Treating Carbon Patents (Class 423/460)
  • Patent number: 7939047
    Abstract: The present invention is directed to methods of separating carbon nanotubes (CNTs) by their electronic type (e.g., metallic, semi-metallic, and semiconducting). Perhaps most generally, in some embodiments, the present invention is directed to methods of separating CNTs by bandgap, wherein such separation is effected by interacting the CNTs with a surface such that the surface interacts differentially with the CNTs on the basis of their bandgap, or lack thereof. In some embodiments, such methods can allow for such separations to be carried out in bulk quantities.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: May 10, 2011
    Assignee: William Marsh Rice University
    Inventors: James M. Tour, Christopher A. Dyke, Austen K. Flatt
  • Publication number: 20110104553
    Abstract: A lithium- or lithium-ion electrochemical cell of the present invention comprises a lithium-containing cathode, an anode, and a non-aqueous lithium-containing electrolyte therebetween; wherein one or more of the anode and the cathode comprises at least one particulate carbon-containing material selected from the group consisting of one or more carbon-coated metal oxide or metal phosphate particles, carbon-containing metals that alloy with Li, carbon-containing metalloids that alloy with Li, or rounded carbon particles such as carbon spheres, prolate-shaped spheroids, oblate-shaped spheroids, and carbon nanotubes. In a preferred embodiment, the particulate carbon material is prepared by reacting one or more solid, solvent-free chemical precursor materials comprising the elements making up the material in an enclosed autogenic pressure reactor in which the precursor materials are dissociated and reacted at elevated temperature, thereby creating self-generated pressure within the reactor.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 5, 2011
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Vilas G. POL, Swati V. POL, Michael M. THACKERAY
  • Patent number: 7931884
    Abstract: Methods and processes for preparing interconnected carbon single-walled nanotubes (SWNTs) are disclosed. The SWNTs soot, synthesized by any one of the art methods, is heated to less than about 1250° C. in flowing dry air using the electrical field (E) component of microwave energy. The tubes of the SWNTs thus treated become welded and interconnected.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 26, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Avetik Harutyunyan
  • Patent number: 7931885
    Abstract: A method of fabricating carbon nanotube complex is disclosed, which comprises, (A) dispersing carbon nanotubes in a solvent; (B) adding a filler to the above solution to give a precursor solution; (C) performing light illumination on the precursor solution; (D) washing the solution after light exposure; and (E) drying to evaporate the solvent contained in the solution. Therefore, the carbon nanotube complex of the present invention is obtained.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: April 26, 2011
    Assignees: Tatung University, Tatung Company
    Inventors: Hong-Ming Lin, Wei-Syuan Lin, Wei-Jen Liu, Cheng-Han Chen
  • Patent number: 7897131
    Abstract: The present invention relates to a method for manufacturing a transition metal-carbon nanotube hybrid material using nitrogen as a medium. The present invention is characterized in that nitrogen-added carbon nanotube is grown in the presence of metal catalyst particles by reacting an hydrocarbon gas with a nitrogen gas by a chemical vapor deposition (CVD) and a transition metal-carbon nanotube hybrid material where a transition metal is uniformly attached to the entire carbon nanotube structure in which nitrogen with a great chemical reactivity is added as heterogeneous elements is chemically manufactured. Therefore, the present invention does not use an acid treatment required to attach transition-metal atoms to the carbon-nanotube, a surface treating process using a surfactant and the like and an inhibitor for preventing the coagulation of the transition metal so that a simplification of the process is obtained and the method is an environment-friendly method.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: March 1, 2011
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Seong-Ho Yang, Hyun-Seok Kim, Kyu-Sung Han, Se-Yun Kim, Jung-Woo Lee, Weon-Ho Shin, Jun-Hyeon Bae
  • Patent number: 7892514
    Abstract: Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: February 22, 2011
    Assignee: Nanotek Instruments, Inc.
