Zinc Patents (Class 423/622)
  • Patent number: 10435309
    Abstract: A process for removing iodine using gold particles includes contacting a solution including iodine, with gold particles. The iodine is adsorbed onto the gold particles and then removed. A device for removing iodine using gold particles includes gold particles in a stationary phase and is configured to contact a solution including iodine, with gold particles, to thus adsorb the iodine onto the gold particles and remove the iodine.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: October 8, 2019
    Assignee: KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Jong Ho Jeon, Mi Hee Choi, Ha Eun Sim, Seong Jae Yun, Sang Hyun Park, Beom Su Jang, Dae Seong Choi, Dong Eun Lee, Eui Baek Byun
  • Patent number: 10008661
    Abstract: The invention relates to a piezoelectric lead-free material based on bismuth sodium titanate, to a method for the production thereof, and to the use thereof.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: June 26, 2018
    Assignee: CeramTec GmbH
    Inventors: Friederike Apel, Hans-Juergen Schreiner, Claudia Voigt
  • Patent number: 9861712
    Abstract: Provided are a preparation method of iron oxide-based paramagnetic or pseudo-paramagnetic nanoparticles, iron oxide-based nanoparticles prepared by the same, and a T1 contrast agent including the same. More particularly, the disclosure describes a method for preparation of iron oxide nanoparticles having a extremely small and uniform size of 4 nm or less based on thermal decomposition of iron oleate complex, iron oxide-based paramagnetic or pseudo-paramagnetic nanoparticles prepared by the same, and a T1 contrast agent including iron oxide-based paramagnetic or pseudo-paramagnetic nanoparticles.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: January 9, 2018
    Assignee: Hanwha Chemical Corporation
    Inventors: Taeg Hwan Hyeon, Byung Hyo Kim, No Hyun Lee, Eung Gyu Kim, Bong Sik Jeon, Eun Byul Kwon, Ju Young Park, Wan Jae Myeong
  • Patent number: 9275856
    Abstract: A method for forming an electronic switching device on a substrate, wherein the method comprises depositing the active semiconducting layer of the electronic switching device onto the substrate from a liquid dispersion of ligand-modified colloidal nanorods, and subsequently immersing the substrate into a growth solution to increase the diameter and/or length of the nanorods on the substrate, and wherein the as-deposited nanorods are aligned such that their long-axis is aligned preferentially in the plane of current flow in the electronic switching device.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: March 1, 2016
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Henning Sirringhaus, Baoquan Sun
  • Patent number: 9199857
    Abstract: It is an object of the present invention to provide zinc oxide particles which have excellent ultraviolet blocking performance and also excellent dispersibility, and therefore can be suitably used as an ultraviolet blocking agent for cosmetics. Provided are zinc oxide particles having a primary particle diameter of less than 0.1 ?m, an aspect ratio of less than 2.5 and an oil absorption/BET specific surface area of 1.5 ml/100 m2 or less.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 1, 2015
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Satoru Sueda, Mitsuo Hashimoto, Atsuki Terabe, Nobuo Watanabe, Koichiro Magara
  • Patent number: 9096882
    Abstract: The invention provides antioxidant-containing compositions and methods for confirming antioxidant activity of a composition formulated for topical application to skin. The invention also provides methods for testing a composition for the ability to inhibit both ultraviolet radiation-induced lipid peroxidation on skin and ultraviolet radiation-induced reactive oxygen species formation in the stratum corneum as well as compositions and methods for treating and preventing photodamage to skin.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: August 4, 2015
    Assignee: MSD Consumer Care, Inc.
    Inventors: Thomas A. Meyer, Donathan G. Beasley
  • Publication number: 20150099122
    Abstract: The present invention provides a zinc oxide powder that enables a high degree of orientation, and highly uniform dispersion of an additive substance, to be simultaneously achieved in a green body or a sintered body. The zinc oxide powder of the present invention comprises a plurality of plate-like zinc oxide particles and has a volume-based D50 average particle diameter of 1 to 5 ?m and a specific surface area of 1 to 5 m2/g. The zinc oxide powder has a degree of orientation of the (002) plane of 40% or greater when two-dimensionally arrayed into a monolayer on a substrate.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Inventors: Jun YOSHIKAWA, Katsuhiro IMAI, Koichi KONDO
  • Patent number: 8992883
    Abstract: Disclosed are methods for producing ZnO nanostructures, the methods comprising heating an aqueous solution comprising a zinc compound, a base, and a polymer which is polyvinylpyrrolidinone or poly(ethylene glycol).
