filed: December 6, 2007
    Publication date: February 4, 2010
    Applicant: WACKER CHEMIE AG
    Inventor: Holger Szillat
  • Publication number: 20100028238
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 4, 2010
    Applicant: AGC Flat Glass North America, Inc.
    Inventor: Peter MASCHWITZ
  • Publication number: 20100028239
    Abstract: A continuous process and related system for producing high purity silica are disclosed. The process and system utilize a unique high temperature rotary reactor which excludes oxygen. The use of one or more anoxic gases is described, that upon administration into the system promote the exclusion of oxygen.
    Type: Application
    Filed: October 7, 2009
    Publication date: February 4, 2010
    Inventors: SCOTT D. GOLDBLATT, CHRIS CAPOBIANCO, THOMAS A. GALLO
  • Patent number: 7655207
    Abstract: An aluminum complex hydroxide salt having Al oxide octahedral layers and a divalent anion among the octahedral layers, wherein an aluminosilicate anion expressed by the following general formula (1), [NapAlqSirOz]2???(1) wherein p, q, r and z are positive numbers satisfying, 5?z?20, z=(p/2)+(3q/2)+2r+1, 0<p/q<1, 0.01?q/r?1 is, at least, contained as the divalent anion. The aluminum complex hydroxide salt can be favorably used as a compounding agent for resins, and exhibits excellent heat retaining property as well as excellent transparency particularly when it is mixed as a heat retaining agent into films for agricultural use.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: February 2, 2010
    Assignee: Mizusawa Chemicals, Ltd.
    Inventor: Madoka Minagawa
  • Publication number: 20100015026
    Abstract: A method of preparing channel-type mesoporous material with an elliptical pore section is described. An alkaline solution containing two surfactants different in the electronic properties of their hydrophilic groups is prepared. A silica precursor is added to form a stack of rod-like micelles each having an elliptical section with the silica precursor between the rod-like micelles. The silica precursor is reacted into a silica framework. The rod-like micelles are removed from the silica framework.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 21, 2010
    Applicant: National Tsing Hua University
    Inventors: Chia-Min Yang, Ching-Yi Lin, Wei-Chia Huang, Li-Lin Chang
  • Publication number: 20100015027
    Abstract: A channel-type mesoporous material with an elliptical pore section has a 2D-rectangular pore arrangement. Besides, the channel-type mesoporous material includes silica and has a unit cell ratio a/b satisfying the inequality of ?{square root over (3)}<a/b?2.85. The synthesis procedure can be easily applied to prepare functional mesoporous silica materials, and examples given in this application are the syntheses of cyanoethyl-functionalized and mercaptopropyl-functionalized mesoporous materials with a c2mm symmetry. The mesoporous materials discussed herein have great potential for various advanced applications in the fields of catalysis, selective adsorption, controlled drug delivery and release, and many of other applications.
    Type: Application
    Filed: June 19, 2009
    Publication date: January 21, 2010
    Applicant: National Tsing Hua University
    Inventors: Chia-Min Yang, Ching-Yi Lin, Wei-Chia Huang, Li-Lin Chang
  • Patent number: 7648032
    Abstract: Disclosed herein are a method of reductively bleaching a mineral slurry comprising adding in the mineral slurry an effective amount of a formamidine sulfinic acid (FAS) and an effective amount of a borohydride to reductively bleach the mineral slurry, compositions comprising a mineral slurry, a FAS, and a borohydride, and final products comprising a mineral obtained by the method disclosed herein.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: January 19, 2010
    Assignee: Imerys Pigments, Inc.
    Inventors: Jun Yuan, Robert J. Pruett, Larry C. Powell
  • Publication number: 20100009195
    Abstract: A transparent porous SiO2 coating for a transparent substrate material, for example polycarbonate, has advantageous antireflective properties. The coating is produced by a sol-gel process, at least one component which causes porosity being present during at least part of the sol-gel process and being removed and/or destroyed after the sol-gel process has ended. The at least one component which causes porosity is a polymer, the average molar mass of the polymer being preferably =5000 Da to =50 000 Da, more preferably =10 000 Da to =20 000 Da.
