Group Ivb Metal (ti, Zr, Or Hf) Patents (Class 423/608)
  • Publication number: 20130251608
    Abstract: The present disclosure relates to insulation components and their use, e.g., in regenerative reactors. Specifically, a process and apparatus for managing temperatures from oxidation and pyrolysis reactions in a reactor, e.g., a thermally regeneratating reactor, such as a regenerative, reverse-flow reactor is described in relation to the various reactor components.
    Type: Application
    Filed: January 14, 2013
    Publication date: September 26, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: ChangMin Chun, Frank Hershkowitz, Paul F. Keusenkothen, Robert L. Antram
  • Patent number: 8535633
    Abstract: Process for the production of doped metal oxide particles, wherein the doping component is present on the surface in the form of domains, wherein in a first reaction zone, an oxidizable and/or —hydrolysable metal compound as dopant together with an atomization gas is atomized into a flow of metal oxide particles in a carrier gas, wherein the mass flow of the metal oxide particles und —the mass flow of the dopant are selected such that the doped metal oxide particles contain 10 ppm to 10 wt.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: September 17, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Kai Schumacher, Rainer Golchert, Helmut Roth, Harald Alff, Matthias Rochnia
  • Patent number: 8535816
    Abstract: There are provided a fine structural body capable of manifesting an unprecedented property; a manufacturing method thereof; and a magnetic memory, a charge storage memory and an optical information recording medium employing such fine structural body. Unlike conventional bulk bodies phase-transited between nonmagnetic semiconductors and paramagnetic metals around about 460K, there can be provided a fine structural body 1 comprised of Ti3O5, but capable of manifesting an unprecedented property in which a paramagnetic metal property thereof is consistently maintained in all temperature ranges without undergoing phase transition to a nonmagnetic semiconductor.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: September 17, 2013
    Assignee: The University of Tokyo
    Inventors: Shin-ichi Ohkoshi, Yoshihide Tsunobuchi, Hiroko Tokoro, Fumiyoshi Hakoe, Kazuhito Hashimoto
  • Publication number: 20130220178
    Abstract: The current invention relates to a method of making metal oxide nanoparticles comprising the reaction of—at least one metal oxide precursor (P) containing at least one metal (M) with—at least one monofunctional alcohol (A) wherein the hydroxy group is bound to a secondary, tertiary or alpha-unsaturated carbon atom—in the presence of at least one aliphatic compound (F) according to the formula Y1—R1—X—R2—Y2, wherein—R1 and R2 each are the same or different and independently selected from aliphatic groups with from 1 to 20 carbon atoms, —Y1 and Y2 each are the same or different and independently selected from OH, NH2 and SH, and —X is selected from the group consisting of chemical bond, —O—, —S—, —NR3—, and CR4R5, wherein R3, R4 and R5 each are the same or different and represent a hydrogen atom or an aliphatic group with from 1 to 20 carbon atoms which optionally carries functional groups selected from OH, NH2 and SH.
    Type: Application
    Filed: October 7, 2010
    Publication date: August 29, 2013
    Applicant: Justus-Liebig-Universitat Giessen
    Inventors: Roman Zieba, Alexander Traut, Cornelia Röger-Göpfert, Torsten Brezesinski, Bernadette Landschreiber, Claudia Grote, Georg Garnweitner, Alexandra Seeber, Bernd Smarsly, Christoph Wiedmann, Till von Graberg, Jan Haetge
  • Patent number: 8518367
    Abstract: A method of producing a titanium oxide, including the steps of: ion-exchanging a sodium titanium oxide Na2Ti6O13, to synthesize Li2Ti6O13; subjecting Li2Ti6O13 to proton exchange, to give H2Ti6O13; and subjecting H2Ti6O13, as a starting material, to a heat treatment.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 27, 2013
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Junji Akimoto, Kunimitsu Kataoka, Akemi Kawashima, Hiroshi Hayakawa
  • Patent number: 8512663
    Abstract: In one aspect, the invention includes a refractory material for a pyrolysis reactor for pyrolyzing a hydrocarbon feedstock, the refractory material comprising an yttria stabilized zirconia, the refractory material comprising at least 21 wt. % yttria based upon the total weight of the refractory material. In another aspect, this invention includes a method for mitigating carbide corrosion while pyrolyzing a hydrocarbon feedstock at high temperature using a pyrolysis reactor system comprising the steps of: (a) providing a pyrolysis reactor system comprising stabilized zirconia in a heated region of the reactor, the stabilized zirconia including at least 21 wt. % yttria and having porosity of from 5 vol. % to 28 vol. %; (b) heating the heated region to a temperature of at least 1500° C.; and (c) pyrolyzing a hydrocarbon feedstock within the heated region.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: August 20, 2013
    Assignee: ExxonMobile Chemical Patents Inc.
