Group Ivb Metal (ti, Zr, Or Hf) Patents (Class 423/608)
  • Publication number: 20100055016
    Abstract: Provided is a method of manufacturing oxide-based nano-structured materials using a chemical wet process, and thus, the method can be employed to manufacture oxide-based nano-structured materials having uniform composition and good electrical characteristics in large quantities, the method having a relatively simple process which does not use large growing equipment. The method includes preparing a first organic solution that comprises a metal, mixing the first organic solution with a second organic solution that contains hydroxyl radicals (—OH), filtering the mixed solution using a filter in order to extract oxide-based nano-structured materials formed in the mixed solution, drying the extracted oxide-based nano-structured materials to remove any remaining organic solution, and heat treating the dried oxide-based nano-structured materials.
    Type: Application
    Filed: February 1, 2008
    Publication date: March 4, 2010
    Inventors: Sang-Hyeob Kim, Hye-Jin Myoung, Sung-Lyul Maeng, G.A.J. Amaratunga, Sunyoung Lee
  • Publication number: 20100051877
    Abstract: Micelle-templated superficially porous particles having a solid core and an outer porous shell with ordered pore structures and a narrow particle size distribution, such as about ±5% (one sigma), and a high specific surface area of about 5 to about 1000 m2/g.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Applicant: Agilent Technologies, Inc.
    Inventors: Ta-Chen Wei, Wu Chen, William E. Barber
  • Publication number: 20100040533
    Abstract: A method and apparatus are described for manufacturing Ebonex® articles such as rods and tiles from titanium oxide precursors. The precursors are held within the interior space of a kiln and heated in a reducing gas. The precursors are held so that the reducing gas is able to fully envelop them. In a preferred embodiment, the precursors are hung from a support within the kiln. The temperature of the kiln is also controlled to limit the initial heating of the kiln and to maintain the kiln within a predetermined range of operating temperatures.
    Type: Application
    Filed: September 26, 2006
    Publication date: February 18, 2010
    Inventors: Alexander Simpson, Philip Carter
  • Publication number: 20100028674
    Abstract: Nanofibers and methods for making the nanofibers are described. Porous metal oxide nanofibers and porous metal oxide nanofibers comprising metal nanoparticles made via electrospinning methods are also described.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Inventor: Fredrick O Ochanda
  • Publication number: 20100028236
    Abstract: There is disclosed a process of making nano-sized or micro-sized precipitate particles. The process comprising the steps of mixing, in a reaction zone, a metal salt solution with a precipitant solution to form a precipitate, said precipitate being at least one of a metal chalcogenide, metal hydroxide and metal oxide; and applying a shear force to said mixing solutions in said reaction zone during said mixing step, wherein said shear force and the conditions within said reaction zone form said nano-sized or micro-sized precipitate particles.
    Type: Application
    Filed: October 2, 2007
    Publication date: February 4, 2010
    Applicant: NANOMATERIALS TECHNOLOGY PTE LTD
    Inventors: Zhigang Shen, Jiyao Zhang, Giawen Sim, Jimmy Sung Lai Yun, Jianfeng Chen
  • Publication number: 20100011992
    Abstract: The present invention relates to novel pigment mixtures comprising at least two different particulate components A and B. The first component A comprises titanium suboxide(s), a titanium oxynitride or a titanium nitride species. Component B particle comprises inorganic, or organic pigments. The titanium suboxide particles display a bluish metallic luster, are new and form a further aspect of the present invention. When combined with particles from component B such as variously coated micas, for example, the bluish or bluish/black metallic color effect from component A leads to special color effects in the various mixtures.
    Type: Application
    Filed: December 17, 2007
    Publication date: January 21, 2010
    Inventors: Patrice Bujard, Philippe Bugnon, Marc Mamak, Urs Leo Stadler
  • Publication number: 20100011990
    Abstract: This invention pertains to a mesoporous amorphous oxide of titanium and processes of making a mesoporous amorphous oxide of titanium.