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 31, 2015
    Assignee: Indian Institute of Technology Bombay
    Inventors: Bharati Panigrahy, Mohammed Aslam, Devi Shanker Misra, Dhirendra Bahadur
  • Patent number: 8986648
    Abstract: The present invention relates to a method for continuously preparing mineral particles by means of the thermolysis of mineral precursors in an aqueous medium, comprising contacting: a reactive flow, including mineral precursors at a temperature lower than the conversion temperature thereof; and a heat transfer flow that is countercurrent to said reactive flow and contains water at a temperature that is sufficient to bring the precursors to a temperature higher than the conversion temperature thereof, the mixture flow that results from said reactive flow and said heat transfer flow then being conveyed into a tubular reactor, inside of which particles are formed by gradually converting the precursors, and where the reactive flow and the heat transfer flow are placed in contact with each other inside a mixing chamber, inside of which the reactive flow and the heat transfer flow are fed by supply pipes having outlet cross-sections that are smaller than the maximum cross-section of said mixing chamber.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 24, 2015
    Assignees: Centre National de la Recherche Scientifique (C.N.R.S.), Universite de Bourgogne
    Inventors: Daniel Aymes, Moustapha Ariane, Frédéric Bernard, Hervé Muhr, Frédéric Demoisson
  • Patent number: 8967492
    Abstract: A droplet generation system includes a first nozzle configuration structured to receive a liquid and a gas under pressure in a controllable feed ratio, and to merge the liquid and gas to form an intermediate stream that is a mixture of the gas and of a dispersed phase of the liquid. A second nozzle configuration is connected to receive the intermediate stream from the first nozzle configuration and has a valve mechanism with one or more controllable operating parameters to emit a stream of droplets of the liquid. The mean size of the droplets is dependent on the controllable feed ratio of the liquid and gas and the flow rate of the stream of droplets is dependent on the controllable operating parameter(s) of the valve mechanism. A corresponding method is disclosed, as is the application of the system and method to the production of nanoparticles in a thermochemical reactor.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: March 3, 2015
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Jonian Nikolov, Kok Seng Lim, Han Kwon Chang, Hee Dong Jang
  • Patent number: 8969264
    Abstract: A treatment fluid comprises: a metal oxide, wherein the metal oxide is capable of forming a chelate complex or coordination complex with a ligand, wherein the chelate complex or coordination complex has a setting time of less than 90 minutes at a temperature of 71° F. and a pressure of 1 atmosphere. A method of treating a portion of a subterranean formation comprises: introducing the treatment fluid into the subterranean formation; allowing or causing a chelate complex or coordination complex to form between the metal oxide and a ligand; and allowing or causing the chelate complex or coordination complex to set.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, Donald L. Whitfill, Matthew L. Miller, Kay A. Morris
  • Patent number: 8961681
    Abstract: A process for the preparation of nano zinc oxide particles is disclosed. The process comprises of dissolving a zinc metal precursor in a solvent to obtain a first solution and dissolving a base in an alcohol to obtain an alkali solution. The alkali solution is then added to the first solution over a predetermined period of time to obtain nano zinc oxide particles in solution.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: February 24, 2015
    Assignee: TATA Chemicals Limited
    Inventor: Sachin Parashar
  • Publication number: 20150050496
    Abstract: It is an object of the present disclosure to provide spherical zinc oxide particles consisting of integrated plate-like particles which can be used as a cosmetic raw material, a thermal conductive filler and the like, and a method for production of the same. Spherical zinc oxide particles consisting of integrated plate-like particles, which have a median size of 0.01 ?m or more and a D90/D10 in particle size distribution of 5.0 or less.
    Type: Application
    Filed: March 8, 2013
    Publication date: February 19, 2015
    Applicant: Sakai Chemical Industry Co., Ltd.