    Type: Application
    Filed: September 26, 2007
    Publication date: January 14, 2010
    Inventors: Anett Berndt, Florian Eder, Hans-Dieter Feucht
  • Publication number: 20100003181
    Abstract: A method of forming on a substrate an amorphous silica-based coating film having a low dielectric constant of 3.0 or below and a film strength (Young's modulus) of 3.0 GPa or more, which comprises, as a typical one, the steps of; (a) coating on the substrate a liquid composition containing hydrolysate of an organic silicon compound or compounds hydrolyzed in the presence of tetraalkylammonium hydroxide (TAAOH); (b) setting the substrate in a chamber and then drying a coating film formed on the substrate at a temperature in the range from 25 to 340° C.; (c) heating the coating film at a temperature in the range from 105 to 450° C. with introduction of a superheated steam having such a temperature into the chamber, and (d) curing the coating film at a temperature in the range from 350 to 450° C. with introduction of a nitrogen gas into the chamber.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 7, 2010
    Applicant: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Miki Egami, Akira Nakashima, Michio Komatsu
  • Publication number: 20100003204
    Abstract: The invention discloses and claims a new class of chemical compositions with ideal sunscreen properties. The chemical composition comprises spherical particles between 200 nm and 10 microns in diameter prepared by an emulsion polymerization of tetraalkoxysilanes or organotrialkoxysilanes or organobridged trialkoxysilanes with a dye monomer bearing two or more alkoxysilyl groups attached to the bridging chromophore. The resulting spheres absorb ultraviolet light. The dye can be any organic chromophore capable of receiving multiple trialkoxysilyl groups resulting in multipoint covalent attachment that precludes leaching of the dye from the spheres. The formic acid-toluene-monomer emulsion polymerization allows for large-scale (>100 gram) synthesis of monodisperse particles under acidic, non-aqueous conditions without surfactants. The particles less than 1 micron in diameter are smooth as talc to the touch and will provide a smooth formulation for sunscreen creams or lotions.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 7, 2010
    Applicant: Energy Materials Corporation
    Inventors: Douglas Anson Loy, Kenneth J. Shea, Dylan J. Boday, Jason T. Wertz
  • Publication number: 20100003182
    Abstract: Pelletized silica particles characterized by a round shape and a monomodal particle size distribution are produced by dispersing silica particles into water, adding water to the dispersion, mixing with alkoxisilane, pouring the mixture into an organic solvent, filtering and washing the silica particles obtained. The pelletized silica particles can be used to produce glass monoliths.
    Type: Application
    Filed: May 31, 2007
    Publication date: January 7, 2010
    Inventors: Lorenzo Costa, Björn Braun
  • Patent number: 7638108
    Abstract: Silicon-containing products, such as silicon, silicon carbide and silicon nitride, containing less than 0.01 weight percent total mineral impurities and selectively determined carbon-to-silicon ratios. The products are derived from plant matter, such as rice hulls and rice straw, containing at least three weight percent silica. Methods are provided for making such high purity silicon-containing products by leaching silica-containing plant matter with aqueous sulfuric acid under controlled temperatures, pressures and reaction times to remove minerals and metals while adjusting the mole ratio of fixed carbon to silica, and then thermally treating under controlled conditions to produce the desired product.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: December 29, 2009
    Assignee: Si Options, LLC
    Inventors: Norman D. Hinman, Charles E. Wyman
  • Publication number: 20090311159
    Abstract: Fumed silica for use as auxiliary substance in pharmaceutical and cosmetic compositions, which has—a BET surface area of 90 to 400 m2/g—a content of As, Cd, Cr, Pb, Sb and Se of less than 1 ppm for each elements and less than 5 ppm of Hg, all elements determined by Inductively Coupled Plasma—Atomic Emission Spectroscopy (ICP-AES) or Atomic Absorption Spectroscopy (AAS).