    Type: Application
    Filed: September 28, 2009
    Publication date: January 21, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: CARMINE TORARDI
  • Publication number: 20100003203
    Abstract: The present invention relates to methods of producing surface-modified nanoparticulate particles at least of one metal oxide, metal hydroxide and/or metal oxide hydroxide, and aqueous suspensions of these particles. The invention further relates to the surface-modified nanoparticulate particles, obtainable by these methods, at least of one metal oxide, metal hydroxide and/or metal oxide hydroxide and aqueous suspensions of these particles, and to their use for cosmetic sunscreen preparations, as stabilizer in plastics and as antimicrobial active ingredient.
    Type: Application
    Filed: October 10, 2007
    Publication date: January 7, 2010
    Applicant: BASF SE
    Inventors: Andrey Karpov, Hartmut Hibst, Jutta Kissel, Bernd Bechtloff, Hartwig Voss, Kerstin Schierle-Arndt, Valerie Andre
  • Patent number: 7642210
    Abstract: A zirconia porous body with excellent stability of heat resistance is manufactured. This relates to a zirconia porous body having peaks at pore diameters of 8 to 20 nm and 30 to 100 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more, and to a zirconia porous body having a peak at a pore diameters of 20 to 110 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: January 5, 2010
    Assignee: Daiichi Kigenso Kagaku Kogyo Co., Ltd.
    Inventor: Hiroshi Okamoto
  • Publication number: 20090308283
    Abstract: The present invention provides a zirconium oxide powder, a method for producing.the same, and a material for thermal spraying. The material for thermal spraying comprises a zirconium oxide powder comprising polyhedral particles each having not less than 6 faces, wherein the zirconium oxide powder has D50 of not less than 5 ?m and less than 15 ?m and a D90/D10 of less than 3. D10, D50 and D90 correspond to the point where the cumulative mass from the small-particle-diameter side reaches 10%, 50%, and 90% in the cumulative particle size distribution.
    Type: Application
    Filed: July 24, 2007
    Publication date: December 17, 2009
    Applicant: SUMITOMO CHEMICAL COMPANY,LIMITED
    Inventors: Yoshio Uchida, Kazuo Sadaoka
  • Patent number: 7632477
    Abstract: This invention relates to a process for preparing zirconium oxide, in its various forms, including zirconium-based mixed oxides. There is described a process for preparing a zirconium oxide in the absence of a cerium salt which comprises precipitating a zirconium hydroxide from an aqueous solution of a zirconium salt by reaction with an alkali in the presence of a controlled amount of sulphate anions at a temperature not greater than 50° C. and then calcining the hydroxide to form an oxide, wherein the oxide thus formed is essentially sulphate free. Catalysts and ceramics can be produced from the product oxides having improved thermal stability and improved sinterability, respectively. A particular use of the product oxide is as a promoter or catalyst support in automobile exhaust systems.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: December 15, 2009
    Assignee: Magnesium Elektron, Ltd.
    Inventors: Yasuhide Takao, Colin Norman, Gavin Edwards, Ian Chisem, Clare Jones
  • Patent number: 7632769
    Abstract: A zirconia porous body with excellent stability of heat resistance is manufactured. This relates to a zirconia porous body having peaks at pore diameters of 8 to 20 nm and 30 to 100 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more, and to a zirconia porous body having a peak at a pore diameters of 20 to 110 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: December 15, 2009
    Inventor: Hiroshi Okamoto
  • Publication number: 20090301350
    Abstract: Use of pyrogenic metal oxide for the manufacture of a selfcompacting composition comprising hydraulic binders and having high early strength, the composition comprising at least one hydraulic binder and water as further constituents and the product of the BET surface area, in m2/g, of the pyrogenic metal oxide and the proportion by weight of the pyrogenic metal oxide based on the hydraulic binder being 20 to 200 m2/100 g of hydraulic binder.
    Type: Application
    Filed: March 12, 2007
    Publication date: December 10, 2009
    Applicant: Evonik Degussa Gmbh
    Inventors: Christoph Tontrup, Reinhard Trettin, Michael Geyer
  • Publication number: 20090305882
    Abstract: Described is a porous ceramic body comprising zirconia having mesopores incorporated therein and the primary crystalline phase is tetragonal. When used as a carrier for a catalyst, the porous ceramic body has excellent crush resistance and a large total pore volume which results in an increase in the carrier's surface area onto which catalytic material may be deposited. Methods of making the carrier are also disclosed.
