Group Ivb Metal (ti, Zr, Or Hf) Patents (Class 423/608)
  • Patent number: 7172747
    Abstract: Spiral shaped fibers were utilized to prepare completely novel metal oxide nanotubes comprising solely metal oxides. The metal oxide nanotubes comprise solely a hollow cylinder shaped metal oxide which may contain hydroxyl groups constituting a double helix and having hole diameter distributions containing two peak hole diameters ranging from 1 to 2 nm and from 3 to 7 nm. The tubes may be obtained by forming spiral shaped fibers from a solution of compound 1 and compound 2 and using the fibers as a template for making the nanotubes. The hydrogen adsorption and storage capacity of the metal oxide nanotubes are extremely good.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: February 6, 2007
    Assignees: Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology
    Inventors: Toshimi Shimizu, John Hwa Jung
  • Patent number: 7169375
    Abstract: Disclosed is a method of preparing treated metal oxide nanoparticles from sols prepared from metal alkoxides and organosilanes. The treated nanoparticles are useful high refractive index additives in the manufacture of optical articles.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: January 30, 2007
    Assignee: General Electric Company
    Inventor: Bret Ja Chisholm
  • Patent number: 7157406
    Abstract: Catalysts or carriers which consist essentially of monoclinic zirconium dioxide are prepared by pecipitation of zirconium salts with ammonia, by adding a zirconyl nitrate or zirconyl chloride solution to an aqueous ammonia solution at a decreasing pH from 14 to 6 and drying, calcining and pelletizing the product.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: January 2, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Matthias Irgang, Michael Hesse, Werner Schnurr
  • Patent number: 7157074
    Abstract: There are provided a method for producing a fine zirconium oxide powder which has a narrower particle size distribution than that of conventional zirconium oxide powders and which is capable of lowering the starting temperature in the sintering reaction of a reactant to which the fine zirconium oxide powder is added. When a hydrated zirconium is calcined to be dispersed in a solvent with a dispersing agent, an alcohol (e.g., IPA or t-butanol) having a branched chain structure, not a straight chain structure, is used as the solvent, and a dicarboxylic acid (e.g., maleic acid or oxalic acid) having two carboxyl groups in its molecule is used as the dispersing agent. Thus, a fine zirconium oxide powder having a narrow particle size distribution and a small particle size at 90 vol % is obtained.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: January 2, 2007
    Assignee: Dowa Mining Co., Ltd.
    Inventor: Kentaro Asai
  • Patent number: 7150862
    Abstract: A method of manufacturing a powder, by which it is possible to adjust the strength of the obtained powder is provided. The manufacturing method of a powder involves a step of preparing a slurry containing agglomerated particles of a synthetic material which is produced by reacting a first material and a second material under agitation, and a step of drying the slurry to obtain a powder of the synthetic material. The method has a feature that the particle size of the agglomerated particles is adjusted by, in the step of preparing a slurry, controlling agitation power for agitating the slurry. In the step of preparing a slurry, it is preferable that the slurry is initially agitated at a first agitation power, and at the time when the viscosity of the slurry approaches its maximum value, or at the time when the pH value of the slurry reaches the vicinity of the isoelectric point of the synthetic material, the agitation power is lowered from the first agitation power to a second agitation power.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: December 19, 2006
    Assignee: PENTAX Corporation
    Inventors: Tsuyoshi Ishikawa, Masanori Nakasu, Takatoshi Kudou, Yoshiyuki Ogawara, Tsutomu Takahashi, Katsumi Kawamura
  • Patent number: 7147832
    Abstract: Provided is a process for isolating zirconium peroxosulfate and its use, either as is or to prepare high purity zirconium compounds including powders of zirconium dioxide and stabilized zirconia. The process is based on precipitating a peroxide compound from an acidic peroxide solution of zirconium and provides a simple, economical method for producing the zirconium peroxosulfate powder and its derivatives with degree of zirconium recovery more than 99%. This process further provides an effective method for the separation and purification of zirconium from a variety of elements and/or naturally occurring ores.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: December 12, 2006
    Inventors: Vladimir Belov, Irina Belov
  • Patent number: 7135156
    Abstract: Methods of producing zirconium oxide compositions and using same are provided. The zirconium oxide compositions in crystalline form can be prepared by a synthetic process wherein the hydrolysis of zirconyl chloride and particle formation can be achieved simultaneously. Alternatively, the particle formation can occur first and then followed by hydrolysis with a base solution. The processes utilize a zirconyl salt solution that includes a zirconyl salt in isopropanol and water.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: November 14, 2006
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Ton That Hai, Mark Nordhaus, Paul Sanders, Cong Jiang, Sujatha Karoor
  • Patent number: 7132582
    Abstract: The present invention relates to a catalytic process for preparation of isolongifolene using nanocrystalline solid super acid. This process is an eco-friendly, single step, solvent free catalytic process for the preparation of a tricyclic sesqui-terpene hydrocarbon, isolongifolene. More particularly, the present invention provides a process for the catalytic isomerisation of longifolene to iso-longifolene using nano-crystalline sulfated zirconia as a solid super acid catalyst.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: November 7, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Raksh Vir Jasra, Beena Tyagi, Manish Kumar Mishra