    Type: Application
    Filed: July 4, 2007
    Publication date: December 17, 2009
    Applicant: EVONIK DEGUSSA GmbH
    Inventor: Ann Gray
  • Publication number: 20090301350
    Abstract: Use of pyrogenic metal oxide for the manufacture of a selfcompacting composition comprising hydraulic binders and having high early strength, the composition comprising at least one hydraulic binder and water as further constituents and the product of the BET surface area, in m2/g, of the pyrogenic metal oxide and the proportion by weight of the pyrogenic metal oxide based on the hydraulic binder being 20 to 200 m2/100 g of hydraulic binder.
    Type: Application
    Filed: March 12, 2007
    Publication date: December 10, 2009
    Applicant: Evonik Degussa Gmbh
    Inventors: Christoph Tontrup, Reinhard Trettin, Michael Geyer
  • Publication number: 20090301879
    Abstract: A protective coating sustains the long term performance of a solid-state hydrogen sensor that includes a catalyst layer for promoting the electrochemical dissociation of hydrogen. The catalyst is susceptible to deterioration in the presence of at least one contaminant, including carbon monoxide, hydrogen sulfide, chlorine, water and oxygen. The coating comprises at least one layer of silicon dioxide having a thickness that permits hydrogen to diffuse to the catalyst layer and that inhibits contaminant(s) from diffusing to the catalyst layer. The preferred coating further comprises at least one layer of a hydrophobic composition, preferably polytetrafluoroethylene, for inhibiting diffusion of water through the protective coating to the catalyst layer. The preferred protective coating further comprising at least one layer of alumina for inhibiting diffusion of oxygen through the protective coating to said catalyst layer.
    Type: Application
    Filed: April 6, 2009
    Publication date: December 10, 2009
    Inventors: Prabhu Soundarrajan, An T. Nguyen Le, Todd E. Wilke
  • Patent number: 7629391
    Abstract: The instant invention relates to a process for the preparation of an aqueous suspension of anionic colloidal silica having a neutral pH which is stable over time and comprises individualized particles of colloidal silica which are not bound to one another by siloxane bonds. The instant suspensions show high storage stability and are particularly useful for the clarification of beer, for the preparation of cosmetic formulations, for the production of ink for printers, for paints and for anticorrosive treatments.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: December 8, 2009
    Assignee: AZ Electronic Materials USA Corp.
    Inventors: Eric Jacquinot, Marie-Laure Perard, Uwe Falk, Torsten Henning
  • Patent number: 7628971
    Abstract: The present invention relates to a highly dispersible silica which has a high surface area, a process to manufacture the aforesaid silica and its use as a tire filler for utility vehicles, motor cycles and high speed vehicles.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: December 8, 2009
    Assignee: Degussa AG
    Inventors: Oleg Stenzel, Stefan Uhrlandt, Hans-Detlef Luginsland, Andre Wehmeier
  • Patent number: 7622189
    Abstract: Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Edward B. Ripley, Roland D. Seals, Jonathan S. Morrell
  • Patent number: 7618608
    Abstract: An ambient pressure, low cycle time method for the synthesis and manufacture of a low cost, highly insulting, highly translucent, and low density transition metal-based hydrophilic and hydrophobic nanogel. The important aspects are the method of synthesis, the stage of imparting hydrophobicity, and the process of manufacture. The method comprises the steps of mixing a chilled precursor solution with a chilled catalyst solution such that the mixture has a pH of between 9.5 and 12.2. The mixture is maintained at a temperature of 34° F.-55° F. for between 1 and 120 minutes to form a gel. The gel is silated the gel for about 120 minutes, washed in a wash fluid, then dried and annealed to form the aerogel.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: November 17, 2009
    Assignee: Keller Companies, Inc.
    Inventor: Robert R. Keller, Sr.