    Type: Application
    Filed: February 1, 2007
    Publication date: December 10, 2009
    Applicant: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Stephen Dahar, Mure Te
  • Publication number: 20090305040
    Abstract: The present invention relates to a method for producing a metal oxide by heating a porous metal-organic framework material, the framework material comprising at least one at least bidentate organic compound bound to at least one metal ion by coordination, and the metal ion being selected from the metals comprising groups to 4 and 13 of the Periodic Table of the Elements, above the complete decomposition temperature of the framework material, and also to metal oxides obtainable by this method, and to the use thereof.
    Type: Application
    Filed: April 12, 2007
    Publication date: December 10, 2009
    Inventors: Markus Schubert, Ulrich Müller, Natalia Trukhan
  • Patent number: 7625836
    Abstract: To provide a heat-resistant oxide which is excellent in heat resistance and durability at high temperature and has high activity, a heat-resistant oxide which has an oxide crystal structure and in which a rate of a solid solution of a noble metal in the oxide crystal structure is 50% or more is obtained by heat-treating (secondarily baking) a precursor composition comprising zirconia, at least one coordinative element selected from the group consisting of rare earth elements, alkaline earth elements, aluminum and silicon, and at least one noble metal selected from the group consisting of platinum, rhodium and palladium at 650° C. or higher.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: December 1, 2009
    Assignees: Cataler Corporation, Daihatsu Motor Co., Ltd.
    Inventors: Satoshi Matsueda, Mareo Kimura, Naoto Miyoshi, Yoshinori Ishii, Hirohisa Tanaka, Isao Tan, Mari Uenishi, Masashi Taniguchi
  • Publication number: 20090291044
    Abstract: Provided is a process which includes slowly adding dropwise chilled distilled water to titanium tetrachloride to prepare solution of titanium oxychloride; adding basic solution thereto to maintain pH of the titanium oxychloride solution within a range from 3.5 to 4, thereby providing a suspension of titanium oxyhydroxide precipitate; adding basic solution thereto to adjust the suspension of titanium oxyhydroxide precipitate to be weakly basic, and heating and stirring the mixture at 80 to 100° C.; isolating and collecting dihydroxy-oxotitanium from the heated and stirred suspension of titanium oxyhydroxide precipitate, and washing it with weakly basic aqueous solution; and adding distilled water and 20 to 500 folds of hydrogen peroxide on the basis of 1 mole of Ti4+ in titanium oxyhydroxide to the washed titanium oxyhydroxide, and heat-treating the mixture at a temperature of 90 to 100° C. for 1 to 7 days to prepare titania nanorods having the mean length of 100 nm to 300 nm.
    Type: Application
    Filed: May 26, 2009
    Publication date: November 26, 2009
    Applicant: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Sang Il Seok, In Chan Baek, Jeong Ah Chang
  • Patent number: 7611688
    Abstract: The present invention is related to a process of manufacturing rutile high-purity titania nano sols in a pure aqueous medium having no ionic impurities. In more detail, the present invention is related to a process for manufacturing titania nano sols, in which high-purity rutile titania nano particles are dispersed stably, through the hydrolysis of titanium tetraisopropoxide in an aqueous solution containing hydrogen peroxide (H2O2), and simultaneously with the hydrolysis, formation of peroxotitanate precursors, and hydrothermal treatment of them at 50-120° C.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: November 3, 2009
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Sang-Il Seok, Bok-Yeop Ahn, Hoon Kim
  • Publication number: 20090270997
    Abstract: The present invention proposes novel materials and methods, for preparation of coatings based on titanium dioxide for osteointegrated biomedical prostheses. The coatings are realized with nanomaterials having antibacterial properties, and have the purpose of: promoting osteointegration of the implants, and, at the same time, reducing reaction attributable to inflammatory processes which derive from infections which may develop in the neighborhood of the implants.