    Inventors: Bor Z. Jang, Aruna Zhamu
  • Publication number: 20110039184
    Abstract: A carbon nanosphere has at least one opening. The carbon nanosphere is obtained by preparing a carbon nanosphere and treating it with an acid to form the opening. The carbon nanosphere with at least one opening has higher utilization of a surface area and electrical conductivity and lower mass transfer resistance than a conventional carbon nanotube, thus allowing for higher current density and cell voltage with a smaller amount of metal catalyst per unit area of a fuel cell electrode.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Hyuk CHANG, Chan-ho PAK, Jian Nong WANG
  • Patent number: 7887774
    Abstract: The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: February 15, 2011
    Assignee: William Marsh Rice University
    Inventors: Michael S. Strano, Monica Usrey, Paul Barone, Christopher A. Dyke, James M. Tour, W. Carter Kittrell, Robert H Hauge, Richard E. Smalley, Irene Marie Marek, legal representative
  • Patent number: 7887773
    Abstract: A method for treating carbon nanotubes is provided. In the method for treating carbon nanotubes (CNTs), the CNTs are treated with SO3 gas at an elevated temperature, for example, at a temperature in the range of 385° C. to 475° C.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: February 15, 2011
    Assignee: Sony Corporation
    Inventors: Hisashi Kajiura, Yongming Li, Hongliang Zhang, Yunqi Liu, Lingchao Cao, Xianglong Li, Dacheng Wei, Yu Wang, Dachuan Shi
  • Patent number: 7879309
    Abstract: A method is disclosed whereby a functional nanomaterial such as a monolayer carbon nanotube, a monolayer boron nitride nanotube, a monolayer silicon carbide nanotube, a multilayer carbon nanotube with the number of layers controlled, a multilayer boron nitride nanotube with the number of layers controlled, a multilayer silicon carbide nanotube with the number of layers controlled, a metal containing fullerene, and a metal containing fullerene with the number of layers controlled is produced at a high yield. According to the method, when a multilayer carbon nanotube (3) is formed by a chemical vapor deposition or a liquid phase growth process, an endothermic reaction aid (H2S) is introduced in addition to a primary reactant (CH4, H2) in the process to form a monolayer carbon nanotube (4).
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 1, 2011
    Assignee: Japan Science and Technology Agency
    Inventors: Tadashi Mitsui, Takashi Sekiguchi, Mika Gamo, Yafei Zhang, Toshihiro Ando
  • Patent number: 7868333
    Abstract: Processes are provided for removing metal-based catalyst residues from carbon nanotubes by contacting the carbon nanotubes with an active metal agent and carbon monoxide.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: January 11, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Steven Dale Ittel
  • Publication number: 20110002839
    Abstract: Methods for producing devolatilized and/or activated carbon in a reactor or reaction vessel of a heat treatment system from a suitable carbonaceous feedstock by introducing the feedstock into the reactor tangentially at a rotational velocity of at least 90 RPM. The methods include the steps of providing a combination of conveying means and a gas flow having various compositions and creating distinct carbonaceous feedstock material flow patterns and process conditions such that the feedstock is conveyed through the reactor or reaction vessel and heated via combustion, thereby producing activated carbon or other heat-treated carbons while concurrently avoiding adverse reaction conditions. Single and two-stage heat treatment systems may be used to heat a carbon feedstock, to which one or more industrial minerals may be added to co-produce compositions such as lime with the heat-treated carbon.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 6, 2011
    Applicant: PNEUMATIC PROCESSING TECHNOLOGIES, L.L.C.
    Inventor: Michael A. Jones
  • Patent number: 7854914
    Abstract: The present invention relates to a method of solubilizing carbon nanotubes, to carbon nanotubes produced thereby and to uses of said carbon nanotubes.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: December 21, 2010
    Assignee: Sony Deutschland GmbH
    Inventors: William E. Ford, Jurina Wessels, Akio Yasuda
  • Patent number: 7850942
    Abstract: A method of making mesoporous carbon beads comprises steps of providing a nucleophilic component such as phenolic compound or phenol condensation prepolymer, dissolving the nucleophilic component in a pore former, together with at least one electrophilic cross-linking agent such as formaldehyde, paraformaldehyde, furfural and hexamethylene tetramine, dispersing the resulting solution into a mineral oil to form beads, condensing both the component and the agent in the presence of the pore former to form beads of porous resin, removing the beads from the mineral oil and carbonizing the beads to form mesoporous carbon beads.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: December 14, 2010
    Assignee: British American Tobacco (Investments) Ltd.