    Inventors: ChangMin Chun, Frank Hershkowitz
  • Patent number: 8501825
    Abstract: Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: August 6, 2013
    Inventors: Jack L. Collins, Rodney D. Hunt, Frederick C. Montgomery
  • Publication number: 20130190164
    Abstract: A sintering composition and calcined object which are precursors for a sintered zirconia. The burned surface of the sintered zirconia gives an X-ray diffraction pattern in which the ratio of the height of the peak present around the location where a [200] peak assigned to the cubic system is to appear to the height of the peak present around the location where a [200] peak assigned to the tetragonal system is to appear is 0.4 or more, and a region located at a depth of 100 ?m or more from the burned surface gives an X-ray diffraction pattern in which the ratio of the height of the peak present around the location where a [200] peak assigned to the cubic system is to appear to the height of the peak present around the location where a [200] peak assigned to the tetragonal system is to appear is 0.3 or less.
    Type: Application
    Filed: August 19, 2011
    Publication date: July 25, 2013
    Applicant: NORITAKE CO LIMITED
    Inventors: Yoshihisa Ito, Shinji Kato
  • Publication number: 20130172175
    Abstract: Disclosed herein are photocatalyst powder and a production method thereof, and by having photocatalyst particles corn binded without reduction of a specific surface area, the reduction of the specific surface area is nearly none while the pores are developed, as well as the absorption rate with respect to light is superior, the method of producing photocatalyst powder includes forming initial photocatalyst powder by molding nanoparticles of photocatalyst substance into a certain shape through extrusion, and splitting the initial photocatalyst powder into a plurality of photocatalyst powder by injecting the initial photocatalyst powder into a predetermined splitting solution, the initial photocatalyst powder being split into the plurality of photocatalyst powder by the predetermined spliting solution.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130164542
    Abstract: A primer coating composition for a metal substrate is described. The primer has a suitable binder and is characterised in that there is at least one semiconductor photocatalyst dispersed throughout the primer coating composition. A process of coating a metal substrate is also described. The invention extends to the use of a semiconductor photocatalyst as a top-coat to primer adhesion promoter or as a primer to top-coat delamination inhibitor in a primer coating composition.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 27, 2013
    Applicant: PPG B.V.
    Inventors: Gerard GEELS, Michel GILLARD, Albert Dirk BROEK
  • Publication number: 20130164202
    Abstract: A recirculated-suspension pre-calciner system is disclosed, comprising: a vortex cyclone dust collecting equipment including a plurality of devices, wherein a top device of the vortex cyclone dust collecting equipment is used as a feed system; a vertical combustion kiln; a blower; and a powder purge system, wherein powders in the feed system fall into the vortex cyclone dust collecting equipment and pass through a plurality of the devices to mix and exchange heat with flue gas comprising CO2, generating calcination reaction and releasing CO2 into the flue gas. and the steam is separated and transported to the feed system by the blower and acts as a carrier gas of powders.