    Inventors: Satoru Sueda, Mitsuo Hashimoto, Atsuki Terabe, Koichiro Magara
  • Patent number: 8951495
    Abstract: The present invention relates to odor-inhibiting compositions comprising water-absorbing polymer particles and metal peroxides, and to the production thereof.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: February 10, 2015
    Assignee: BASF SE
    Inventors: Volker Braig, Thomas Daniel, Rupert Konradi, Herbert Platsch, Bettina Sobotka, Axel Jentzsch
  • Publication number: 20150037244
    Abstract: The present invention relates to a solution reaction apparatus and solution reaction method using the same, and more particularly a solution reaction apparatus and a solution reaction method using the same, wherein a reaction vessel is made by using a sealing member, a reaction vessel forming member, and a substrate serving as the bottom part of the reaction vessel so as to cause one side of a reaction solution only to contact the solution, thereby adjusting the temperature of the substrate differently from the temperature of the solution. The solution reaction apparatus of the present invention can control temperature of the substrate and temperature of the reaction solution separately, thereby it can control the temperature of the solution above the boiling point of the solution, and can react the solution while constantly maintaining the concentration of the solution by the solution circulatory device. Accordingly, it has an effect of freely forming various nanostructures on the substrate.
    Type: Application
    Filed: February 25, 2013
    Publication date: February 5, 2015
    Inventors: Hyuk Hyun Ryu, Jin Tak Jang, Tae Hyun Lee, Hee Bong Oh
  • Publication number: 20150031140
    Abstract: The present disclosure relates to a novel photocatalyst composition and a process of using the photocatalyst for the photocatalytic degradation of methyl tertiary-butyl ether (MTBE) in water. Palladium doped nano zinc oxide photocatalyst was prepared by zinc nitrate hexahydrate and an ammonium carbonate and the photocatalyst composition demonstrated more than 90-99% degradation of MTBE at room temperatures in a photo catalytic reaction conducted in an oxygen saturated aqueous medium.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Inventors: Zaki S. Seddigi, SALEH A. SALEH
  • Patent number: 8940183
    Abstract: A novel composition for a photocatalyst Fe doped ZnO nano-particle photocatalyst that enables the decontamination process by degrading toxic organic material such as brilliant cresyl blue, indigo carmine and gentian blue by using solar light is described. In the current disclosure method of making a specific size of the nano photocatalyst is described. Characterization of the photocatalyst, optimal working conditions and efficient use of solar light has been described to show that this photocatalyst is unique. The process described to use the photocatalyst to degrade toxic organic material using the solar light to activate the photocatalyst is cost efficient and cheap to clean our water resources.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 27, 2015
    Assignee: King Abdulaziz University
    Inventors: Abdullah Mohamed Asiri, Sher Bahadar Khan, Khalid Ahmad Alamry, Mohammed M Rahman, Mohamed Saeed Alamoodi
  • Publication number: 20150010464
    Abstract: The present invention includes the steps of (A) forming a solution containing zinc into mist and spraying the solution formed into mist onto a substrate under no vacuum to form a metal oxide film on the substrate, and (B) irradiating the metal oxide film with ultraviolet rays to decrease a resistance of the metal oxide film. Further, the step (B) includes the steps of (B-1) determining, in accordance with a film thickness of the metal oxide film, wavelengths of the ultraviolet rays to be radiated, and (B-2) irradiating the metal oxide film with the ultraviolet rays having the wavelengths determined in said step (B-1).
    Type: Application
    Filed: October 24, 2012
    Publication date: January 8, 2015
    Applicant: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION
    Inventors: Takahiro Shirahata, Hiroyuki Orita, Takahiro Hiramatsu
  • Publication number: 20140335328
    Abstract: Provided is a nanowire manufacturing substrate, comprising a grid base layer on a substrate and a grid pattern formed by patterning the grid base layer, the grid pattern being disposed to produce a nanowire on a surface thereof. According to the present invention, the width and height of the nanowire can be adjusted by controlling the wet-etching process time period, and the nanowire can be manufactured at a room temperature at low cost, the nanowire can be mass-manufactured and the nanowire with regularity can be manufactured even in case of mass production.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventors: Young Jae Lee, Kyoung Jong Yoo, Jun Lee, Jin Su Kim, Jae Wan Park
  • Publication number: 20140332733
    Abstract: Provided herein are nanofibers and processes of preparing nanofibers. In some instances, the nanofibers are metal and/or ceramic nanofibers. In some embodiments, the nanofibers are high quality, high performance nanofibers, highly coherent nanofibers, highly continuous nanofibers, or the like. In some embodiments, the nanofibers have increased coherence, increased length, few voids and/or defects, and/or other advantageous characteristics. In some instances, the nanofibers are produced by electrospinning a fluid stock having a high loading of nanofiber precursor in the fluid stock. In some instances, the fluid stock comprises well mixed and/or uniformly distributed precursor in the fluid stock. In some instances, the fluid stock is converted into a nanofiber comprising few voids, few defects, long or tunable length, and the like.