    Inventors: Stephen Robert Tennison, Oleksundr Prokopovych Kozynchenko, Volodymyr Vasyljovych Strelko, Andrew John Blackburn
  • Publication number: 20100310447
    Abstract: A composition of matter comprises a carbon-containing matrix. The carbon-containing matrix may comprise one or more carbon materials selected from the group comprising graphite crystalline carbon materials, carbon powder, carbon fibers, artificial graphite powder, and combinations thereof. In addition, the carbon-containing matrix comprises a plurality of pores. The composition of matter also comprises a reactive additive that is not a metal pressure disposed within at least a portion of the plurality of pores.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 9, 2010
    Applicant: Applied Nanotech, Inc.
    Inventors: Zvi Yaniv, Nan Jiang, James Novak
  • Patent number: 7842271
    Abstract: Carbon nanostructures are mass produced from graphite. In particularly preferred aspects, graphene is thermo-chemically derived from graphite and used in numerous compositions. In further preferred aspects, the graphene is re-shaped to form other nanostructures, including nanofractals, optionally branched open-ended SWNT, nanoloops, and nanoonions.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: November 30, 2010
    Inventor: Viktor I. Petrik
  • Patent number: 7842410
    Abstract: A solid acid including a carbon nanotube (CNT), a spacer group combined with the CNT and an ionically conductive functional group connected to the spacer group. A polymer electrolyte membrane may include the same composition, and may be used in a fuel cell. The polymer electrolyte membrane using the solid acid has excellent ionic conductivity and suppresses the cross-over of methanol. The polymer electrolyte membrane is used as an electrolyte membrane of a fuel cell, for example, a direct methanol fuel cell.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: November 30, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-gyu Lee, Sang-kook Mah, Myung-sup Jung, Young-gyoon Ryu, Jae-jun Lee, Do-yun Kim
  • Patent number: 7829055
    Abstract: A method of functionalizing nano-carbon materials with a diameter less than 1 ?m, comprising: contacting the nano-carbon materials with a free radical generating compound such as azo-compound in an organic solvent under an inert gas atmosphere, thereby obtaining nano-carbon materials with functional groups thereon. The physical and chemical properties of the nano-carbon materials can be modified through the aforementioned method.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: November 9, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Chrong-Ching Lee, Kuo-Chen Shih, Mei Hua Wang, Sui-Wen Ho, Shu-Jiuan Huang
  • Patent number: 7829056
    Abstract: Disclosed herein is a method of forming a guanidine group on carbon nanotubes to improve the dispersibility of carbon nanotubes, a method of attaching carbon nanotubes having guanidine groups to a substrate, and carbon nanotubes and a substrate manufactured by the above methods. The method of forming the guanidine group on the carbon nanotubes includes forming a carboxyl group on the carbon nanotubes, and forming the guanidine group on the carboxyl group of the carbon nanotubes. In addition, the method of attaching the carbon nanotubes having guanidine groups to the substrate includes coating a substrate with a polymer having crown ether attached thereto, drying the polymer layer having crown ether attached thereto formed on the substrate to be semi-dried, and coating the semi-dried polymer layer with a solution including carbon nanotubes having guanidine groups dispersed therein.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: November 9, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Hai Sung Lee
  • Patent number: 7824645
    Abstract: A high density carbon material produced from coal is described. The carbon material may have a density ranging from about 1.0 g/cc to about 1.6 g/cc and may have a crush strength of up to about 20,000 psi. The high density carbon material is produced by slowly heating comminuted swelling bituminous coal particles under pressures of 400 psi to about 500 psi to a first temperature at about the initial plastic temperature of the coal. The material is held at this temperature for a period of time sufficient to provide for a uniform temperature throughout the coal. The material is then heated to a second temperature for a period of time sufficient to provide for the coal achieving an essentially uniform temperature. The resulting product is a three-dimensional, self-supporting carbon that has a substantially continuous carbon matrix defining grain boundaries within the carbon matrix.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: November 2, 2010
    Assignee: Touchstone Research Laboratory, Ltd.