  • Patent number: 7125536
    Abstract: This invention relates to a composition comprising nano-structured metal oxide particles (particularly, zirconia) and at least one stabilizing agent, a method to produce the composition, and a method to produce the thermally stable nano-structured particles. The method to produce the nano-structured particles comprises first preparing a base solution and a nanoparticle precursor solution, then combining these solutions at a final pH 7 or greater to precipitate a colloidal hydrous oxide. The colloidal hydrous oxide is then treated with at least one silicate, phosphate, or aluminum phosphate stabilizing agent and dried. These nano-structured particle products have high thermal stability and are particularly advantageous in applications as catalysts or catalyst supports that operate at high temperatures.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: October 24, 2006
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, BillieJo Monk, Corinne Lehaut
  • Patent number: 7122168
    Abstract: In a metal oxide nanoparticle and a synthetic method thereof, and in particular to maghemite (?-Fe2O3) nanoparticles usable as a superhigh density magnetic recording substance by having good shape anisotropy and magnetic characteristics, hematite (?-Fe2O3) nanoparticles usable as a precursor to the maghemite or a catalyst, maghemite and hematite-mixed nanoparticles and a synthetic method thereof, the method for synthesizing metal oxide nanoparticles includes forming a reverse micelle solution by adding distilled water, a surfactant and a solvent to metallic salt not less than trivalent, precipitating and separating gel type amorphous metal oxide particles by adding proton scavenger to the reverse micelle solution; adjusting a molar ratio of metal oxide to the surfactant by washing the gel type amorphous metal oxide particles with a polar solvent; and crystallizing metal oxide nanoparticles through heating or reflux after dispersing the gel type amorphous metal oxide particles in a non-polar solvent having a h
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: October 17, 2006
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyoungja Woo, Jae-Pyoung Ahn, Hae-Weon Lee
  • Patent number: 7118727
    Abstract: The present invention provides a process for producing particles, such as oxide nanoparticles, in a substantially water-free environment. The process involves mixing at least one metal compound of the formula MX(m?n) with at least one surfactant and at least one solvent, wherein M is an electropositive element of Groups 1–15; each X is independently selected from the group consisting of O1/2, F, Cl, Br, I, OR, O2CR, NR2, and R; each R is independently a hydrocarbyl group; n is equal to ½ the oxidation state of the metal M in the product particle; and m is equal to the oxidation state of the element M. The components are typically combined to form a mixture which is thermally treated for a time period sufficient to convert the metal compound into particles of the corresponding oxide, having sizes in a range between about 0.5 nanometer and about 1000 nanometers.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: October 10, 2006
    Assignee: General Electric Company
    Inventor: Darryl Stephen Williams
  • Patent number: 7090821
    Abstract: The present invention relates to a metal oxide powder for high precision polishing and prepartion thereof, comprising aggregates formed by cohesion of primary particles, which has a cohesive degree (?) of 1.1 to 2.0 and a cohesive scale (?) of 3 to 10, the cohesive degree (?) and the cohesive scale (?) being defined by formula (I) and formula (II), respectively: ?=6/(S×?×d(XRD)) ??(I) ?=weight average particle diameter/d(XRD) ??(II) wherein, S is the specific surface area of the powder; ?, the density; and d(XRD), the particle diameter of the powder determined by X-ray diffraction analysis. In accordance with the present invention, it is possible to provide a high polishing speed and reduce scratches.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: August 15, 2006
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Hyukjin Kwon, Myungho Ahn, Youngkwon Joung, Inyeon Lee
  • Patent number: 7081234
    Abstract: A process of treating metal oxide nanoparticles that includes mixing metal oxide nanoparticles, a solvent, and a surface treatment agent that is preferably a silane or siloxane is described. The treated metal oxide nanoparticles are rendered hydrophobic by the surface treatment agent being surface attached thereto, and are preferably dispersed in a hydrophobic aromatic polymer binder of a charge transport layer of a photoreceptor, whereby ?—? interactions can be formed between the organic moieties on the surface of the nanoparticles and the aromatic components of the binder polymer to achieve a stable dispersion of the nanoparticles in the polymer that is substantially free of large sized agglomerations.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: July 25, 2006
    Assignee: Xerox Corporation
    Inventors: Yu Qi, Nan-Xing Hu, Ah-Mee Hor, Cheng-Kuo Hsiao, Yvan Gagnon, John F. Graham
  • Patent number: 6994837
    Abstract: A process and apparatus for the synthesis of metal oxide nanopowder from a metal compound vapour is presented. In particular a process and apparatus for the synthesis of TiO2 nanopowder from TiCl4 is disclosed. The metal compound vapour is reacted with an oxidizing gas in electrically induced RF frequency plasma thus forming a metal oxide vapour. The metal oxide vapour is rapidly cooled using a highly turbulent gas quench zone which quickly halts the particle growth process, yielding a substantial reduction in the size of metal oxide particles formed compared with known processes. The metal compound vapour can also react with a doping agent to create a doped metal oxide nanopowder. Additionally, a process and apparatus for the inline synthesis of a coated metal oxide is disclosed wherein the metal oxide particles are coated with a surface agent after being cooled in a highly turbulent gas quench zone.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: February 7, 2006
    Assignee: Tekna Plasma Systems, Inc.