    Type: Application
    Filed: August 20, 2012
    Publication date: June 27, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei-Cheng CHEN, Wan-Hsia LIU, Chin-Ming HUANG, Shoung OUYANG, Heng-Wen HSU
  • Patent number: 8449845
    Abstract: In light of the recent analytical technology demanded of fast and accurate measurement of high purity materials, a zirconium crucible is provided for melting an analytical sample and is capable of inhibiting the inclusion of impurities from the crucible by using a high-purity crucible, improving the durability of high-purity zirconium as an expensive crucible material, and increasing the number of times that the zirconium crucible can be used. With this zirconium crucible used for melting an analytical sample in the pretreatment of the analytical sample, the purity excluding gas components is 3N or higher, and the content of carbon as a gas component is 100 mass ppm or less.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: May 28, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Masahiro Sakaguchi, Mitsuru Yamaguchi
  • Patent number: 8440162
    Abstract: The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: May 14, 2013
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Patent number: 8440144
    Abstract: Through innovative design of a titanium dioxide coated metal reflector, which uses the negative space of a U-shaped ultraviolet lamp, maximum airborne chemical, vapor and/or odor abatement through photochemical reaction, yet eliminates most UV irradiation obstruction emanating from the lamp, thereby insuring maximum germicidal effect.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: May 14, 2013
    Inventors: Helder Pedro, Ken Henricksen
  • Patent number: 8435477
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 7, 2013
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Shivkumar Chiruvolu
  • Patent number: 8435480
    Abstract: Disclosed herein are a method for synthesizing one-dimensional helical mesoporous structure, in which a self-assembled structure of a glycine-derived surfactant is used as a template at room temperature to synthesize the one-dimensional helical mesoporous silica structures having a uniform pore size and a method for synthesizing a glycine-derived surfactant for synthesizing the helical nanoporous structures, in which relatively expensive surfactant can be easily recovered using an organic solvent and reused, which provides economical and environment friendly effects and the glycine-derived surfactant is synthesized by homogeneously heating a reaction product of glycine and phthalic anhydride by dielectric heating with irradiation of microwave, whereby it is possible to realize high yield of the glycine-derived surfactant, shortened synthesis time and increase in energy efficiency, leading to improvement in productivity and reduction in production cost.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 7, 2013
    Assignee: Thermolon Korea Co., Ltd.
    Inventors: Sang Cheol Han, Yang Kim, Chung Kwon Park
  • Publication number: 20130105723
    Abstract: A titanium oxide particle that can develop non-conventional and novel physical properties, a method for manufacturing the same, and a magnetic memory, an optical information recording medium, and a charge accumulation type memory using the same are provided. A silica-coated titanium hydroxide compound particle is directly produced through a sol-gel technique and not through a reverse micelle technique, and the silica-coated titanium hydroxide compound particle is subjected to a calcination process. Hence, a titanium oxide particle 1 can be provided which can develop non-conventional and novel physical properties such that it does not perform phase transition at a room temperature and a Ti3O5 particle body can always maintain the characteristic as a paramagnetic metal in all temperature ranges unlike conventional bulk bodies that perform phase transition between a non-magnetic semiconductor and a paramagnetic metal at a temperature near about 460 K.
    Type: Application
    Filed: April 15, 2011
    Publication date: May 2, 2013
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Shin-ichi Ohkoshi, Hiroko Tokoro, Fumiyoshi Hakoe, Yoshihide Tsunobuchi, Kazuhito Hashimoto
  • Publication number: 20130109147
    Abstract: Some embodiments include methods of forming memory cells. Metal oxide may be deposited over a first electrode, with the deposited metal oxide having a relatively low degree of crystallinity. The degree of crystallinity within the metal oxide may be increased after the deposition of the metal oxide. A dielectric material may be formed over the metal oxide, and a second electrode may be formed over the dielectric material. The degree of crystallinity may be increased with a thermal treatment. The thermal treatment may be conducted before, during, and/or after formation of the dielectric material.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Noel Rocklein, D.V. Nirmal Ramaswamy, Dale W. Collins, Swapnil Lengade, Srividya Krishnamurthy, Mark Korber
  • Publication number: 20130102458
    Abstract: The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.
    Type: Application
    Filed: December 18, 2007
    Publication date: April 25, 2013
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Publication number: 20130089485
    Abstract: The invention discloses a production method for nanofibers of metal oxide, wherein the metal oxide is a metal oxide of at least one metal selected from Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Zr, Sr, Ba, Mn, Fe, Co, Mg and Ga, comprising: a) spinning a compound precursor containing a salt of the metal, to produce nanofibers of the precursor containing the metal oxide; and b) calcining the nanofibers of the precursor containing the salt of the metal at a temperature in a range of from 500° C. to 800° C., to obtain nanofibers of metal oxide containing the at least one metal element. The invention further discloses nanofibers of metal oxide, a solid electrolyte material, a fuel cell and an oxygen sensor.