    Inventors: Dwayne R. Morgan, Rick D. Lucas
  • Patent number: 7820129
    Abstract: The invention relates to a method for producing carbon or HV graphite electrodes, in which a carbon carrier is mixed with a hydrocarbon-containing binder, and the mixture is subjected to a coking process and/or graphitization process, and one or more synthetic titanium compounds are additionally added to the raw materials. The titanium compound is preferably comprised of TiO2. Iron oxide can be added as an accompanying substance.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: October 26, 2010
    Assignee: Sachtleben Chemie GmbH
    Inventors: Djamschid Amirzadeh-Asl, Dieter Fünders
  • Publication number: 20100254888
    Abstract: An apparatus 1A for processing carbon nanotubes (CNTs) includes: a processing chamber 3 for housing to-be-processed liquid 2 with CNT raw material 5 to be fragmented being suspended in a solvent 4; and a pulse irradiation light source 10 for applying pulse light having a predetermined wavelength for fragmentation of the CNTs in the solvent 4 to the to-be-processed liquid 2 housed in the processing chamber 3. This achieves a method and apparatus for processing carbon nanotubes that can fragment CNTs efficiently, and carbon nanotube dispersion liquid and carbon nanotube powder produced by the same.
    Type: Application
    Filed: March 13, 2006
    Publication date: October 7, 2010
    Inventors: Tomonori Kawakami, Mitsuo Hiramatsu
  • Patent number: 7807127
    Abstract: The present invention relates to a carbon nanotube that contains nitrogen based functional groups (such as nitro, nitroso, N-oxide, oxime, hydroxylamine, diazo, azo, and azide) that are covalently attached to lattice carbons of the carbon nanotube, directly or via a chemical linker. The present invention also relates to methods for the preparation of the carbon nanotube from an amino-functionalized carbon nanotube via an amino oxidation reaction. The synthetic methods of the present invention allow the nitrogen based functional groups to be attached selectively to one of two distinct regions of the carbon nanotube, the ends or the sidewall, and thus enable the synthesis of a carbon nanotube having nitrogen based functional groups substantially concentrated on either the ends or the sidewall of the carbon nanotube.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: October 5, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Farhad Forohar, Craig Whitaker, William M. Koppes
  • Patent number: 7794683
    Abstract: The present invention relates to methods for the preparation of a carbon nanotube from an amino-functionalized carbon nanotube via an amino oxidation reaction. The carbon nanotube includes nitrogen based functional groups that are covalently attached to lattice carbons of the carbon nanotube, directly or via a chemical linker. The synthetic methods of the present invention allow the nitrogen based functional groups to be attached selectively to one of two distinct regions of the carbon nanotube, and thus enable the synthesis of a carbon nanotube having nitrogen based functional groups substantially concentrated on the ends and/or the sidewall of the carbon nanotube.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: September 14, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Farhad Forohar, Craig Whitaker, William M. Koppes
  • Patent number: 7785472
    Abstract: A method of separating, concentrating or purifying uniform carbon nanotubes with desired properties (diameter, chiral vector, etc) in a highly sensitive manner by the use of structure-sensitive properties peculiar to carbon nanotubes; and an apparatus therefor. There is provided a method of separating, concentrating, or purifying carbon nanotubes with the desired properties contained in a sample, comprising the steps of (a) irradiating a sample containing carbon nanotubes with light; and (b) selecting carbon nanotubes with desired properties. In a preferred embodiment, the light irradiation of the step (a) can be carried out in the presence of a metal so as to cause specified carbon nanotubes to selectively induce a photocatalytic reaction, resulting in metal deposition. Further, in a preferred embodiment, a given magnetic filed can be applied in the steps (b) so as to attain accumulation or concentration or carbon nanotubes with metal deposited.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: August 31, 2010
    Assignee: Japan Science and Technology Agency
    Inventor: Kei Murakoshi
  • Patent number: 7785557
    Abstract: A transparent and conductive film comprising at least one network of graphene flakes is described herein. This film may further comprise an interpenetrating network of other nanostructures, a polymer and/or a functionalization agent(s). A method of fabricating the above device is also described, and may comprise depositing graphene flakes in solution and evaporating solvent therefrom.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: August 31, 2010
    Assignee: Unidym, Inc.