    Inventors: Maher I. Boulos, Jerzy W. Jurewicz, Christine A. Abdel Messih Nessim
  • Patent number: 6984369
    Abstract: Disclosed is a process for making surfactant capped nanocrystals of metal oxides which are dispersable in organic solvents. The process comprises decomposing a metal cupferron complex of the formula MXCupX, wherein M is a metal, and Cup is a N-substituted N-Nitroso hydroxylamine, in the presence of a coordinating surfactant, the reaction being conducted at a temperature ranging from about 150 to about 400° C., for a period of time sufficient to complete the reaction. Also disclosed are compounds made by the process.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: January 10, 2006
    Assignee: The Regents of the University of California
    Inventors: A. Paul Alivisatos, Joerg Rockenberger
  • Patent number: 6984745
    Abstract: The synthesis, processing and test of improved lead zirconate titanate (PZT) precursor materials useful for making bulk, thick films and thin films of PZT are provided. PZT is an oxide ceramic extensively used for its piezoelectric properties. A variety of devices made from piezoelectric PZT are known. A soluble spin-on precursor is provided that is compatible with and soluble in non-toxic and environmentally benign solvents (including water), has high stability and long shelf life, and provides high quality PZT films.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: January 10, 2006
    Assignee: Raytheon Company
    Inventors: Thomas K. Dougherty, John J. Drab
  • Patent number: 6982073
    Abstract: A process to produce stabilized zirconia from a solution of zirconium salt and a stabilizing agent. The zirconium salt may include zirconium oxysulfate, zirconium oxychloride, zirconium oxynitrate, zirconium nitrate, and other water-soluble zirconium salts. The stabilizing agent may include calcium, magnesium, yttrium salts of oxides and rare earth oxides. The process is conducted by evaporation of the solution above the boiling point of the solution but below the temperature where there is significant crystal growth. The evaporation step is followed by calcination to produce the desired nano-sized structure. Further processing by sintering may be applied to produce solid structures or by milling and classification to produce material for thermal spray coating.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: January 3, 2006
    Assignee: Altair Nanomaterials Inc.
    Inventors: Bruce J. Sabacky, Timothy M. Spitler
  • Patent number: 6965006
    Abstract: A method of synthesizing metal alkoxide polymers is provided, for use, as an example, in synthesizing hybrid organic/inorganic materials with low optical absorption for optical applications. The method involves a plurality of acidolysis steps involving acidolysis of a metal alkoxide compound with an acid to produce an intermediate acidolysed solution, and combining and condensing the intermediate acidolysed solutions to produce the metal alkoxide polymer.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: November 15, 2005
    Assignee: rpo Pty Ltd.
    Inventor: Congji Zha
  • Patent number: 6936235
    Abstract: The present invention discloses a process for the preparation of zirconium tungstate (ZrW2O8) ceramic body, comprising a reactive sintering step to react and sinter powders of the raw materials comprising a Zr-containing compound and a W-containing compound to form a zirconium tungstate ceramic body. The addition of zirconium tungstate powders as the seeds in the process can effectively reduce the steps, shorten the preparation time, lower the sintering temperature and duration, save the cost, and provide the zirconium tungstate ceramic body with uniform microstructure. Also, a process for the preparation of modified zirconium tungstate ceramic body is disclosed, by forming a second phase in the zirconium tungstate ceramic body to tune the thermal expansion coefficient of the zirconium tungstate ceramic body. The present invention also relates to the use of the modified zirconium tungstate ceramic body to provide a temperature compensated fiber bragg grating (FBG) device.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: August 30, 2005
    Assignee: Broptics Technology Inc.