    Type: Application
    Filed: June 14, 2006
    Publication date: October 29, 2009
    Inventors: Carlo Alberto Bignozzi, Francesco Carinci, Stefano Caramori, Valeria Dissette
  • Patent number: 7601327
    Abstract: This invention pertains to a mesoporous oxide of hafnium and processes of making a mesoporous oxide of hafnium.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: October 13, 2009
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Carmine Torardi
  • Patent number: 7601326
    Abstract: This invention pertains to mesoporous oxide of zirconium and processes of making a mesoporous oxide of zirconium.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: October 13, 2009
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Carmine Torardi
  • Publication number: 20090252669
    Abstract: Novel, monodispersed, spherical ZrO2 particles in the size range of approximately 10 to approximately 600 nm exhibiting metastable tetragonal crystal structure at room temperature and novel methods of preparation. The ZrO2 particles are approximately 100% in the tetragonal phase at room temperature and can be pure and free of foreign oxides. The novel method can include mixing zirconium-alkoxide and an alcohol, forming preparation one, followed by separately dissolving completely de-ionized water and a polymeric steric stabilizer in an alcohol forming preparation two. Next the preparations can be mixed with vigorous stirring while subjecting the materials to hydrolysis and condensation reactions with very slow stirring. Next, there is waiting for the formation of a sol from the mixture, followed by drying at approximately 80 degrees C. to form resultant material followed by crushing the resultant material.
    Type: Application
    Filed: January 15, 2009
    Publication date: October 8, 2009
    Inventors: Sudipta Seal, Satyajit Shukla
  • Patent number: 7595036
    Abstract: Novel, monodispersed, spherical ZrO2 particles in the size range of approximately 10 to approximately 600 nm exhibiting metastable tetragonal crystal structure at room temperature and novel methods of preparation. The ZrO2 particles are approximately 100% in the tetragonal phase at room temperature and can be pure and free of foreign oxides. The novel method can include mixing zirconium-alkoxide and an alcohol, forming preparation one, followed by separately dissolving completely de-ionized water and a polymeric steric stabilizer in an alcohol forming preparation two. Next the preparations can be mixed with vigorous stirring while subjecting the materials to hydrolysis and condensation reactions with very slow stirring. Next, there is waiting for the formation of a sol from the mixture, followed by drying at approximately 80 degrees C. to form resultant material followed by crushing the resultant material.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: September 29, 2009
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Sudipta Seal, Satyajit Shukla
  • Publication number: 20090238747
    Abstract: The invention relates to a method for producing (semi)metal oxides and hydroxides, such as Si02, Ti02, Zr02, Zn0 and other (semi)metal salts such as BaSO4, which can be produced by emulsion precipitation in the form of nanoparticles from an aqueous solution. The invention also relates to the use of the same.
    Type: Application
    Filed: November 11, 2005
    Publication date: September 24, 2009
    Inventors: Matthias Koch, Ralf Anselmann
  • Publication number: 20090220374
    Abstract: A unique combination of solution stabilization and delivery technologies with special ALD operation is provided. A wide range of low volatility solid ALD precursors dissolved in solvents are used. Unstable solutes may be stabilized in solution and all of the solutions may be delivered at room temperature. After the solutions are vaporized, the vapor phase precursors and solvents are pulsed into a deposition chamber to assure true ALD film growth.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 3, 2009
    Inventors: Ce MA, Qing Min WANG, Patrick J. HELLY, Richard HOGLE
  • Patent number: 7582276
    Abstract: The invention relates to nanoscale rutile or oxide powder that is obtained by producing amorphous TiO2 by mixing an alcoholic solution with a titanium alcoholate and with an aluminum alcohalate and adding water and acid. The amorphous, aluminum-containing TiO2 is isolated by removing the solvent, and is redispersed in water in the presence of a tin salt. Thermal or hydrothermal post-processing yields rutile or oxide that can be redispersed to primary particle size. The n-rutile or the obtained oxide having a primary particle size ranging between 5 and 20 nm can be incorporated into all organic matrices so that they remain transparent. Photocatalytic activity is suppressed by lattice doping with trivalent ions. If the amorphous precursor is redispersed in alcohol, or not isolated, but immediately crystallized, an anatase is obtained that can be redispersed to primary particle size.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: September 1, 2009
    Assignee: ITN Nanovation AG
    Inventor: Ralph Nonninger
  • Publication number: 20090213591
    Abstract: The present invention relates to a reflective member (7). The reflective member (7) includes a reflective layer 61 (7) formed to be porous using an inorganic material. The reflective layer 61 (7) has a porosity of 15-43%. Such reflective layer 61 (7) is formed by partly combining a plurality of inorganic particles with each other.