    Inventors: George Gruner, David Hecht, Liangbing Hu
  • Patent number: 7785558
    Abstract: The present invention relates to a method of manufacturing a carbon nanostructure for growing crystalline carbon by vapor deposition from a crystal growth surface of a catalytic base including a catalytic material, and in particular, to a method of manufacturing a carbon nanostructure where at least two gases including a feedstock gas are brought into contact with the catalytic base simultaneously. Preferably, the at least two gases are constituted by at least one feedstock gas and at least one carrier gas. Preferably, the carrier gas is brought into contact with the crystal growth surface, and the feedstock gas is brought into contact with at least a part of a region except for the crystal growth surface with which the carrier gas has been brought into contact. Preferably, the material gas contains an ion, and further preferably, it contains a carbon ion.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: August 31, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Takeshi Hikata
  • Publication number: 20100214722
    Abstract: The present invention provides a process of producing an activated carbon for an electric double layer capacitor, which can produce easily and inexpensively an activated carbon free from fusing of carbon particles during activation and having a small diameter, a uniform particle diameter, and a relatively large specific surface area on a commercial scale. The process comprises the steps of calcining an easily graphitizable carbon material so that the reduction rates of the hydrogen/carbon atomic ratio (H/C) and the volatile components in the carbon material are 4 percent or more and 5 percent or more, respectively after calcination and activating the carbon material thereby producing an activated carbon for an electric double layer capacitor, having an average particle diameter of 0.5 to 7 ?m and a BET specific surface area of 1500 to 3000 m2/g.
    Type: Application
    Filed: July 3, 2008
    Publication date: August 26, 2010
    Applicant: NIPPON OIL CORPORATION
    Inventors: Masaki Fujii, Shinya Taguchi, Keizo Ikai, Hiroshi Kato, Kazuhiro Igarashi, Noriyuki Kiuchi, Tsutomu Nakamura, Kiwamu Takeshita
  • Patent number: 7771668
    Abstract: A vertical multi-stage fluidized bed apparatus including a plurality of horizontal perforated partitioning plates disposed therein so as to partition the apparatus is provided, wherein an upper horizontal perforated partitioning plate is set to have a larger aperture rate than a lower horizontal perforated partitioning plate. From a lower part of the apparatus, feed carbon and fluidizing gas are continuously supplied so as to provide a gas superficial velocity in the fluidized bed which is 2-4 times a minimum fluidizing velocity of the feed carbon, thereby subjecting the feed carbon to fluidization with the fluidizing gas and activation with steam at 750-950° C. simultaneously to discharge activated carbon continuously from an upper part of the apparatus. As a result, activated carbon of even a high degree of activation is produced at a high yield comparable to that obtained in a batchwise operation.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: August 10, 2010
    Assignee: Kureha Corporation
    Inventors: Hiroaki Ohashi, Yasuyoshi Yamanobe
  • Patent number: 7771695
    Abstract: Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotrubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: August 10, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Rudolf Tromp
  • Patent number: 7767183
    Abstract: Methods for the production of carbon foam from swelling coals that do not require the use of high process pressures, oxidized coal, devolatized coal, or high-strength, foam expansion confining molds are described. In some embodiments, a comminuted swelling bituminous coal is heated to a first elevated temperature sufficient to result in the coal particles softening and melting together to form a substantially homogeneous open cell plastic carbon material. The substantially homogeneous open cell plastic carbon material may then be heated to a second elevated temperature at a slow rate to form carbon foam. In some embodiments, the resulting carbon foam may be heated to a higher third elevated temperature. The resulting carbon foam may be subsequently heated to elevated temperatures as great as 3200° C. or more.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: August 3, 2010
    Assignee: Touchstone Research Laboratory, Ltd.