    Type: Application
    Filed: August 30, 2012
    Publication date: November 13, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: Yong Lak Joo, Nathaniel S. Hansen, Daehwan Cho
  • Patent number: 8883312
    Abstract: Zinc oxide particles having high transparency in visible light and high shielding properties in a ultraviolet region, with surface treatment of inactivating photocatalytic activity applied thereto, and a dispersion thereof. A manufacturing method of surface treated zinc oxide particles, including: a first step of mixing a dispersion liquid with zinc oxide particles dispersed in a solvent, and silicone resin having polysiloxane bond with at least one or more silicon atoms having a silanol group (Si—OH) and/or alkoxy silyl group (Si—OR, wherein R is alkyl group); obtaining a mixed solution containing a surface treated zinc oxide particles precursor, with the silicone resin adsorbed on the surface of each zinc oxide particle and the solvent, and drying and solidifying the mixed solution by applying heat treatment thereto, to thereby manufacture a dried body; and a second step of pulverizing the dried body, to thereby manufacture the surface treated zinc oxide particles.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: November 11, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Kayo Yabuki, Atsushi Tofuku
  • Publication number: 20140328747
    Abstract: Provided is a zinc oxide sputtering target, which can effectively suppress the occurrence of break or crack in the target during sputtering to enable production of a zinc oxide transparent conductive film with high productivity. The zinc oxide sputtering target is composed of a zinc oxide sintered body comprising zinc oxide crystal grains, wherein the zinc oxide sputtering target has a sputter surface having a (100) crystal orientation degree of 50% or more.
    Type: Application
    Filed: June 16, 2014
    Publication date: November 6, 2014
    Inventors: Jun YOSHIKAWA, Katsuhiro IMAI, Koichi KONDO
  • Publication number: 20140319533
    Abstract: Flexible semiconductor devices based on flexible freestanding epitaxial elements are disclosed. The flexible freestanding epitaxial elements provide a virgin as grown epitaxy ready surface for additional growth layers. These flexible semiconductor devices have reduced stress due to the ability to flex with a radius of curvature less than 100 meters. Low radius of curvature flexing enables higher quality epitaxial growth and enables 3D device structures. Uniformity of layer formation is maintained by direct absorption of actinic radiation by the flexible freestanding epitaxial element within a reactor. In addition, standard post processing steps like lithography are enabled by the ability of the devices and elements to be flattened using a secondary support element or vacuum. Finished flexible semiconductor devices can be flexed to a radius of curvature of less than 100 meters. Nitrides, Zinc Oxides, and their alloys are preferred materials for the flexible freestanding epitaxial elements.
    Type: Application
    Filed: January 20, 2014
    Publication date: October 30, 2014
    Applicant: Goldeneye, Inc.
    Inventors: Scott M. Zimmerman, Karl W. Beeson, William R. Livesay, Richard L. Ross
  • Patent number: 8865115
    Abstract: The present invention relates to a process for the preparation of nanoparticulate zinc oxide in the form of aqueous suspensions or in the form of pulverulent solid. Furthermore, the invention relates to the use of zinc oxide particles and suspensions prepared in this way in cosmetic sunscreen preparations, as stabilizer in plastics, in paints, in coatings and as antimicrobial active ingredient.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 21, 2014
    Assignee: BASF SE Ludwigshafen
    Inventors: Bernd Bechtloff, Lars Vicum, Hartwig Voβ, Robert Wengeler, Andrey Karpov, Jing Dreher, Valerie Andre
  • Patent number: 8865114
    Abstract: Provided are methods for producing nanostructures and nanostructures obtained thereby. The methods include heating a certain point of a substrate dipped into a precursor solution of the nanostructures so that the nanostructures are grown in a liquid phase environment without evaporation of the precursor solution. The methods show excellent cost-effectiveness because of the lack of a need for precursor evaporation at high temperature. In addition, unlike the vapor-liquid-solid (VLS) process performed in a vapor phase, the method includes growing nanostructures in a liquid phase environment, and thus provides excellent safety and eco-friendly characteristics as well as cost-effectiveness. Further, the method includes locally heating a substrate dipped into a precursor solution merely at a point where the nanostructures are to be grown, so that the nanostructures are grown directly at a desired point of the substrate. Therefore, it is possible to grow and produce nanostructures directly in a device.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: October 21, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Inkyu Park, Seung Hwan Ko
  • Publication number: 20140296062
    Abstract: A process for preparing a mesoporous metal oxide, i.e., transition metal oxide, Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.