  • Patent number: 7615201
    Abstract: By using a halogen-free siloxane and an organometallic compound containing at least one metal other than silicon as feed stocks, and simultaneously atomizing and burning them in a flame, spherical particles of silica-containing compound oxide are prepared which are substantially halogen-free, consist of 0.5-99% by weight of metal oxides and the balance of silica, and have a particle size of 10 nm to 3 ?m. The particles are useful as a filler in epoxy resin base semiconductor sealants, a refractive index modifier or the like.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: November 10, 2009
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiharu Konya, Koichiro Watanabe, Susumu Ueno
  • Patent number: 7615206
    Abstract: Methods for the production of shaped nanoscale-to-microscale structures, wherein a nanoscale-to-microscale template is provided having an original chemical composition and an original shape, and the nanoscale-to-microscale template subjected to a chemical reaction, so as to partially or completely convert the nanoscale-to-microscale template into the shaped nanoscale-to-microscale structure having a chemical composition different than the original chemical composition and having substantially the same shape as the original shape, being a scaled version of the original shape. The shaped nanoscale-to-microscale structure formed comprises an element (such as silicon), a metallic alloy (such as a silicon alloy), or a non-oxide compound (such as silicon carbide or silicon nitride).
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: November 10, 2009
    Assignee: Georgia Tech Research Corporation
    Inventors: Kenneth Henry Sandhage, Zhihao Bao
  • Patent number: 7611815
    Abstract: An external additive for a toner for electrophotography which contains oxide fine particles which contain silicon, in which the oxide fine particles have a primary particle diameter of 30 nm to 300 nm in number average, a standard deviation ? of a particle size distribution of the primary particle diameter satisfies a relation of: R/4???R, in which the R expresses the primary particle diameter, the oxide fine particles are substantially spherical having a circularity SF1 defined as equation (1) of 100 to 130 and a circularity SF2 defined as equation (2) of 100 to 125; SF1=(L2/A)×(?/4)×100??equation (1) SF2=(P2/A)×(1/4?)×100??equation (2), in the equations, “L” expresses the absolute maximum length of the oxide fine particles; “A” expresses a projected area of the oxide fine particles; and “P” expresses a maximum perimeter of the oxide fine particles.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: November 3, 2009
    Assignee: Ricoh Company, Ltd.
    Inventors: Hideki Sugiura, Satoshi Mochizuki, Kazuhiko Umemura, Shinya Nakayama, Yasuo Asahina
  • Patent number: 7608234
    Abstract: Precipitated silicas useful, for example, as fillers in elastomer mixtures or vulcanizates have a particularly broad pore size distribution of the pores with a pore diameter smaller than that of the maximum of the derivative of the pore volume distribution function, and have simultaneously very low microporosity and high rubber activity.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: October 27, 2009
    Assignee: Degussa AG
    Inventors: Oleg Stenzel, Hans-Detlef Luginsland, Stefan Uhrlandt, Andre Wehmeier
  • Publication number: 20090261301
    Abstract: A silicon single crystal is produced by the CZ process by setting a hydrogen partial pressure in an inert atmosphere within a growing apparatus to 40 Pa or more but 400 Pa or less, and by growing a trunk part of the single crystal as a defect-free area free from the Grown-in defects. Therefore, a wafer the whole surface of which is composed of the defect-free area free from the Grown-in defects and which can sufficiently and uniformly form BMD can be easily produced. Such a wafer can be extensively used, since it can significantly reduce generation of characteristic defectives of integrated circuits to be formed thereon and contribute for improving the production yield as a substrate responding to the demand for further miniaturization and higher density of the circuits.
    Type: Application
    Filed: May 15, 2009
    Publication date: October 22, 2009
    Inventors: Toshiaki Ono, Wataru Sugimura, Masataka Hourai
  • Publication number: 20090257939
    Abstract: [Problems] To provide a treatment method having excellent purification effect, in which impurities having high ionicity in a silica powder can be removed in a short time, a apparatus thereof, and a purified silica powder. [Means for Solving the Problems] A purification method of a silica powder comprises: making a silica powder into a fluid state; contacting a purified gas to the silica powder in the fluid state at high temperature; and thereby removing impurity components of the silica powder. In the method, the silica powder in the fluid state is positioned in a magnetic field region. Further, the silica powder is contacted with the purified gas, while applying voltage to the silica powder by an electric field generated by moving of the silica powder. Preferably, the silica powder in a fluid state is positioned in the magnetic region of 10 gausses or more, and contacted with the purification gas at a temperature of 1000° C. or more.