    Type: Application
    Filed: March 29, 2011
    Publication date: April 11, 2013
    Applicants: TSINGHUA UNIVERSITY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Wei Pan, Bin Li, Yanyi Liu, Masashi Kawai
  • Publication number: 20130089492
    Abstract: A mesoporous metal oxide materials with a chiral organization; and a method for producing it, in the method a polymerizable metal oxide precursor is condensed inside the pores of chiral nematic mesoporous silica by the so-called “hard templating” method. As a specific example, mesoporous titanium dioxide is formed inside of a chiral nematic silica film templated by nanocrystalline cellulose (NCC). After removing the silica template such as by dissolving the silica in concentrated aqueous base, the resulting product is a mesoporous titania with a high surface area. These mesoporous metal oxide materials with high surface area and chiral nematic structures that lead to photonic properties may be useful for photonic applications as well as enantioselective catalysis, photocatalysis, photovoltaics, UV filters, batteries, and sensors.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 11, 2013
    Applicants: FPINNOVATIONS, UNIVERSITY OF BRITISH COLUMBIA
    Inventors: UNIVERSITY OF BRITISH COLUMBIA, FPINNOVATIONS
  • Publication number: 20130079577
    Abstract: In one preferred embodiment, a photocatalyst for conversion of carbon dioxide and water to a hydrocarbon and oxygen comprises at least one nanoparticulate metal or metal oxide material that is substantially free of a carbon coating, prepared by heating a metal-containing precursor compound in a sealed reactor under a pressure autogenically generated by dissociation of the precursor material in the sealed reactor at a temperature of at least about 600° C. to form a nanoparticulate carbon-coated metal or metal oxide material, and subsequently substantially removing the carbon coating. The precursor material comprises a solid, solvent-free salt comprising a metal ion and at least one thermally decomposable carbon- and oxygen-containing counter-ion, and the metal of the salt is selected from the group consisting of Mn, Ti, Sn, V, Fe, Zn, Zr, Mo, Nb, W, Eu, La, Ce, In, and Si.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 28, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Brian J. INGRAM, Vilas G. POL, Donald C. CRONAUER, Muruganathan RAMANATHAN
  • Publication number: 20130078504
    Abstract: According to one embodiment, there is provided an active material. The active material includes a titanate oxide compound. The active material has a peak appearing in a range of 1580 cm?1 to 1610 cm?1 in the infrared diffusion reflective spectrum when pyridine is absorbed onto the active material and released from it, after that, the active material is subjected to measurement of the infrared diffusion reflective spectrum. Further, a relationship represented by the following formula (I) is satisfied: S1/S2?2.4 (I). Wherein S1 indicates an area of a peak appearing in a range of 1430 cm?1 to 1460 cm?1 in the spectrum, and S2 indicates an area of a peak appearing in a range of 1520 cm?1 to 1560 cm?1 in the spectrum.
    Type: Application
    Filed: June 29, 2012
    Publication date: March 28, 2013
    Inventors: Kazuhiro Yasuda, Takuya Iwasaki, Keigo Hoshina
  • Publication number: 20130048568
    Abstract: A sorbent for sorbing radioactive ions is described. The sorbent comprises a porous crystalline powder of a metal oxide or mixed metal oxide. A process for making the sorbent comprises the steps of reacting a metal halide or a mixture of metal halides and an alcohol to form a gel; heating the gel to form a particulate material; exposing the particulate material to an oxidant to form a powder; and heating the powder to a temperature sufficient to at least partially melt or sinter particles of the powder so as to form the sorbent.