    Type: Application
    Filed: September 25, 2013
    Publication date: October 2, 2014
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Steven L. Suib, Altug Suleyman Poyraz
  • Publication number: 20140294721
    Abstract: A sol-flame method includes 1) forming a sol-gel precursor solution of a source of a dopant; 2) coating a nanostructure or a thin film with the sol-gel precursor solution; and 3) subjecting the coated nanostructure or the coated thin film to flame annealing to form a doped nanostructure or a doped thin film.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Inventors: Yunzhe Feng, Xiaolin Zheng, In Sun Cho
  • Publication number: 20140286846
    Abstract: A process for preparing a mesoporous metal oxide, i.e., transition metal oxide, Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.
    Type: Application
    Filed: September 25, 2013
    Publication date: September 25, 2014
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Steven L. Suib, Altug Suleyman Poyraz
  • Patent number: 8834832
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a lactate or thiolactate anion, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) lactic or thiolactic acid, a lactate or thiolactate salt of a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: September 16, 2014
    Assignee: 3M Innovative Properties Company
    Inventor: Timothy D. Dunbar
  • Publication number: 20140227169
    Abstract: A method of manufacturing a zinc oxide thin film includes: preparing a basic solution containing tetrahydroxozincate (II) ions and having a pH of 10 or more; diluting the basic solution such that the pH becomes 8.5 or less; applying the basic solution to a substrate; and heating the basic solution.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 14, 2014
    Applicant: NIKON CORPORATION
    Inventors: Yasutaka Nishi, Makoto Nakazumi, Yusuke Taki
  • Publication number: 20140212819
    Abstract: A lithographic process includes the use of a silicon-containing polymer or a compound that includes at least one element selected from the group consisting of: Ta, W, Re, Os, Ir, Ni, Cu or Zn in a resist material for an EUV lithographic process. The wavelength of the EUV light used in the process is less than 11 nm, for example 6.5-6.9 nm. The invention further relates to novel silicon-containing polymers.
    Type: Application
    Filed: May 30, 2012
    Publication date: July 31, 2014
    Applicant: ASML Netherlands B.V.
    Inventors: Sander Frederik Wuister, Vladimir Mihailovitch Krivtsun, Andrei Mikhailovich Yakunin
  • Publication number: 20140212669
    Abstract: An object of the present invention is to provide rounded zinc peroxide particles having a large particle diameter, the rounded zinc peroxide particles having excellent performance because they have an average particle diameter of 0.04 ?m or more, a small aspect ratio and a shape close to a spherical shape; rounded zinc oxide particles which are obtained by calcinating the rounded zinc peroxide particles and which have a small aspect ratio and a sharp particle size distribution; a method for production thereof; and a cosmetic and a heat releasing filler each containing the rounded zinc oxide particles. Provided are rounded zinc peroxide particles having an average particle diameter of 0.04 ?m or more and an aspect ratio of 2.0 or less, and rounded zinc oxide particles which are obtained by thermally decomposing the rounded zinc peroxide particles and which have an average particle diameter of 0.04 ?m or more and an aspect ratio of 2.0 or less.
    Type: Application
    Filed: June 8, 2012
    Publication date: July 31, 2014
    Applicant: Sakai Chemical Industry Co., Ltd.