    Type: Application
    Filed: March 25, 2006
    Publication date: August 27, 2009
    Applicant: KYOCERA CORPORATION
    Inventors: Kousuke Katabe, Yuki Mori
  • Patent number: 7576035
    Abstract: A pillar-shaped honeycomb structure has a plurality of cells longitudinally placed in parallel with one another with a wall portion therebetween, wherein the honeycomb structure mainly includes inorganic fibers which form the honeycomb structure without lamination interfaces.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: August 18, 2009
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Tomokazu Oya
  • Publication number: 20090202427
    Abstract: Process for preparing mixed metal oxide powders Abstract Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated in an evaporation zone of a reactor and oxidized in the vaporous state in an oxidation zone of this reactor, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein at least one pulverulent metal, together with one or more combustion gases, is fed to the evaporation zone, the metal is evaporated completely in the evaporation zone under nonoxidizing conditions, an oxygen-containing gas and at least one metal compound are fed, separately or together, in the oxidation zone to the mixture flowing out of the evaporation zone, the oxygen content of the oxygen-containing gas being at least sufficient to oxidize the metal, the metal compound and the combustion gas completely.
    Type: Application
    Filed: May 16, 2007
    Publication date: August 13, 2009
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Stipan Katusic, Guido Zimmermann, Michael Krämer, Horst Miess, Edwin Staab
  • Patent number: 7572431
    Abstract: Novel, monodispersed, spherical ZrO2 particles in the size range of approximately 10 to approximately 600 nm exhibiting metastable tetragonal crystal structure at room temperature and novel methods of preparation. The ZrO2 particles are approximately 100% in the tetragonal phase at room temperature and can be pure and free of foreign oxides. The novel method can include mixing zirconium-alkoxide and an alcohol, forming preparation one, followed by separately dissolving completely de-ionized water and a polymeric steric stabilizer in an alcohol forming preparation two. Next the preparations can be mixed with vigorous stirring while subjecting the materials to hydrolysis and condensation reactions with very slow stirring. Next, there is waiting for the formation of a sol from the mixture, followed by drying at approximately 80 degrees C. to form resultant material followed by crushing the resultant material.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: August 11, 2009
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Sudipta Seal, Satyajit Shukla
  • Patent number: 7566436
    Abstract: A mixing reactor for mixing efficiently streams of fluids of differing densities. In a preferred embodiment, one of the fluids is supercritical water, and the other is an aqueous salt solution. Thus, the reactor enables the production of metal oxide nanoparticles as a continuous process, without any risk of the reactor blocking due to the inefficient mixing inherent in existing reactor designs.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: July 28, 2009
    Assignee: The University of Nottingham
    Inventors: Edward Henry Lester, Barry James Azzopardi
  • Patent number: 7556793
    Abstract: A method of forming a shaped article includes forming a mixture which includes a titania hydrate pulp having a loss on ignition of from about 10 to 45 wt. %, a seed material comprising a titanium oxide, at least a portion of the titanium oxide being in a rutile form, and optionally a dispersion aid. The method includes forming the mixture into a shaped article and firing the shaped article. A shaped article suitable for use as a catalyst carrier is at least 90% titanium oxide, greater than 80% of the titanium oxide being in the rutile phase. The article has a surface area of at least 2.5 m2/g and a mercury pore volume of greater than 0.15 cc/g.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: July 7, 2009
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventor: Stephen L. Dahar
  • Patent number: 7553474