    Type: Application
    Filed: March 3, 2011
    Publication date: February 28, 2013
    Applicant: Australian Nuclear Science and Technology Organisation
    Inventor: Van So Le
  • Patent number: 8383266
    Abstract: The invention relates to a pulverulent zirconium oxide containing metal oxides from the group consisting of scandium, yttrium, rare earths and mixtures thereof, processes for producing them and their use in fuel cells, in particular for the production of electrolyte substrates for ceramic fuel cells.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: February 26, 2013
    Assignee: H.C. Starck GmbH
    Inventors: Jörg Laube, Alfred Gügel, Ralph Otterstedt
  • Patent number: 8367206
    Abstract: Provided is barium titanate based powder represented by Chemical Formula 1: (BaxR1r1R2r2)(TiyR3r3R4r4)O3??[Chemical Formula 1] wherein R1 is at least one element selected from the group consisting of yttrium (Y) and lanthanoids; R2 is at least one element selected from the group consisting of magnesium (Mg), calcium (Ca) and strontium (Sr); R3 includes phosphorus (P) and niobium (Nb); R4 is at least one element selected from the group consisting of aluminum (Al), vanadium (V), chrome (Cr), manganese (Mn), cobalt (Co), zirconium (Zr) and tantalum (Ta); r1 and r3 independently represent a real number greater than 0 and equal to or less than 0.05; r2 and r4 independently represent a real number greater than 0 and equal to or less than 0.1; and (x+r1+r2)/(y+r3+r4) is a real number ranging from 0.85 to 1.15.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: February 5, 2013
    Assignee: Hanwha Chemical Corporation
    Inventors: Sei Ung Park, Ju Suk Ryu, Seong Jae Lim, In Jae Baek
  • Patent number: 8357628
    Abstract: The present invention is a process for making an inorganic/organic hybrid totally porous spherical silica particles by self assembly of surfactants that serve as organic templates via pseudomorphic transformation.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 22, 2013
    Assignee: Agilent Technologies, Inc.
    Inventors: Ta-Chen Wei, Wu Chen, William E. Barber
  • Publication number: 20130011318
    Abstract: An apparatus for producing metal oxide nanofibers includes a jetting unit, a mixing unit, a heating unit, and a cooling unit. The jetting unit jets particles made of a metal. The mixing unit prepares a mixture by mixing the metal particles and a gas containing an oxidizing component that includes oxygen in molecules of the component. The heating unit heats the mixture to raise the temperature of the mixture up to a temperature at which the metal evaporates. The cooling unit cools the product thus-produced in the heating unit.
    Type: Application
    Filed: April 25, 2011
    Publication date: January 10, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Masaya Nakatani, Makoto Takahashi
  • Publication number: 20130004394
    Abstract: CO2 capture from flue gas is a costly procedure, usually due to the energy required for regeneration of the capture medium. One potential medium which could reduce such an energy consumption, however, is Na2CO3. It has been well studied as a sorbent, and it is understood that the theoretical energy penalty of use of Na2CO3 for CO2 separation is low, due to the relatively low heat of reaction and low heat capacity of the material. While it offers some advantages over other methods, its primary downfall is the slow reaction with CO2 during adsorption and the slow Na2CO3 regeneration process. In an effort to reduce the energy penalty of post-combustion CO2 capture, the catalytic decomposition of NaHCO3 is studied. Nanoporous TiO(OH)2 is examined as a potential catalytic support for a cyclic Na2CO3/NaHCO3 based CO2 capture process.
    Type: Application
    Filed: May 11, 2012
    Publication date: January 3, 2013
    Inventor: Maohong Fan
  • Publication number: 20130004771
    Abstract: A liquid phase method for producing titanium oxide sol by hydrolysis of titanium tetrachloride, which includes mixing an aqueous titanium tetrachloride solution into water at a temperature of 80° C. or higher within 60 seconds while maintaining the mixed solution at the temperature and cooling it to less than 60° C. within 15 minutes after the mixing is completed. Also disclosed is a titanium oxide sol obtained by the method, having an average primal particle diameter (DBET) of 3 to 8 nm, a cumulative 50% volume particle diameter (D50DLS) and DBET have the relationship represented by D50DLS=k×DBET where k is 1 or more and less than 5, and an anatase content of 70% or more; a particulate titanium oxide obtained by drying the titanium oxide sol; and a production method and application thereof to solar cells, lithium ion battery electrodes and dielectric materials.
    Type: Application
    Filed: June 24, 2011
    Publication date: January 3, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Kei Mizue, Susumu Kayama
  • Patent number: 8343455
    Abstract: The invention provides flaky titanic acid having polymerizable functional groups, a suspension of the same, titanic acid coating films excellent in tight adhesion, and resin bases with titanic acid coating films, namely, flaky titanic acid obtained by treating a layered titanate with an acid and then making an organic basic compound act on the obtained product to conduct interlaminar swelling or delamination, characterized in that at least part of the organic basic compound is one having a polymerizable functional group such as acryl or methacryl and, preferably, in that the layered titanate is one represented by the general formula: AxMy?zTi2-(y+z)O4 [wherein A and M are different from each other and are each a mono- to tri-valent metal; ? represents a Ti-defective site; x is a positive real number satisfying the relationship: 0<x<1; and y and z are 0 or positive real numbers satisfying the relationship: 0<y+z<1].