    Type: Application
    Filed: October 25, 2006
    Publication date: October 15, 2009
    Applicant: JAPAN SUPER QUARTZ CORPORATION
    Inventors: Minoru Kanda, Yoshiyuki Tsuji
  • Publication number: 20090252956
    Abstract: The present invention relates to dew resistant coatings and articles having the dew resistant coating adhered thereto. The dew resistant coatings comprise elongate silica particles. These coatings are useful on articles or surfaces used in outdoor applications and articles and surfaces used in moist indoor environments.
    Type: Application
    Filed: January 30, 2009
    Publication date: October 8, 2009
    Applicant: AVERY DENNISON CORPORATION
    Inventors: Pradeep S. IYER, Liviu DINESCU, Chia-Hsi CHU, Le Hoa HONG, Kai Li
  • Publication number: 20090238747
    Abstract: The invention relates to a method for producing (semi)metal oxides and hydroxides, such as Si02, Ti02, Zr02, Zn0 and other (semi)metal salts such as BaSO4, which can be produced by emulsion precipitation in the form of nanoparticles from an aqueous solution. The invention also relates to the use of the same.
    Type: Application
    Filed: November 11, 2005
    Publication date: September 24, 2009
    Inventors: Matthias Koch, Ralf Anselmann
  • Publication number: 20090230351
    Abstract: There is provided particulate silica which can be suitably used as a viscoelasticity modifier such as a thickener which is added to liquid such as water, a liquid resin or paint to adjust its viscoelastic properties such as viscosity and thixotropic nature, a reinforcer or filler for silicone rubber or sealants, a polishing agent for CMP (Chemical Mechanical Polishing) or a surface coating agent for ink-jet printing paper. The particulate silica has a BET specific surface area S of 130 to 380 m2/g, and its fractal shape parameter ?1 in an ?-value analysis target range of 20 to 30 nm satisfies the following equation (1) and its fractal shape parameter ?2 in an ?-value analysis target range of 30 to 50 nm satisfies the following equation (2). ?1+0.00175S<2.518??(1) ?2+0.00174S<2.
    Type: Application
    Filed: May 19, 2005
    Publication date: September 17, 2009
    Inventors: Yasuhiro Nagatani, Ryuji Ishimoto, Masao Ariyuki
  • Publication number: 20090232721
    Abstract: A sintered silicon oxide for film vapor deposition having a density of 1.0 to 2.0 g/cm3, three-point flexural strength of at least 50 g/mm2, and a BET specific surface area of 0.1 to 20 m2/g is provided. When this sintered silicon oxide is used for evaporation source of a film, pin holes and other defects of the film caused by the problematic splash phenomenon can be reliably prevented and stable production of a reliable package material having excellent gas barrier property is been enabled. This invention also provides a method for producing such sintered silicon oxide, and this method can be used in a large scale production without requiring any special technology, and therefore, this method is capable of supplying the market with the sintered silicon oxide at reduced cost.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 17, 2009
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hirofumi FUKUOKA, Meguru Kashida, Toshio Ohba
  • Patent number: 7585480
    Abstract: A highly pure ultra-fine SiOx (wherein x is from 0.6 to 1.8) powder having a specific surface area of at least 10 m2/g and a total content of Na, Fe, Al and Cl of at most 10 ppm is provided. The SiOx powder is produced by reacting a monosilane gas with a gas capable of oxidizing the monosilane gas in a non-oxidizing gas atmosphere under a pressure of from 10 to 1000 kPa at a temperature of from 500 to 1000° C. In this case, the amount of the non-oxidizing gas is preferably larger than the total amount of the monosilane gas and oxygen participating in the oxidation of the gas capable of oxidizing the monosilane gas.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: September 8, 2009
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Yasuo Imamura, Ryozo Nonogaki
  • Patent number: 7585481
    Abstract: The invention provides apparatus and a method for exothermic treatment of feed material to provide an ash. The apparatus includes a housing extending about a central axis and having first and second ends, and a central mixing zone adjacent the first end. A material intake carries the feed material into the housing and gas enters through a first gas inlet at the first end through guides to create an inner vortex extending axially about said axis and the gas then follows an outer vortex which also extends axially but in the opposite direction from that of the inner vortex. However the inner and outer vortices rotate in the same direction. A gas outlet is positioned to receive spent gas from the housing and an ash outlet is positioned remotely from the mixing zone to receive the ash. If preferred, the position of the ash outlet may be incorporated into the gas outlet. A control system is provided to limit the temperature in the feed material in the housing.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: September 8, 2009