    Inventors: Satoru Sueda, Atsuki Terabe, Mitsuo Hashimoto, Koichiro Magara, Keita Kobayashi
  • Patent number: 8790614
    Abstract: ZnO structures comprising crystalline ZnO micro or nanorods and methods for making and using these ZnO structures are provided. The side surface of the central portion of each rod may comprise planes of the form {1 0 ?1 0}, {0 1 ?1 0}, {?1 1 0 0}, {?1 0 1 0}, {0 ?1 1 0} or {1 ?1 0 0}, with central edge regions including a crystallographic plane of the form {2 ?1 ?1 0} or {?2 1 1 0}. The tip of the rod may comprise planes of the form {1 0 ?1 1} {0 1 ?1 1}, {?1 1 0 1}, {?1 0 1 1}, {0 ?1 1 1} or {1 ?1 0 1} with tip edge regions including a crystallographic plane of the form {2 ?1 ?1 2} or {?2 1 1 2}. The rods may be joined at or near their bases to form a “flower-like” morphology. In an embodiment, a synthesis mixture is prepared by dissolving a zinc salt in an alcohol solvent, followed by addition of at least two additives. The zinc salt may be zinc nitrate hexahydrate, the first additive may be benzyl alcohol and the second additive may be urea.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: July 29, 2014
    Assignee: Colorado School of Mines
    Inventors: Ryan M. Richards, Lifang Chen, Juncheng Hu
  • Publication number: 20140158950
    Abstract: Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.
    Type: Application
    Filed: November 12, 2013
    Publication date: June 12, 2014
    Applicant: The Regents of The University of California
    Inventors: Brett Anthony Helms, Delia Jane Milliron, Evelyn Louise Rosen, Raffaella Buonsanti, Anna Llordes
  • Patent number: 8747804
    Abstract: Process for the preparation of modified ZnO particles in which a zinc salt and a base are mixed in a polar solvent and, if appropriate after the precipitation of a precipitation product, the polar solvent is removed and a residue is obtained, where the residue is taken up in a nonpolar solvent, surface-active substances are added, optionally further effect substances are added and then the modified ZnO particles are separated off from further by-products. Materials such as plastics, coatings or paints comprising modified ZnO particles. Methods for the incorporation of modified ZnO particles into materials, where the modified ZnO particles are incorporated into the materials in the form of dispersions or suspensions. Use of modified ZnO particles for protecting material against the effect of light, heat, oxygen or free radicals, as catalysts, for semiconductive films or cosmetic applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: June 10, 2014
    Assignee: BASF SE
    Inventors: Andrey Karpov, Hartmut Hibst, Simon Schambony, Richard Riggs, Sylke Haremza
  • Publication number: 20140155300
    Abstract: A treatment fluid comprises: a metal oxide, wherein the metal oxide is capable of forming a chelate complex or coordination complex with a ligand, wherein the chelate complex or coordination complex has a setting time of less than 90 minutes at a temperature of 71° F. and a pressure of 1 atmosphere. A method of treating a portion of a subterranean formation comprises: introducing the treatment fluid into the subterranean formation; allowing or causing a chelate complex or coordination complex to form between the metal oxide and a ligand; and allowing or causing the chelate complex or coordination complex to set.
    Type: Application
    Filed: April 4, 2013
    Publication date: June 5, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dale E. JAMISON, Donald L. WHITFILL, Matthew L. MILLER, Kay A. MORRIS
  • Patent number: 8734666
    Abstract: A method for preparing nanotubes by providing nanorods of a piezoelectric material having an asymmetric crystal structure and by further providing hydroxide ions to the nanorods to etch inner parts of the nanorods to form the nanotubes.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: May 27, 2014
    Assignees: Samsung Electronics Co., Ltd., Kumoh National Institute of Technology
    Inventors: Jaeyoung Choi, Sangwoo Kim
  • Patent number: 8709262
    Abstract: Toxic organic materials contaminate water resources and one need to find an easy and energy efficient way to decontaminate water resources. The current invention discloses a photocatalyst Fe doped ZnO nano-particle photocatalyst that enables the decontamination process by degrading toxic organic material such as brilliant cresyl blue, indigo carmine and gentian blue by using solar light. In the current disclosure many examples of characterization of the photocatalyst, optimal working conditions and efficient use of solar light has been described. The process described to use the photocatalyst to degrade toxic organic material using the solar light to activate the photocatalyst is cost efficient and cheap to clean our water resources.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: April 29, 2014
    Assignee: King Abdulaziz University
    Inventors: Abdullah Mohamed Asiri, Sher Bahadar Khan, Khalid Ahmad Alamry, Mohammed M Rahman, Mohamed Saeed Alamoodi
  • Publication number: 20140112862
    Abstract: It is an object of the present invention to provide a new method for production of zinc oxide particles which can control the particle diameter and particle shape of obtained zinc oxide particles by selecting suitable conditions, and can prepare zinc oxide applicable to various applications. A method for production of zinc oxide particles, comprising a step of aging a zinc oxide raw material in an aqueous zinc salt solution.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 24, 2014
    Applicant: Sakai Chemical Industry Co., Ltd.