    Inventor: Thomas M. Matviya
  • Patent number: 7767186
    Abstract: A method for treating carbon nanotubes with microwave energy to selective remove metallic-type carbon nanotubes is provided. A sample containing carbon nanotubes is positioned in a microwave cavity at a location corresponding to a maximum in the electric field component of a stationary wave having a microwave frequency. The sample is exposed to the microwave energy for a sufficient period of time to increase the proportion of semiconducting-type carbon nanotubes within the sample. Alternatively, a sample consisting essentially of metallic-type and semiconducting-type carbon nanotubes is exposed to microwave energy for a sufficient period of time to increase the proportion of semiconducting-type carbon nanotubes within the sample.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: August 3, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Avetik Harutyunyan, Toshio Tokune
  • Patent number: 7763229
    Abstract: Disclosed are methods for isolating and purifying single wall carbon nanotubes from contaminant matrix material, methods for forming arrays of substantially aligned nanotubes, and products and apparatus comprising a plurality of nanotube structures.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: July 27, 2010
    Assignee: GB Tech, Inc.
    Inventors: Pavel Nikolaev, Sivaram Arepalli, Mark S. F. Clarke, Daniel L. Feeback
  • Publication number: 20100172818
    Abstract: A method of fabricating carbon nanotube complex is disclosed, which comprises, (A) dispersing carbon nanotubes in a solvent; (B) adding a filler to the above solution to give a precursor solution; (C) performing light illumination on the precursor solution; (D) washing the solution after light exposure; and (E) drying to evaporate the solvent contained in the solution. Therefore, the carbon nanotube complex of the present invention is obtained.
    Type: Application
    Filed: March 19, 2009
    Publication date: July 8, 2010
    Applicants: Tatung University, Tatung Company
    Inventors: Hong-Ming Lin, Wei-Syuan Lin, Wei-Jen Liou, Cheng-Han Chen
  • Patent number: 7744844
    Abstract: The present invention involves the interaction of radiation with functionalized carbon nanotubes that have been incorporated into various host materials, particularly polymeric ones. The present invention is directed to chemistries, methods, and apparatuses which exploit this type of radiation interaction, and to the materials which result from such interactions. The present invention is also directed toward the time dependent behavior of functionalized carbon nanotubes in such composite systems.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 29, 2010
    Assignee: William Marsh Rice University
    Inventors: Enrique V. Barrera, Richard Wilkins, Meisha Shofner, Merlyn X. Pulikkathara, Ranjii Vaidyanathan
  • Patent number: 7740826
    Abstract: A method for functionalizing the wall of single-wall or multi-wall carbon nanotubes involves the use of acyl peroxides to generate carbon-centered free radicals. The method allows for the chemical attachment of a variety of functional groups to the wall or end cap of carbon nanotubes through covalent carbon bonds without destroying the wall or endcap structure of the nanotube. Carbon-centered radicals generated from acyl peroxides can have terminal functional groups that provide sites for further reaction with other compounds. Organic groups with terminal carboxylic acid functionality can be converted to an acyl chloride and further reacted with an amine to form an amide or with a diamine to form an amide with terminal amine. The reactive functional groups attached to the nanotubes provide improved solvent dispersibility and provide reaction sites for monomers for incorporation in polymer structures. The nanotubes can also be functionalized by generating free radicals from organic sulfoxides.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: June 22, 2010
    Assignee: William Marsh Rice University
    Inventors: Valery N. Khabashesku, Haiqing Peng, John L. Margrave, Mary Lou Margrave, legal representative, Wilbur Edward Billups, Yunming Ying
  • Patent number: 7731931
    Abstract: This invention relates to adsorbents useful for storing hydrogen and other small molecules, and to methods for preparing such adsorbents. The adsorbents are produced by heating carbonaceous materials to a temperature of at least 900° C. in an atmosphere of hydrogen.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: June 8, 2010
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark Brandon Shiflett, Subramaniam Sabesan, Steven Raymond Lustig, Pratibha Laxman Gai
  • Patent number: 7727505