    Abstract: It is an object to provide a method for producing stable alkaline metal oxide sols having a uniform particle size distribution. The method comprises the steps of: heating a metal compound at a temperature of 60° C. to 110° C. in an aqueous medium that contains a carbonate of quaternary ammonium; and carrying out hydrothermal processing at a temperature of 110° C. to 250° C. The carbonate of quaternary ammonium is (NR4)2CO3 or NR4HCO3 in which R represents a hydrocarbon group, or a mixture thereof. The metal compound is one, or two or more metal compounds selected from a group of compounds based on a metal having a valence that is bivalent, trivalent, or tetravalent.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: June 30, 2009
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yutaka Ohmori, Hirokazu Kato, Yoshinari Koyama, Kenji Yamaguchi
  • Publication number: 20090162274
    Abstract: A method for preparing metal oxide particles having a primary particle size on the order of nanometers is provided. The method comprises subjecting a metal ion present in an aqueous solution and an amino alcohol to an initial stage of reaction with each other at normal temperatures under normal pressures for a given time, and adding at least once either of a metal ion or an amino alcohol or both thereof to the resulting reaction system for carrying out a subsequent stage of reaction for a given time wherein total amounts of the metal ion and the amino alcohol are such that the amino alcohol is used in the range of not less than a molar equivalent to the metal ion.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 25, 2009
    Applicant: DENSO CORPORATION
    Inventors: Hiroaki Yotou, Miho Itoh
  • Patent number: 7547431
    Abstract: A method of producing high purity nanoscale powders in which the purity of powders produced by the method exceeds 99.99%. Fine powders produced are of size preferably less than 1 micron, and more preferably less than 100 nanometers. Methods for producing such powders in high volume, low-cost, and reproducible quality are also outlined. The fine powders are envisioned to be useful in various applications such as biomedical, sensor, electronic, electrical, photonic, thermal, piezo, magnetic, catalytic and electrochemical products.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: June 16, 2009
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Tapesh Yadav, Karl Pfaffenbach
  • Publication number: 20090148380
    Abstract: There is provided a method for stably producing metal oxide solid solution particle at low temperature, wherein an alkaline zirconia sol is used as a raw material which is mixed with a metal compound, and then dried and fired. Specifically, there is disclosed a method for producing metal oxide particle (A3) such as zirconia particle in which metal oxides are solid-solubilized, comprising: a step (I) for obtaining metal oxide (A2) sol such as zirconia sol containing a precursor of a metal oxide by mixing an alkaline zirconia (A1) sol which is obtained by a method including a step (i) for heating a zirconium salt (B2) at 60-110° C. in an aqueous medium containing a carbonate of quaternary ammonium and a step (ii) for performing a hydrothermal treatment at 110-250° C.
    Type: Application
    Filed: May 31, 2007
    Publication date: June 11, 2009
    Inventors: Yutaka Ohmori, Hirokazu Kato, Kenji Yamaguchi
  • Publication number: 20090136757
    Abstract: A method of fractionating a dispersion of oxidic nanoparticles wherein at least one step of the method is a membrane crossflow filtration step, the flow of the dispersion over the membrane being brought about by means of driven rotating parts; and dispersions of oxidic nanoparticles that are obtainable by the method.
    Type: Application
    Filed: November 14, 2008
    Publication date: May 28, 2009
    Applicant: EVONIK DEGUSSA GmbH
    Inventors: Roland WURSCHE, Goetz Baumgarten, Wolfgang Lortz, Michael Kroell
  • Publication number: 20090123354
    Abstract: A solid material is presented for the partial oxidation of natural gas. The solid material includes a solid oxygen carrying agent and a hydrocarbon activation agent. The material precludes the need for gaseous oxygen for the partial oxidation and provides better control over the reaction.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Inventors: Deng-Yang Jan, Joel T. Walenga, Kurt M. Vanden Bussche, Joseph A. Kocal, Lisa M. King
  • Patent number: 7531690
    Abstract: A catalyst for the production of an oxygen-containing compound, comprising palladium, tungsten and zirconium, a production process thereof, and a production process of an oxygen-containing compound using the catalyst. The catalyst can provide an oxygen-containing compound from a lower olefin and oxygen with high productivity and high selectivity.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: May 12, 2009
    Assignee: Showa Denko K.K.