    Inventors: Hui-Ling Wen, John Lin, Yu-Lung Lo
  • Patent number: 6899858
    Abstract: A method of preparing a hafnium nitrate thin film includes placing phosphorus pentoxide in a first vessel; connecting the first vessel to a second vessel containing hafnium tetrachloride; cooling the second vessel with liquid nitrogen; dropping fuming nitric acid into the first vessel producing N2O5 gas; allowing the N2O5 gas to enter the second vessel; heating the first vessel until the reaction is substantially complete; disconnecting the two vessels; removing the second vessel from the liquid nitrogen bath; heating the second vessel; refluxing the contents of the second vessel; drying the compound in the second vessel by dynamic pumping; purifying the compound in the second vessel by sublimation to form Hf(NO3)4, and heating the Hf(NO3)4 to produce HfO2 for use in an ALCVD process.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: May 31, 2005
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, David R. Evans, Sheng Teng Hsu
  • Patent number: 6884752
    Abstract: Method for producing novel photochemically-active metal oxide-containing aqueous compositions such as TiO2 compositions coated or sprayed and dried under ambient conditions to form novel photochemically-active, colorless coatings having strong wetability and adhesion to clear substrates such as window glass. Preferably the present compositions include a suitable wetting agent or combination of agents to improve the wetability of the Titanium peroxide-containing amorphous film, allowing thinner films to be readily applied. Also the inclusion of an acrylic aliphatic urethane polymer can replace wholly or partially the titanium peroxide sol and provide additional film forming and wetability properties. The acrylic urethane polymer reduces or eliminates the amount of titanyl peroxide that is required and thereby reduces or eliminates the yellow color.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: April 26, 2005
    Assignee: Prizmalite Industries, Inc.
    Inventor: John Andrews
  • Patent number: 6872402
    Abstract: Pyrogenically prepared silica doped with silver or silver oxide is prepared by feeding an aerosol into a flame such as is used for the preparation of pyrogenic silica, mixing the aerosol homogeneously with gas mixture before the reaction, then allowing the aerosol/gas mixture to react in a flame. The resulting pyrogenic silicas doped with silver or silver oxide are separated from the gas stream. The pyrogenic silica doped with silver or silver oxide by means of an aerosol can be used as a bactericidal filler.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: March 29, 2005
    Assignee: Degussa AG
    Inventors: Helmut Mangold, Rainer Golchert
  • Patent number: 6860933
    Abstract: A sol-gel process for producing layers of zirconium oxide is described which comprises the following stages: (i) production of a soluble, zirconium-containing powder by: (a) reaction of a zirconium alcoholate of the general formula Zr(OR)4, in which the residues R are the same or different and represent straight-chain, branched or cyclic alkyl or alkenyl residues with 1 to 10 carbon atoms, which optionally exhibit one or more carbonyl and/or ester and/or carboxyl functions, with one or more polar compounds having complexing, chelating properties, (b) heating the solution, (c) mixing the solution with water, optionally in the presence of a catalyst, (d) concentrating the solution until a powder is obtained, (ii) dissolving the powder forming a sol, (iii) coating a substrate with the sol, and (iv) annealing the coated substrate.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: March 1, 2005
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung
    Inventors: Peer Löbmann, Walther Glaubitt, Dieter Sporn
  • Patent number: 6858173
    Abstract: Composites of ceramic materials, notably alumina or metal oxides in general, with single-wall carbon nanotubes are consolidated by electric field-assisted sintering to achieve a fully dense material that has an unusually high fracture toughness compared to the ceramic alone, and also when compared to composites that contain multi-wall rather than single-wall carbon nanotubes, and when compared to composites that are sintered by methods that do not include exposure to an electric field.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: February 22, 2005
    Assignee: The Regents of the University of California
    Inventors: Guodong Zhan, Amiya K. Mukherjee, Joshua D. Kuntz, Julin Wan
  • Patent number: 6858562
    Abstract: A catalyst of a water insoluble vanadyl sulfate or a complex catalyst, in which a specific oxide and a specific sulfate are combined to the water insoluble vanadyl sulfate are excellent not only in their activity, durability and SO2 resistance, not only in substantially no oxidization of SO2 to SO3 as in HCl resistant. Therefore, using this catalyst, a decomposition treatment of an organic halide(s) can be carried out with high efficiency and good stability. In particular, a efficient decomposition treatment of an organic halides(s) can be carried out also in the cases that dust is coexist; the gas to be treated contains SOX or HCl; or they generate in the decomposition area.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: February 22, 2005
    Assignees: Mitsui Chemicals, Inc., UBE Industries, Ltd.