    Abstract: A method for separating carbon nanotubes comprises: providing a mixture of carbon nanotubes; introducing an organic molecule having an end group capable of being chelated by a metal ion to the mixture of carbon nanotubes to covalently bond the organic molecule to at least one of the mixture of carbon nanotubes; and introducing a metal salt to the mixture of carbon nanotubes to chelate the end group of the organic molecule with the metal ion of the metal salt; and centrifuging the mixture of carbon nanotubes to cause the separation of the carbon nanotubes based on a density differential of the carbon nanotubes.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ali Afazali-Ardakani, James B. Hannon, Cherie R. Kagan, George S. Tulevski
  • Patent number: 7704405
    Abstract: A mixture for heat storage devices has a phase change material and particulate expanded graphite. The material mixtures are produced by mixing phase change material and expanded graphite as powders or in molten form, and shaping the mixtures into shaped bodies.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: April 27, 2010
    Assignee: SGL Carbon SE
    Inventors: Oswin Öttinger, Jürgen Bacher
  • Patent number: 7700063
    Abstract: The invention relates to a method for dissolving carbon nanotubes consisting in reducing the nanotubes in such a way that the nanotubes which are negatively charged with positive counter-ions are obtainable. The invention is used, in particular for preparing compounds or carbon nanotubes films.
    Type: Grant
    Filed: December 24, 2004
    Date of Patent: April 20, 2010
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Alain Penicaud, Philippe Poulin, Alain Derre
  • Publication number: 20100092371
    Abstract: A method for preparing a carbon aerogel from agglomerated carbon nanotubes, includes the following steps: (A) preparing an aqueous dispersion of carbon nanotubes in water in the presence of a dispersing agent; (B) forming a foam from the nanotubes aqueous dispersion of step (A) by bulking under the action of a gas in the presence of a foaming agent; and (C) freezing the foam obtained in step (B) and removing the water by sublimation.
    Type: Application
    Filed: December 20, 2007
    Publication date: April 15, 2010
    Inventors: Renal Backov, Pierre Delhaes, Florent Carn, Celine Leroy
  • Publication number: 20100068125
    Abstract: A method of refining carbon parts for the production of polycrystalline silicon, comprises the steps of, replacing an inside gas of a reactor, in which the carbon parts are placed, with an inert gas, drying the carbon parts by raising a temperature in the reactor to a drying temperature of the carbon parts while flowing an inert gas through the reactor, raising a temperature in the reactor to a purification temperature higher than the drying temperature while flowing chlorine gas through the reactor, reducing a pressure in the reactor, maintaining the inside of the reactor in a reduced pressure, pressurizing the inside of the reactor by introducing chlorine gas for bringing the inside of the reactor into a pressurized state, and cooling the inside of the reactor.
    Type: Application
    Filed: September 15, 2009
    Publication date: March 18, 2010
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Mitsutoshi Narukawa, Kenichi Watabe
  • Patent number: 7674448
    Abstract: A method for manufacturing isotope-doped carbon nanotubes (10) includes the steps of: (a) providing a carbon rod (209), the carbon rod including at least two kinds of carbon isotope segments (202, 203) arranged therealong according to need; (b) providing a laser beam source positioned opposite to the carbon rod; and (c) irradiating the carbon rod with a laser beam (214), wherein the carbon isotope segments of the carbon rod are consumed sequentially to form the isotope-doped carbon nanotubes. Growth mechanisms of the isotope-doped carbon nanotubes manufactured by this method can be readily studied.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 9, 2010
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Shou-Shan Fan, Liang Liu
  • Patent number: 7670985
    Abstract: The invention provides an activated carbon supported cobalt based catalyst for directly converting of synthesis gas to mixed linear alpha-alcohols and paraffins, comprising cobalt, an activated carbon carrier, a metal promoter which is at least one selected from the group consisting of a zirconium component, a lanthanum component, a cerium component, a chromium component, a vanadium component, a titanium component, a manganese component, a rhenium component, a potassium component, a ruthenium component, a magnesium component and a mixture thereof, wherein the cobalt and the promoter are deposited on the activated carbon carrier or substantially uniformly dispersed therein, and the metal promoter is present in the form of a metal, an oxide or a combination thereof.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: March 2, 2010
    Assignees: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CNOOC New Energy Investment Co., Ltd.