    Inventor: Toshio Okuhara
  • Publication number: 20090117384
    Abstract: Disclosed herein are compositions of metal oxide nanoparticles having regular polyhedral nanocavities, where the metal oxide can be titania, and where the nanoparticles be nanorods. Also disclosed are titania nanoparticles with nanocavities that are doped with dopants. Methods of making metal oxide nanoparticles with nanocavities are also disclosed. Also disclosed are ultraviolet-blocking compositions including metal oxide nanoparticles with nanocavities, as well as methods of enhancing ultraviolet absorbance efficiency of an ultraviolet blocking composition. Additional uses of metal oxide nanoparticles with nanocavities include solar energy conversion systems and lithium-ion batteries.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 7, 2009
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Weiqiang Han
  • Patent number: 7524482
    Abstract: The invention relates to a titanium oxide-based polymer composition. The inventive composition comprises a TiOx(OH)y(H2O)z (x+y+z=3) titanium oxide-based polymer in the form of a gel or sol. Said polymer, which has a one-dimensional (1D) structure, is made from concentrically-wound fibers having a periodicity which is deduced from the spacing between said fibers, of between 3.5 ? and 4 ?. Each fiber comprises TiO6octahedrons and each TiO6octahedron shares two opposite edges with two adjacent octahedrons (2×2.92 ?) in order to form infinite chains which develop along the axis of a fiber. According to the invention, two adjacent chains form double lines as a result of the shared edges (2×3.27 ?). The inventive polymer is suitable for use as a photosensitive element in a photovoltaic cell, such as a sunscreen for a window.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: April 28, 2009
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Luc Brohan, Hari Sutrisno, Yves Piffard, Maria Teresa Caldes-Rouillon, Olivier Joubert, Eric Puzenat, Annabelle Rouet
  • Patent number: 7524474
    Abstract: The invention concerns a process for preparing an oxide based on zirconium and titanium in which a liquid medium containing a zirconium compound and a titanium compound is formed; said medium is then heated; the precipitate obtained from the end of the preceding step is recovered and optionally, said precipitate is calcined. The invention also concerns an oxide based on zirconium and titanium. Said oxide can comprise in the range 30% to 40% by weight of titanium oxide and in this case it has a pure ZrTiO4 type structure or a mixture of phases of structure type ZrTiO4 and structure type anatase. Said oxide can also comprise in the range 10% to 20% by weight of titanium oxide and it then has a specific surface area of at least 40 m2/g after calcining for 5 hours at 800° C.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: April 28, 2009
    Assignee: Rhodia Electronics & Catalysis
    Inventor: Catherine Hedouin
  • Patent number: 7513061
    Abstract: There has been achieved a sludge dehydrating processor with less mechanical operation and with satisfactory dehydrating efficiency and heating efficiency. In order to process and convert sludge including an organic substance into solid fertilizer, a heating treatment zone for feeding and sterilizing an object to be treated and a dehydrating treatment/retrieving zone for separating water from the object to be treated and retrieving a treated object are provided. In the heating treatment zone, induction heating for efficiently heating the object to be treated without rotating a kiln body is introduced. In the dehydrating treatment/retrieving zone, a vortex air current producing mechanism for efficiently drying the object to be treated without rotating a dehydrating treatment chamber is introduced.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: April 7, 2009
    Assignees: Dai-Ichi High Frequency Co., Ltd., Bapic Incorporated
    Inventors: Kotaro Hirayama, Alden D. Pritchard
  • Publication number: 20090087716
    Abstract: One embodiment of the invention includes an assembly of metal oxide comprising valve metal oxide nanotubes.
    Type: Application
    Filed: September 27, 2007
    Publication date: April 2, 2009
    Applicant: GM Global Technology Operations, Inc.
    Inventors: Mahmoud H. Abd Elhamid, Gayatri Vyas Dadheech, Curtis A. Wong, Youssef M. Mikhail, Michael J. Lukitsch
  • Publication number: 20090074655
    Abstract: Methods of sol-gel processing for preparing of gels and nanoparticles are described. The invention also relates to gels and nanoparticles prepared by the described methods. A preferable embodiment describes ZrO2 nanoparticles produced by sol gel processing by using sucrose and pectin as polymerization agents.