    Assignee: Mortimer Technology Holdings Limited
    Inventor: Christopher E. Dodson
  • Publication number: 20090218042
    Abstract: Described are methods and chemistries for preparing firepolished quartz parts for use in semiconductor processing. The quartz parts in need of preparation include newly manufactured parts as well as parts requiring refurbishment after previous use in semiconductor processing. The embodiments described avoid methods and chemistries that may damage the surfaces of the quartz parts and render the parts unfit for use in semiconductor processing. A method in accordance with one embodiment minimizes damage by limiting exposure of the quartz parts to hydrofluoric acid. A quartz part for use in semiconductor processing comprises a surface including a surface portion having a surface portion area to expose to a gas, wherein at least 95 percent of the surface portion area is free of defects and wherein the surface portion has less than E12 atoms per centimeter squared of aluminum.
    Type: Application
    Filed: May 12, 2009
    Publication date: September 3, 2009
    Applicant: Quantum Global Technologies, LLC.
    Inventors: David S. Zuck, Gregory H. Leggett
  • Publication number: 20090220791
    Abstract: A method of preparing mesoporous inorganic oxide spherical particles includes providing a reaction mixture capable of producing mesoporous inorganic oxide spheres; heating the reaction mixture to produce mesostructured inorganic oxide particles and removing organic material from the mesostructured inorganic oxide particles to form the mesoporous inorganic oxide spherical particles. In one embodiment a reaction mixture includes a proton donor, a source of inorganic oxide, and a source of fluoride. In another embodiment a reaction mixture includes a proton donor, a source of inorganic oxide, and an alcohol. Mesoporous inorganic oxide spheres produced by the method of the present invention are also provided.
    Type: Application
    Filed: May 6, 2009
    Publication date: September 3, 2009
    Applicant: The University of Vermont and State Agricultural College
    Inventors: Christopher C. Landry, Terry W. Nassivera
  • Patent number: 7582278
    Abstract: The invention relates to a microporous crystalline zeolite material which, in the calcined state and in the absence of defects in the crystalline lattice thereof, manifested by the presence of silanols, has empirical formula x(M1/nXO2):yYO2:SiO2, in which M is selected from among H+, at least one inorganic cation with charge +n and a mixture of both; X is at least one chemical element in oxidation state +3; Y is at least one chemical element in oxidation state +4, which is different from Si, x has a value of between 0 and 0.2 inclusive, and y has a value of between 0 and 0.1 inclusive. In addition, as it is synthesised, and in the calcined state, the material has a characteristic X-ray diffraction pattern known as ITQ-32. The invention also relates to the method of preparing said material and to the use thereof.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: September 1, 2009
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canós, Ángel Cantín Sanz, Fernando Rey García, Susana Valencia Valencia, Sandra Leiva Herrero
  • Publication number: 20090215096
    Abstract: A colloidal silica particle containing a light-absorbing substance, comprising a colloidal silica particle and a light-absorbing substance distributed over the colloidal silica particle, wherein the light-absorbing substance is chemically bound to or adsorbed on a silica component.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 27, 2009
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hideki Aizawa, Michio Ohkubo
  • Patent number: 7576035
    Abstract: A pillar-shaped honeycomb structure has a plurality of cells longitudinally placed in parallel with one another with a wall portion therebetween, wherein the honeycomb structure mainly includes inorganic fibers which form the honeycomb structure without lamination interfaces.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: August 18, 2009
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Tomokazu Oya
  • Publication number: 20090202834
    Abstract: Inorganic compound particles constituted of a shell, a porous matter or a cavity enclosed therein, and the porous matter or the cavity being kept unchanged in a subsequently formed transparent coating film.