    Inventors: Isao Takasu, Kenji Fujita
  • Patent number: 6841143
    Abstract: This invention provides mesostructured oxide ceramics and a synthesizing method thereof, the synthesizing method employs a water-based solvent containing a metallic salt or metal complex as the ceramics precursor, template formed from an organic compound or the association thereof, and a precipitant, wherein mesostructured oxide ceramics are obtained from self-assembled oxide ceramics and organic substance by directly extracting oxide ceramics at a low temperature of 200° C. or less by utilizing a homogenous precipitation reaction from said ceramics precursor under the coexistence of a nanometer-sized template in the solvent, and separating and collecting the obtained precipitation, and mesostructured oxide ceramics is prepared by employing the synthesizing method described above.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: January 11, 2005
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Masahiko Inagaki, Atsushi Hozumi, Kei Teraoka, Kaori Nishizawa, Fukue Nagata, Yoshiyuki Yokogawa, Tetsuya Kameyama
  • Patent number: 6838404
    Abstract: A method of making a superconducting structure includes depositing a metal alkoxide on a surface of a metal and hydrolyzing the metal alkoxide on the surface to form a pinhole-free film. The metal is a superconductor. The metal alkoxide may be a compound of formula (I): M4(OPrn)16??(I); where M is zirconium or hafnium, and the purity of the compound is at least 97% as measured by NMR spectroscopy.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: January 4, 2005
    Assignee: Board of Trustees of University of Illinois
    Inventors: Patrick J. Hentges, Laura H. Greene, Margaret Mary Pafford, Glenn Westwood, Walter G. Klemperer
  • Publication number: 20040253174
    Abstract: The present invention provides a process for producing particles comprising mixing, in a substantially water-free environment, at least one metal compound of the formula M(O2CR)nX(m-n)Lp wherein M is an electropositive element of Groups 1-15, each X is independently selected from the group consisting of O1/2, F, Cl, Br, I, OR, O2CR, NR2, and R, each R is independently a hydrocarbyl group, each L is independently a Lewis base ligand, n is equal to ½ the oxidation state of the metal M in the product particle, m is equal to the oxidation state of M in the compound M(O2CR)nX(m-n)Lp and p≧0; at least one surfactant; and at least one solvent wherein the mixture is thermally treated for a time sufficient to convert the at least one metal compound into particles of the corresponding oxide having sizes in a range between about 0.5 nanometers and about 1000 nanometers.
    Type: Application
    Filed: June 16, 2003
    Publication date: December 16, 2004
    Applicant: General Electric Company
    Inventor: Darryl Stephen Williams
  • Publication number: 20040248725
    Abstract: A photocatalyst according to the invention comprises a photocatalytic film of a compound of titanium and oxygen and is characterized in that the photocatalytic film is made porous and has 0.02 or higher value as a value calculated by dividing the arithmetical mean deviation of profile Ra with the film thickness. The photocatalytic film can also be specified by the intensity ratio between x-ray diffraction peaks of the anatase structure of titanium oxide. Such a porous photocatalytic material can be obtained by a reactive sputtering method in conditions of adjusting film formation parameters such as the film formation rate, the sputtering pressure, the substrate temperature, the oxygen partial pressure and the like in proper ranges, respectively, and the photocatalyst material is provided with excellent decomposition and hydrophilization capability.
    Type: Application
    Filed: July 22, 2004
    Publication date: December 9, 2004
    Inventors: Junji Hiraoka, Takahiro Doke, Hisato Haraga, Daisuke Noguchi, Yoshio Kawamata
  • Publication number: 20040238410
    Abstract: This invention relates to a 4 group metal oxide and to a method for preparation thereof and the 4 group metal oxide prepared by adding a particle growth inhibiter to a hydrosol a hydrogel or a dried product of a hydrous 4 group metal oxide represented by MO(2-x)(OH)2x (wherein M denotes a 4 group metal and x is a number greater than 0.1 or x>0.1) followed by drying and calcining has a specific surface area of 80 m2/g or more, a pore volume of 0.2 ml/g or more and a pore sharpness degree of 50% or more and excellent heat stability and is useful for a catalyst or a catalyst carrier in which a catalyst metal is dispersed to a high degree.
    Type: Application
    Filed: January 26, 2004
    Publication date: December 2, 2004
    Inventors: Shinichi Inoue, Akihiro Mutou, Tateo Ono, Toshiji Makabe, Toru Takatsuka, Hisashi Nomura
  • Patent number: 6818196
    Abstract: A method of making sodium zirconium carbonate is described which involves forming a mixture of zirconium oxychloride with soda ash and then heating at a sufficient temperature and for a sufficient time to form the sodium zirconium carbonate. Subsequent washing and filtration steps can further form parts of this process. A novel sodium zirconium carbonate is further described which contains from about 2 wt % to about 5 wt % Na+; from about 44 wt % to about 50 wt % ZrO2; from about 12 wt % to about 18 wt % CO32−; and from about 32 wt % to about 35 wt % H2O. Methods of making zirconium basic carbonate are further described which involve titrating an aqueous slurry of sodium zirconium carbonate to a pH of from about 3.5 to about 4.0 with an acidic agent wherein the sodium zirconium carbonate has a moisture content of from about 15% to about 25% LOD in solid form. The process further involves washing the aqueous slurry containing the formed zirconium basic carbonate with water.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: November 16, 2004
    Assignee: Renal Solutions, Inc.