    Type: Application
    Filed: December 1, 2006
    Publication date: March 19, 2009
    Inventor: Crina Silvia Suciu
  • Publication number: 20090061257
    Abstract: The invention provides flaky titanic acid having polymerizable functional groups, a suspension of the same, titanic acid coating films excellent in tight adhesion, and resin bases with titanic acid coating films, namely, flaky titanic acid obtained by treating a layered titanate with an acid and then making an organic basic compound act on the obtained product to conduct interlaminar swelling or delamination, characterized in that at least part of the organic basic compound is one having a polymerizable functional group such as acryl or methacryl and, preferably, in that the layered titanate is one represented by the general formula: AxMy?zTi2?(y+z)O4 [wherein A and M are different from each other and are each a mono- to tri-valent metal; ? represents a Ti-defective site; x is a positive real number satisfying the relationship: 0<x<1; and y and z are 0 or positive real numbers satisfying the relationship: 0<y+z<1].
    Type: Application
    Filed: August 10, 2006
    Publication date: March 5, 2009
    Inventors: Minoru Yamamoto, Takuya Nomoto
  • Publication number: 20090062556
    Abstract: A carrier for a catalyst useful for the epoxidation of an olefin which comprises an inert, refractory solid carrier is provided. The carrier has no or little absolute volume from small pores, of less than 1 micrometer, and large pores, of above 5 micrometer. By “no or little absolute volume from small pores of less than 1 micron” it is meant that the pore volume of such pores is less than 0.20 ml/g. By “no or little absolute volume from large pores of above 5 micron” it is meant that the pore volume of such pores is less than 0.20 ml/g. The invention further provides a catalyst useful for the epoxidation of an olefin supported on such a carrier and a process for the oxidation of an olefin, especially ethylene, to an olefin oxide, especially ethylene oxide.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Applicant: SD LIZENZVERWERTUNGSGESELLSCHAFT MBH & CO. KG
    Inventor: Serguei Pak
  • Patent number: 7491349
    Abstract: Disclosed is a titanium oxynitride with excellent hiding properties (light-blocking properties) which is also excellent in degree of blackness and oxidation stability. Specifically disclosed is a titanium oxynitride having a chemical composition expresses as TiNxOy.nSiO2 (wherein Ti represents titanium atoms; N represents nitrogen atoms; O represents oxygen atoms; Si represents silicon atoms; x represents the ratio of nitrogen atoms relative to titanium atoms, y represents the ratio of oxygen atoms relative to titanium atoms, and x and y are respectively a real number of more than 0 but less than 2; and n represents the molar ratio of SiO2 relative to TiNxOy which is a real number within a range of 0?n?0.05). This titanium oxynitride contains nitrogen atoms represented by N in an amount of not less than 17% by weight but less than 23% by weight, while having a specific surface area of 5-30 m2/g and a crystallite size determined by using an X-ray diffractometer of 17-25 nm.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: February 17, 2009
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Hideo Takahashi, Kaoru Isobe, Katsuichi Chiba, Yuichi Yasuda
  • Patent number: 7488464
    Abstract: Methods and systems for processing metal oxides from metal containing solutions. Metal containing solutions are mixed with heated aqueous oxidizing solutions and processed in a continuous process reactor or batch processing system. Combinations of temperature, pressure, molarity, Eh value, and pH value of the mixed solution are monitored and adjusted so as to maintain solution conditions within a desired stability area during processing. This results in metal oxides having high or increased pollutant loading capacities and/or oxidation states. These metal oxides may be processed according to the invention to produce co-precipitated oxides of two or more metals, metal oxides incorporating foreign cations, metal oxides precipitated on active and inactive substrates, or combinations of any or all of these forms.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: February 10, 2009
    Assignee: EnviroScrub Technologies Corporation
    Inventors: Charles F. Hammel, Richard M. Boren
  • Patent number: 7482382
    Abstract: The present invention is directed to novel sol-gel methods in which metal oxide precursor and an alcohol-based solution are mixed to form a reaction mixture that is then allowed to react to produce nanosized metal oxide particles. The methods of the present invention are more suitable for preparing nanosized metal oxide than are previously-described sol-gel methods. The present invention can provide for nanosized metal oxide particles more efficiently than the previously-described sol-gel methods by permitting higher concentrations of metal oxide precursor to be employed in the reaction mixture. The foregoing is provided by careful control of the pH conditions during synthesis and by ensuring that the pH is maintained at a value of about 7 or higher.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: January 27, 2009
    Assignees: The Texas A&M University System, Kaneka Corporation
    Inventors: Yuntao Li, Hung-Jue Sue, Riichi Nishimura, Nobuo Miyatake