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: January 1, 2013
    Assignee: Otsuka Chemical Co., Ltd.
    Inventors: Minoru Yamamoto, Takuya Nomoto
  • Publication number: 20120328508
    Abstract: There is provided a method and an apparatus for producing metal oxide particles, which produce metal oxide particles having a high photocatalytic activity with high yield.
    Type: Application
    Filed: March 7, 2011
    Publication date: December 27, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Bunsho Ohtani, Noriyuki Sugishita, Yasushi Kuroda
  • Publication number: 20120328507
    Abstract: A method of continuously producing reduced compounds, which comprises continuously feeding our oxidised compound into a reaction chamber and contracting the oxidised compound with a reductant gas. The oxidised compound may be titanium dioxide. The reaction chamber may be a rotating kiln.
    Type: Application
    Filed: October 4, 2011
    Publication date: December 27, 2012
    Inventors: Andrew HILL, John HILL
  • Patent number: 8337799
    Abstract: The invention relates to a method for producing nanoparticles of at least one oxide of a transition metal selected from Ti, Zr, Hf, V, Nb and Ta, which are coated with amorphous carbon, wherein said method includes the following successive steps: (i) a liquid mixture containing as precursors at least one alkoxyde of the transition metal, an alcohol, and an acetic acid relative to the transition metal is prepared and diluted in water in order to form an aqueous solution, the precursors being present in the solution according to a molar ratio such that it prevents or sufficiently limits the formation of a sol so that the aqueous solution can be freeze-dried, and such that the transition metal, the carbon and the oxygen are present in a stoichiometric ratio according to which they are included in the nanoparticles; (ii) the aqueous solution is freeze-dried; (ii) the freeze-dried product obtained during the preceding step is submitted to pyrolysis under vacuum or in an inert atmosphere in order to obtain the nano
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: December 25, 2012
    Assignees: Commissariat a l'Energie Atomique-CEA, Ecole Centrale de Paris-ECP, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Christine Bogicevic, Fabienne Karolak, Gianguido Baldinozzi, Mickael Dollé, Dominique Gosset, David Simeone
  • Patent number: 8337788
    Abstract: A method for preparing a colloidal solution of non-aggregated zirconia particles, comprising the following steps: a) providing a zirconium hydroxide sol, b) adding to said sol an inorganic acid according to an [inorganic acid]/[Zr] molar ratio of <0.5, c) performing the hydrothermal treatment of said sol, and d) recovering the colloidal solution of zirconia particles.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: December 25, 2012
    Assignee: Essilor International (Compagnie Generale d'Optique)
    Inventors: Frédéric Chaput, Fabien Berit-Debat, Claudine Biver, Noémie Lesartre
  • Publication number: 20120301526
    Abstract: Nanomaterials of the JT phase of the titanium oxide TiO2-x, where 0?x?1 having as a building block a crystalline structure with an orthorhombic symmetry and described by at least one of the space groups 59 Pmmn, 63 Amma, 71 Immm or 63 Bmmb. The nanomaterials are in the form of nanofibers, nanowires, nanorods, nanoscrolls and/or nanotubes and are obtained from a hydrogen titanate and/or a mixed sodium and hydrogen titanate precursor compound that is isostructural to the JT crystalline structure. The titanates are the hydrogenated, the protonated, the hydrated and/or the alkalinized phases of the JT crystalline phase that are obtained from titanium compounds such as titanium oxide with an anatase crystalline structure, amorphous titanium oxide, and titanium oxide with a rutile crystalline structure, and/or directly from the rutile mineral and/or from ilmenite.