    Inventor: Raymond J. Wong
  • Publication number: 20040219087
    Abstract: A metal oxide powder except &agr;-alumina, comprising polyhedral particles having at least 6 planes each, a number average particle size of from 0.1 to 300 &mgr;m, and a D90/D10 ratio of 10 or less where D10 and D90 are particle sizes at 10% and 90% accumulation, respectively from the smallest particle size side in a cumulative particle size curve of the particles. This metal oxide powder contains less agglomerated particles, and has a narrow particle size distribution and a uniform particle shape.
    Type: Application
    Filed: June 27, 2001
    Publication date: November 4, 2004
    Inventors: Masahide Mohri, Hironobu Koike, Shinichiro Tanaka, Tetsu Umeda, Hisashi Watanabe, Kunio Saegusa, Akira Hasegawa
  • Patent number: 6803027
    Abstract: A process is disclosed for forming a nanosize ceramic powder. A precursor ceramic material is formed of a fugitive constituent and a non-soluble constituent in a single phase. The precursor is contacted with a selective solvent (water, acid, etc.) to form a solution of the fugitive constituent in the solvent and a residue of the non-soluble constituent. The precursor is sufficiently reactive with the solvent to form the solution of the fugitive constituent in the solvent and form the nondissolved residue of the non-soluble constituent. The precursor material and the non-soluble residue are sufficiently insoluble in the solvent such that there is insufficient precursor material and non-soluble residue in solution to deposit and precipitate upon the residue of the non-soluble-constituent.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: October 12, 2004
    Assignee: University of Utah Research Foundation
    Inventors: Anil Vasudeo Virkar, Sanjeevani Vidyadhar Bhide
  • Publication number: 20040191162
    Abstract: Methods of producing zirconium oxide compositions and using same are provided. The zirconium oxide compositions in crystalline form can be prepared by a synthetic process wherein the hydrolysis of zirconyl chloride and particle formation can be achieved simultaneously. Alternatively, the particle formation can occur first and then followed by hydrolysis with a base solution. The processes utilize a zirconyl salt solution that includes a zirconyl salt in isopropanol and water.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Inventors: Ton That Hai, Mark Nordhaus, Paul Sanders, Cong Jiang, Sujatha Karoor
  • Publication number: 20040179994
    Abstract: A process for preparing a calcined zirconia extrudate comprising the steps of:
    Type: Application
    Filed: January 8, 2004
    Publication date: September 16, 2004
    Inventors: Laurent Alain Fenouil, Jacobus Johannes Cornelis Geerlings, Hans Michiel Huisman, Peter William Lednor, Carolus Matthias Anna Maria Mesters, Johannes Jacobus Maira Van Vlaanderen
  • Patent number: 6780393
    Abstract: A method of producing fine particles of an oxide of a metal, comprising the steps of: preparing an acidic solution which contains ions of the metal; precipitating fine particles of a hydroxide of the metal by adding an alkaline solution to the acidic solution; collecting the fine particles of the hydroxide of the metal precipitated in a mixed solution of the acidic solution and the alkaline solution; mixing fine particles of a carbon with the collected fine particles of the hydroxide of the metal; and heat-treating a mixture of the fine particles of the hydroxide of the metal and the fine particles of the carbon at a predetermined temperature in a non-reducing atmosphere, whereby the fine particles of the oxide of the metal are produced.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: August 24, 2004
    Assignees: National Institute of Advanced Industrial Science and Technology, Noritake Co., Limited
    Inventors: Norimitsu Murayama, Woosuck Shin, Sumihito Sago, Makiko Hayashi
  • Patent number: 6773636
    Abstract: There are provided: (1) a process for producing an InSbO4-containing transparent electroconductive film, which comprises the step of sputtering simultaneously: (i) a target (A) for sputtering, which comprises In, Sb and O, and whose atomic ratio of Sb/In is from 0.9 to 1.1, and (ii) a target (B) for sputtering, which comprises Sb, (2) a transparent eletroconductive film, which contains In, Sb and O, and whose atomic ratio of Sb/In is from 0.8 to 1.5, and (3) a target for sputtering, which contains In, Sb and O, and whose atomic ratio of Sb/In is from 1.2 to 2.0.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: August 10, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Takeshi Hattori, Kunio Saegusa, Yuzo Shigesato
  • Patent number: 6761866
    Abstract: The present invention relates to a single step process for the synthesis of nanoparticles of phase pure ceramic oxides of a single or a multi-component system comprising one or more metal ions. The process comprises preparing a solution containing all the required metal ions in stoichiometric ratio by dissolving their respective soluble salts in an organic solvent or in water, preparing a precursor, adjusting the nitrate/ammonia content in the system, and heating the system.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: July 13, 2004
    Assignee: Council of Scientific and Industrial Research