    Type: Application
    Filed: April 20, 2009
    Publication date: August 13, 2009
    Applicant: JGC Catalysts and Chemicals Ltd.
    Inventors: Toshiharu HIRAI, Hiroyasu NISHIDA, Michio KOMATSU
  • Patent number: 7572424
    Abstract: This disclosure describes a self-assembly templating of a cationic surfactant in the presence of a silica precursor that is free of an excessive variability of the assembled shapes and has a yield approaching one hundred percent. This disclosure describes a self-assembly process that includes cooling and keeping a resultant solution at cold temperatures during the synthesis.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: August 11, 2009
    Assignee: Clarkson University
    Inventors: Igor Sokolov, Yaroslav Kievsky
  • Patent number: 7572433
    Abstract: The invention concerns a process for the extraction of acid or basic oxides contained in a vegetal matter, more specifically it concerns the extraction of silica from rice husks. The invention also concerns pure oxides extracted from vegetal matter. The invention also concerns the process for the extraction of carbon-rich oxide compositions from vegetal matter, and compositions obtained through said process.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: August 11, 2009
    Assignee: Fundacao de Amparo A Pesquisa Do Estado de Sao Paulo
    Inventors: Milton F. De Souza, Paulo Dos Santos Batista, Jefferson B. L. Liborio
  • Publication number: 20090196929
    Abstract: New methods of treating silica wetcake during precipitated silica materials manufacturing are provided. Such methods permit a significant increase in high solids content processing while simultaneously reducing high viscosity of the resultant particles for transport facilitation. The resultant precipitated silica wetcake is treated with a borate-containing dispersant to impart the necessary low viscosity characteristics thereto. Such a dispersant accords not only such a viscosity result, but will not char or otherwise discolor the silica particles during evaporation of the liquids within the wetcake itself. Furthermore, such a dispersant, if left on the surfaces of such particles, will not deleteriously affect the abrasivity, fluoride compatibility, or other dentifrice properties of the precipitated silica materials themselves. Also encompassed within this invention are the resultant precipitated silica particles exhibiting borate residues and dentifrices including such materials.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 6, 2009
    Applicant: J.M. HUBER CORPORATION
    Inventors: Duen-Wu Hua, Michael William Mullahey, JR.
  • Patent number: 7566433
    Abstract: Precipitated silicas which have a broad pore size distribution of the pores with a pore diameter smaller than that of the maximum of the derivative of the pore volume distribution function are useful, for example, for tires.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: July 28, 2009
    Assignee: Degussa AG
    Inventors: Oleg Stenzel, Anke Blume, Hans-Detlef Luginsland, Ralf Schmoll, Herbert Thoma, Stefan Uhrlandt, Andre Wehmeier
  • Patent number: 7563317
    Abstract: Silanised, structurally modified silicas, characterised by groups fixed on the surface, the groups being alkylsilyl (SiCnH2n+1, with n=2-18). They are produced in that pyrogenically produced silicas are treated with the silanising agent and structurally modified. They are used to improve scratch resistance in lacquers.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: July 21, 2009
    Assignee: Degussa AG
    Inventors: Jürgen Meyer, Stephanie Frahn, Manfred Ettlinger
  • Publication number: 20090181241
    Abstract: The invention relates to instant drying glossy ink jet media made by using a sub-micron silica coating and a calendering process, preferably a supercalendering process.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 16, 2009
    Inventor: Yaoliang Hong