    Inventors: Yunjie Ding, Hejun Zhu, Tao Wang, Guiping Jiao, Yuan Lv
  • Publication number: 20100047154
    Abstract: Disclosed is a method for fabricating graphene ribbons, comprising: preparing a graphitic material comprising stacked graphene helices; and cutting the graphitic material in a short form by applying energy to the graphitic material; and simultaneously or afterward, decomposing the graphitic material into short graphene ribbons. This method provides a mass production route to graphene ribbons.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 25, 2010
    Inventors: Jae-Kap LEE, So- Hyung LEE, Wook-Seong LEE
  • Publication number: 20100044646
    Abstract: The present invention provides a process for producing pristine or non-oxidized nano graphene platelets (NGPs) that are highly conductive. The process comprises: (i) subjecting a graphitic material to a supercritical fluid at a first temperature and a first pressure for a first period of time in a pressure vessel and then (ii) rapidly depressurizing the fluid at a fluid release rate sufficient for effecting exfoliation of the graphitic material to obtain the NGP material. Conductive NGPs can be used as a conductive additive in transparent electrodes for solar cells or flat panel displays (e.g., to replace expensive indium-tin oxide), battery and supercapacitor electrodes, and nanocomposite for electromagnetic wave interference (EMI) shielding and static charge dissipation, etc.
    Type: Application
    Filed: August 25, 2008
    Publication date: February 25, 2010
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20100034726
    Abstract: Process for producing activated carbon having a high catalytic activity, in which a carbonaceous material is brought into contact with nitrogen compounds, wherein the carbonaceous material is partially gasified with a mixture of steam, nitrogen and CO2 at temperatures above 800° C. in a manner known per se in a multistage fluidised bed and wherein a nitrogen compound is added into the furnace and/or at least one stage of the multistage fluidised bed.
    Type: Application
    Filed: September 13, 2007
    Publication date: February 11, 2010
    Applicant: CARBOTECH AC GMBH
    Inventors: Klaus-Dirk Henning, Wolfgang Bongartz, Nicolai Daheim, Thomas Scharf
  • Publication number: 20100014216
    Abstract: In a method of manufacturing a porous coke suitable as a charge-storing material in electrochemical capacitors, one manufactures or provides a non-calcined isotropic coke with spherical or onion-shaped morphology and low graphitizability as a starting material. The starting material is comingled with a caustic alkali to obtain a homogenous mixture. The homogenous mixture is heat treated at a temperature in a range between 650 and 950° C. to obtain the porous coke. The porous coke is washed and neutralized.
    Type: Application
    Filed: August 17, 2009
    Publication date: January 21, 2010
    Applicant: SGL CARBON SE
    Inventors: Martin Cadek, Wilhelm Frohs, Mario Wachtler
  • Publication number: 20100009204
    Abstract: A carbon fiber composite material includes an elastomer and carbon nanofibers uniformly dispersed in the elastomer. The carbon nanofibers are produced by a vapor growth method and then heated at a temperature that is in a range from 1100 to 1600° C. and is higher than the reaction temperature employed in the vapor growth method.
    Type: Application
    Filed: December 2, 2008
    Publication date: January 14, 2010
    Applicants: NISSIN KOGYO CO., LTD., MEFS KABUSHIKI KAISHA
    Inventors: Toru NOGUCHI, Hiroyuki UEKI, Satoshi IINOU, Kenji TAKEUCHI
  • Publication number: 20090317320
    Abstract: A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity g
    Type: Application
    Filed: May 14, 2008
    Publication date: December 24, 2009
    Applicant: ENERGY & ENVIRONMENTAL RESEARCH CENTER
    Inventors: Srivats SRINIVASACHAR, Steven BENSON, Charlene CROCKER, Jill MACKENZIE