    Inventors: Jose James, Rajan Jose, Asha Mary John, Jacob Koshy
  • Publication number: 20040127354
    Abstract: Method for producing novel photochemically-active metal oxide-containing aqueous compositions such as TiO2 compositions coated or sprayed and dried under ambient conditions to form novel photochemically-active, colorless coatings having strong wetability and adhesion to clear substrates such as window glass. Preferably the present compositions include a suitable wetting agent or combination of agents to improve the wetability of the Titanium peroxide-containing amorphous film, allowing thinner films to be readily applied. Also the inclusion of an acrylic aliphatic urethane polymer can replace wholly or partially the titanium peroxide sol and provide additional film forming and wetability properties. The acrylic urethane polymer reduces or eliminates the amount of titanyl peroxide that is required and thereby reduces or eliminates the yellow color.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Inventor: John Andrews
  • Publication number: 20040120884
    Abstract: Nanoparticulate titanium dioxide coating produced by educing flocculates of titanium dioxide nanoparticles from a titanyl sulfate solution and dispersing the nanoparticles in a polar sol-forming medium to make a sol suitable as a coating usable to impart photocatalytic activity, U.V. screening properties, and fire retardency to particles and to surfaces. The photocatalytic material and activity is preferably localized in dispersed concentrated nanoparticles, spots or islands both to save costs and leverage anti-microbial effects.
    Type: Application
    Filed: November 28, 2003
    Publication date: June 24, 2004
    Inventor: Jonathan Sherman
  • Patent number: 6737376
    Abstract: Porous ceramics are described, which are produced by a) mixing an aqueous solution of a suitable ionotropically orientable polyanion, either with oxides, hydroxides or hydrated oxides, which are present in the form of a sol, of the metals Al, Zr, Ti and Nb, or with finely crystalline oxides, hydroxides or hydrated oxides, which are present in suspension, of these metals, or with finely crystalline tricalcium phosphate or apatite which are present in suspension, b) bringing the mixed sol obtained as in a) or the suspension obtained as in a) into contact with a solution of a salt of a di- or trivalent metal cation in order to produce an ionotropic gel body, c) compacting the gel body by introducing it into electrolyte solutions which further enhance the syneresis of the polyelectrolyte which was originally formed, d) washing the gel body with water and subsequently impregnating it with a readily volatile, water-miscible solvent, e) freeing the anhydrous gel body or gel bodies obtained as in d) from the
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: May 18, 2004
    Inventors: Klaus Heckmann, Thomas Wenger
  • Patent number: 6737380
    Abstract: A process for producing a solid acid catalyst, which comprises: adding a pseudoboehmite as a binder to a sulfated zirconium hydroxide, followed by kneading with an aqueous solution containing at least one metal of the Group VIII, or loading at least one metal of the Group VIII on a sulfated zirconium hydroxide, and then adding a pseudoboehmite as a binder thereto, followed by kneading with water, further followed by molding and calcining at a temperature of from 550 to 800° C.; a solid acid catalyst produced by the production process; and a method for hydrodesulfurizing and isomerizing a light hydrocarbon oil using the catalyst.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: May 18, 2004
    Assignees: Petroleum Energy Center, Cosmo Oil Co., Ltd.
    Inventors: Katsuya Watanabe, Takahito Kawakami, Koji Baba, Takao Kimura
  • Patent number: 6719821
    Abstract: The production and selection of precursor mixtures used to produce fine powders and methods for making fine powders using the selected precursor. The precursor mixture comprises at least one metal containing precursor, the metal containing precursor has an average molecular weight of less than 2000 grams per unit mol of the metal, the metal containing precursor has a normal boiling point greater than 350K, and the viscosity of the precursor mixture is between 0.1 to 250 cP. The precursor mixture is processed under conditions that produce a fine powder from the precursor mixture. Fine powders produced are of size less than 100 microns, preferably less than 10 micron, more preferably less than 1 micron, and most preferably less than 100 nanometers.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: April 13, 2004
    Assignee: NanoProducts Corporation
    Inventors: Tapesh Yadav, Elena Mardilovich
  • Publication number: 20040067193
    Abstract: A titanium oxide particle showing high photocatalytic activity with a small particle size can be efficiently produced in a method which comprises the steps of (1) mixing together or sequentially a titanium compound, a base and a foaming agent, wherein the hydroxyl group provided by the base is in a molar amount of about 2.1 times to about 3 times of the titanium atom in the titanium compound; and (2) calcining a solid resulting from said mixing together or sequentially of said titanium compound, said base and said foaming agent.