    Type: Application
    Filed: June 19, 2012
    Publication date: November 29, 2012
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: José Antonio Toledo Antonio, Carlos Angeles Chávez, Maria Antonia Cortés Jacome, Fernando Alvarez RamÍrez, Yosadara Ruiz Morales, Gerardo Ferrat Torres, Luis Francisco Flores Ortiz, Esteban López Salinas, Marcelo Lozada y Cassou
  • Patent number: 8318127
    Abstract: Exemplary embodiments provide materials and methods of forming a metal oxide composite and a porous metal oxide, which can be used for applications including catalysis, sensors, energy storage, solar cells, heavy metal removal and separations, etc. In one embodiment, a one-step solvothermal process can be used to form the metal oxide phase with high crystallinity and high surface area.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 27, 2012
    Assignee: STC.UNM
    Inventors: Xingmao Jiang, C. Jeffrey Brinker
  • Patent number: 8318126
    Abstract: The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 27, 2012
    Inventors: Stanislaus S. Wong, Hongjun Zhou
  • Publication number: 20120294753
    Abstract: A unique combination of solution stabilization and delivery technologies with special ALD operation is provided. A wide range of low volatility solid ALD precursors dissolved in solvents are used. Unstable solutes may be stabilized in solution and all of the solutions may be delivered at room temperature. After the solutions are vaporized, the vapor phase precursors and solvents are pulsed into a deposition chamber to assure true ALD film growth.
    Type: Application
    Filed: November 17, 2011
    Publication date: November 22, 2012
    Inventors: Ce MA, Qing Min WANG, Patrick J. HELLY, Richard HOGLE
  • Publication number: 20120275991
    Abstract: A method for producing nanoscale particles by means of ionic liquids produces highly crystalline particles. The ionic liquids can be easily regenerated.
    Type: Application
    Filed: December 15, 2010
    Publication date: November 1, 2012
    Applicant: Leibniz-Institut fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Peter William de Oliveira, Hechun Lin, Michael Veith
  • Publication number: 20120275990
    Abstract: A microstructure that can develop non-conventional and novel physical properties and a method for producing the same are provided. Ethanol is added to a mixture solution produced by adding a surfactant solution to a peroxotitanic acid aqueous solution to produce precipitates, and the precipitates collected from the mixture solution are let dried to produce precursor powders 5. The precursor powders 5 are calcined at a predetermined temperature. Accordingly, a microstructure 2 can be produced which is formed of monophasic Ti4O7 in nano size. The microstructure 2 of monophasic Ti4O7 produced in this fashion can be fine-grained in nano size unlike prior-art crystals.
    Type: Application
    Filed: November 19, 2010
    Publication date: November 1, 2012
    Applicant: The University of Tokyo
    Inventors: Shin-ichi Ohkoshi, Deepa Dey, Yoshihide Tsunobuchi, Kazuhito Hashimoto, Hiroko Tokoro, Fumiyoshi Hakoe
  • Patent number: 8287828
    Abstract: A process for producing a lithium-containing composite oxide for a positive electrode active material for use in a lithium secondary battery, the oxide having the formula LipQqNxMyOzFa (wherein Q is at least one element selected from the group consisting of titanium, zirconium, niobium and tantalum, N is at least one element selected from the group consisting of Co, Mn and Ni, M is at least one element selected from the group consisting of Al, alkaline earth metal elements and transition metal elements other than Q and N, 0.9?p?1.1, 0?q<0.03, 0.97?x?1.00, 0?y<0.03, 1.9?z?2.1, q+x+y=1 and 0?a?0.02), which comprises firing a mixture of a lithium, Q element source and N element sources, and an M element source and/or fluorine source when these elements are present, in an oxygen-containing atmosphere, wherein the Q element source is a Q element compound aqueous solution having a pH of from 0.5 to 11.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: October 16, 2012
    Assignee: AGC Seimi Chemical Co., Ltd.
    Inventors: Takeshi Kawasato, Naoshi Saito, Megumi Uchida, Kazushige Horichi, Koji Tatsumi, Kunihiko Terase, Manabu Suhara
  • Patent number: 8268175
    Abstract: A method for transferring inorganic oxide nanoparticles from aqueous phase to organic phase. A modifier is used to change the surface polarity of inorganic oxide nanoparticles, followed by using proper solvents to transfer the modified inorganic oxide nanoparticles form aqueous phase to organic phase. The organic dispersion of modified inorganic oxide nanoparticles can be combined with a polymer to provide a polymer composite with the nanoparticles uniformly dispersed therein.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: September 18, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Guang-Way Jang, Yin-Ju Yang, Mei-Chih Hung, Hsiu-Yu Cheng, Jian-Yi Hang, Jen-Min Chen, Shu-Jiuan Huang
  • Publication number: 20120232320
    Abstract: A method of producing a carrier used for a catalyst for oxidative dehydrogenation of n-butane; a method of producing a magnesium orthovanadate catalyst supported by the carrier; and a method of producing n-butene and 1,3-butadiene using the catalyst are described.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: SAMSUNG TOTAL PETROCHEMICALS CO., LTD.