    Inventors: Satoru Sueda, Mitsuo Hashimoto, Atsuki Terabe, Nobou Watanabe, Koichiro Magara
  • Publication number: 20140110714
    Abstract: The present invention generally relates to an amorphous semiconductor material and TFTs containing the material. The semiconductor material contains a single cation, such as zinc, and multiple anions. For the multiple anions, only one of the anions can be oxygen or nitrogen. The anions compete with each other to twist the resulting structure. For example, if one of the anions bonded with the cation would result in a cubic structure, and another of the anions bonded with the cation would result in a hexagonal structure, the competing anions would twist the resulting structure so that the structure remains amorphous rather than crystalline. Further, because a single cation is utilized, there is no grain boundary and thus, the material has a high mobility.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 24, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Yan YE
  • Patent number: 8697019
    Abstract: Nanostructured manganese-containing compositions having reduced manganese dissolution and methods of making and using the same are provided. In one embodiment, a composition of matter comprises a nanostructured oxide or hydroxide doped with Mn4+. The composition of matter can be made by forming a nanostructured oxide or hydroxide material doped with Mn3+ and oxidizing the Mn3+ to Mn4+ to reduce dissolution of the manganese in the nanostructured oxide or hydroxide material. In another embodiment, a method of reducing dissolution of manganese present in a nanostructured MnO2 material comprises: doping a nanostructured MnO2 material with Fe3+ to reduce the dissolution of the manganese.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 15, 2014
    Assignee: Inframat Corporation
    Inventors: Huimin Chen, Lei Jin
  • Publication number: 20140059971
    Abstract: The present invention relates to thermal insulation materials made of hollow oxide particles. Use of hollow oxide particles having an overall thermal conductivity of less than 0.026 W/(mK) is for example suitable for the building sector or other areas where thermal insulation is required.
    Type: Application
    Filed: March 19, 2012
    Publication date: March 6, 2014
    Inventors: Bjørn Petter Jelle, Bente Gilbu Tilset, Susie Jahren, Arild Gustavsen, Tao Gao
  • Publication number: 20140050925
    Abstract: An object of the present invention is to provide hexagonal plate-shaped zinc oxide particles which can be used as a cosmetic raw material, a heat releasing filler and the like, a method for production of the same, and a cosmetic, a heat releasing filler, a heat releasing resin composition, a heat releasing grease and a heat releasing coating composition each comprising the same. Provided are hexagonal plate-shaped zinc oxide particles having hexagonal-shaped surfaces, wherein the primary particle diameter is 0.01 ?m or more and the aspect ratio is 2.5 or more, and 50% or more of 250 particles in a transmission electron microscope photograph satisfy both the requirements (1) the particle has a hexagonal-shaped surface; and (2) Dmin/Dmax?0.
    Type: Application
    Filed: April 26, 2012
    Publication date: February 20, 2014
    Applicant: Sakai Chemical Industry Co., Ltd.
    Inventors: Satoru Sueda, Mitsuo Hashimoto, Atsuki Terabe, Nobou Watanabe, Koichiro Magara
  • Publication number: 20140044971
    Abstract: It is an object of the present invention to provide zinc oxide particles which have excellent ultraviolet blocking performance and also excellent dispersibility, and therefore can be suitably used as an ultraviolet blocking agent for cosmetics. Provided are zinc oxide particles having a primary particle diameter of less than 0.1 ?m, an aspect ratio of less than 2.5 and an oil absorption/BET specific surface area of 1.5 ml/100 m2 or less.
    Type: Application
    Filed: April 26, 2012
    Publication date: February 13, 2014
    Applicant: Sakai Chemical Industry Co., Ltd.