    Type: Application
    Filed: September 22, 2003
    Publication date: April 8, 2004
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshiaki Sakatani, Kensen Okusako, Hironobu Koike
  • Patent number: 6703334
    Abstract: The process produces a stabilized zirconia powder by first contacting zirconium basic carbonate particles with a stabilizer compound. This reacts the zirconium basic carbonate particles with the stabilizer compound through heterogeneous contact to form a stabilized zirconia precursor. The stabilizer compound is for stabilizing a phase structure selected from the group consisting of tetragonal phase, cubic phase and mixtures of tetragonal and cubic phases. And calcining the stabilized zirconia precursor removes gaseous by-products and forms the stabilized zirconia powder. The stabilized zirconia powder has a phase structure selected from the group consisting of tetragonal, cubic and mixtures of tetragonal and cubic.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: March 9, 2004
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Vladimir Belov, Irina Belov
  • Patent number: 6695907
    Abstract: Dispersions of pyrogenic oxides, doped using an aerosol, are prepared by mixing the oxide with a suspending agent and milling. The dispersions can be used to prepare inkjet paper.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: February 24, 2004
    Assignee: Degussa AG
    Inventors: Thomas Scharfe, Rainer Golchert, Helmut Mangold
  • Publication number: 20040026324
    Abstract: The invention provides transition metal oxide mesophase compositions that include a sulfur-containing anionic surfactant and processes for preparing them. The processes involve conversion of a transition metal oxide precursor to a transition metal oxide mesophase in the presence of a sulfur-containing anionic surfactant templating agent, under conditions effective for formation of a transition metal oxide mesophase composition that includes the surfactant. The invention further provides processes for replacing at least part of the surfactant in such a transition metal oxide mesophase composition with anions. The anions may be anions of one or more oxyacids, thereby producing a transition metal oxide mesophase composition that includes a first transition metal oxide and a lesser amount of a second transition metal oxide dispersed on the first metal oxide.
    Type: Application
    Filed: September 16, 2003
    Publication date: February 12, 2004
    Inventor: Victor Luca
  • Publication number: 20040022722
    Abstract: The present invention concerns a zirconia in the form of a fine powder, to a zirconium hydroxycarbonate and to processes for their preparation. The zirconia has a chlorine content of at most 300 ppm and a sulphur content of at most 30 ppm, and is in the form of a powder constituted either by agglomerates with an average size of at most 1.5 &mgr;m that can be disintegrated into aggregates with an average size in the range 0.1 &mgr;m to 0.6 &mgr;m, or aggregates with an average size in the range 0.1 &mgr;m to 0.6 &mgr;m. The zirconium hydoxycarbonate has the same chlorine and sulphur contents and following calcining, it results in the zirconia with the characteristics defined above. The zirconia of the invention can be used to produce condensers or oxygen probes, or it can be used in preparing catalysts.
    Type: Application
    Filed: June 23, 2003
    Publication date: February 5, 2004
    Inventor: Jean-Valery Martin
  • Publication number: 20040007531
    Abstract: The present invention features a method of making hydrous zirconium oxide having desirable properties, including resistance to moisture content, predetermined particle size, and developed porosity and surface area. The inventive material is suitable for use as an ion exchanger, a catalyst and a catalyst support. The process comprises providing a liquid comprising a zirconium compound and an alkali metal-containing reagent. The alkali metal-containing reagent may comprise a compound selected from the group consisting of MOH-M2SO4, MOH-M3PO4, and combinations thereof, where M is at least one of Li, Na and K. The zirconium compound may be treated with the alkali metal-containing reagent effective to form a mixture which achieves an uptake of alkali metal in an amount ranging from 0.5 to 2.5 meq/g. The mixture is reacted to form the hydrous zirconium oxide. A molar ratio of SO4/Zr and PO4/Zr in the mixture may range from 0.2-0.7:1. The mixture may be heated at a temperature ranging from 80 to 150° C.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Inventors: Anatoly I. Bortun, Clive J. Butler
  • Patent number: 6673331
    Abstract: A titanium hydroxide is provided which can be utilized for producing a photocatalyst exhibiting a superior photocatalytic activity by irradiation of visible light. The titanium hydroxide has a primary differential spectrum (of radial structure function in connection with titanium K absorption edge) having maximal intensities (U1 and U2) and minimal intensities (L1 and L2) at interatomic distances in the range of from 1.4 Å to 2.8 Å, the maximal intensities being at an interatomic distance of from 1.4 Å to 1.7 Å and of from 2.2 Å to 2.5 Å and the minimal intensities being at an interatomic distance of from 1.9 Å to 2.2 Å and of from 2.5 Å to 2.8 Å; and index X calculated by the equation X=(U2−L2)/(U1−L1) of about 0.06 or more.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: January 6, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshiaki Sakatani, Hiroyuki Ando, Hironobu Koike