    Inventors: Ho Won SONG, Ho Won LEE, Yeon Shick YOO, Young Jin CHO, Jin Suk LEE, Ho Sik JANG
  • Publication number: 20120230900
    Abstract: An object of the present invention is to provide a metal salt-containing composition which is applicable to many metal source materials, and can be used for forming a compact and uniform metal oxide film comparable to those formed according to a sputtering method, as well as to provide a substrate having a metal complex film on the surface thereof obtained using the metal salt-containing composition, and a substrate having a metal complex film on the surface thereof obtained by further heating the substrate. Moreover, another object of the present invention is to provide a method for manufacturing a substrate having such a metal complex film on the surface thereof. According to the present invention, a metal salt-containing composition containing a metal salt, a polyvalent carboxylic acid having a cis-form structure, and a solvent, in which: the molar ratio of the polyvalent carboxylic acid to the metal salt is not less than 0.5 and not more than 4.
    Type: Application
    Filed: September 28, 2009
    Publication date: September 13, 2012
    Applicant: Dai-Ichi Kogyo Seiyaku Co., Ltd.
    Inventors: Yasuteru Saito, Naoki Ike
  • Patent number: 8257679
    Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: September 4, 2012
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventor: Tadafumi Ajiri
  • Publication number: 20120202065
    Abstract: This invention pertains to a mesoporous amorphous oxide of titanium and processes of making a mesoporous amorphous oxide of titanium.
    Type: Application
    Filed: April 17, 2012
    Publication date: August 9, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: CARMINE TORARDI
  • Publication number: 20120190537
    Abstract: The invention relates to a method of production of catalyst support particles, containing zirconium dioxide and optionally silicon oxide, comprising the steps (i) preparation of a solution containing precursor compounds of zirconium dioxide and optionally of silicon dioxide, (ii) converting the solution(s) to an aerosol, (iii) bringing the aerosol into a directly or indirectly heated pyrolysis zone, (iv) carrying out pyrolysis, and (v) separation of the catalyst particles formed from the pyrolysis gas.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 26, 2012
    Applicant: BASF SE
    Inventors: Stefan Hannemann, Dieter Stützer, Goetz-Peter Schindler, Peter Pfab, Frank Kleine Jäger, Dirk Grossschmidt
  • Publication number: 20120189535
    Abstract: A method for biomimetically preparing titanium oxide precipitates with specific morphologies. According to one embodiment, designed peptides that are 5-20 amino acids long are used as initiators to cause the precipitation of titanium oxide from a buffered aqueous solution containing a titanium oxide precursor, such as titanium(IV) bis(ammonium lactate) dihydroxide. The peptides consist of amino acids that are hydrophilic at neutral pH, such as serine, and amino acids that are cationic at neutral pH, such as lysine and arginine. The peptides sequences are designed to induce the formation of specific morphologies including, but not limited to, spheres, rectangular blocks, cubes, porous sheets, non-porous sheets, and flowers. The method enables the formation of distinct and consistent titanium oxide morphologies without a need for high temperatures and pressures or for caustic reaction conditions.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 26, 2012
    Inventors: Robert E. Stote, II, Shaun F. Filocamo
  • Patent number: 8216543
    Abstract: Methods of making unique water treatment compositions are provided. In one embodiment, a method of making a doped metal oxide or hydroxide for treating water comprises: disposing a metal precursor solution and a dopant precursor solution in a reaction vessel comprising water to form a slurry; and precipitating the doped metal oxide or hydroxide from the slurry.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: July 10, 2012
    Assignees: Inframat Corporation, University of Houston
    Inventors: Huimin Chen, Dennis A. Clifford, Meidong Wang, T. Danny Xiao