    Inventors: Satoru Sueda, Mitsuo Hashimoto, Atsuki Terabe, Nobuo Watanabe, Koichiro Magara
  • Patent number: 8647647
    Abstract: A topical formulation for application to exposed body tissue, the formulation comprising a silver(II) oxide and zinc oxide, intimately dispersed within a carrier medium.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: February 11, 2014
    Assignee: Aidance Skincare and Topical Solutions, LLC
    Inventor: Perry Antelman
  • Publication number: 20140037519
    Abstract: Provided is a method for producing an oxide and/or hydroxide wherein the ratio of oxide and hydroxide has been controlled. The method produces an oxide, a hydroxide, or a mixture thereof, and obtains an oxide and/or a hydroxide wherein the ratio of oxide and hydroxide has been controlled by means of changing a specific condition relating to at least one fluid to be processed introduced between processing surfaces (1, 2) when causing the precipitation of the oxide, hydroxide, or mixture thereof by mixing an basic fluid containing at least one type of basic substance and a fluid containing at least one type of metal or metallic substance as the fluids to be processed between the processing surfaces (1, 2) that are provided facing each other, are able to approach to and separate from each other, and of which at least one rotates relative to the other.
    Type: Application
    Filed: April 28, 2011
    Publication date: February 6, 2014
    Applicant: M. TECHNIQUE CO., LTD.
    Inventors: Jun Kuraki, Masaki Maekawa, Daisuke Honda, Masakazu Enomura
  • Publication number: 20140008067
    Abstract: Disclosed embodiments relate to well treatment fluids and methods that utilize nano-particles. Exemplary nano-particles are selected from the group consisting of particulate nano-silica, nano-alumina, nano-zinc oxide, nano-boron, nano-iron oxide, and combinations thereof. Embodiments also relate to methods of cementing that include the use of nano-particles. An exemplary method of cementing comprises introducing a cement composition into a subterranean formation, wherein the cement composition comprises cement, water and a particulate nano-silica. Embodiments also relate to use of nano-particles in drilling fluids, completion fluids, simulation fluids, and well clean-up fluids.
    Type: Application
    Filed: September 12, 2013
    Publication date: January 9, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Craig Wayne Roddy, Jiten Chatterji, Roger Stanley Cromwell
  • Publication number: 20130343979
    Abstract: Provided is a more suitable method for producing ceramic microparticles. The present invention uses at least two types of fluids to be processed; at least one of the fluids to be processed is a fluid containing a ceramic starting material liquid that mixes and/or dissolves a ceramic starting material in a basic solvent; of the fluids aside from the ceramic starting material liquid, at least one of the fluids to be processed is a fluid containing a solvent for precipitating ceramic microparticles; and ceramic microparticles are precipitated by mixing the fluid containing the ceramic starting material liquid and the fluid containing the solvent for precipitating ceramic microparticles within a thin film fluid formed between at least two surfaces (1,2) for processing that are provided facing each other, are able to approach and separate each other, and of which one is able to rotate with respect to the other.
    Type: Application
    Filed: March 23, 2011
    Publication date: December 26, 2013
    Applicant: M. TECHNIQUE CO., LTD.
    Inventors: Jun Kuraki, Masaki Maekawa, Daisuke Honda, Masakazu Enomura
  • Patent number: 8609146
    Abstract: The present invention relates to the field of polymer chemistry and more particularly to multiblock copolymers and micelles comprising the same. Compositions herein are useful for drug-delivery applications.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: December 17, 2013
    Assignee: Intezyne Technologies, Inc.
    Inventors: Kevin Sill, Habib Skaff
  • Patent number: 8598046
    Abstract: The present invention relates to a method and apparatus for the synthesis of nanostructures using at least one solution providing at least one chemical element appropriate for the type of nanostructure, the method comprising the steps of: a) adding (admixing) a reducing agent to the at least one solution, b) bringing a suitable substrate into contact with the at least one solution before or after step a), c) forming nucleation growth sites on the substrate and d) maintaining the temperature at a suitable level for the growth of the nanostructures, characterized by the further steps of e) providing at least one space having at least one dimension in the micron range, e.g. in the range from 1 ?m to 500 ?m, adjacent a surface of the substrate, f) growing said nanostructures in said at least one space, g) periodically separating said nanostructures from the substrate and removing them.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: December 3, 2013
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Vivek Pachauri, Ashraf Ahmad, Kannan Balasubramanian, Klaus Kern