Zinc Patents (Class 423/622)
  • Publication number: 20140037519
    Abstract: Provided is a method for producing an oxide and/or hydroxide wherein the ratio of oxide and hydroxide has been controlled. The method produces an oxide, a hydroxide, or a mixture thereof, and obtains an oxide and/or a hydroxide wherein the ratio of oxide and hydroxide has been controlled by means of changing a specific condition relating to at least one fluid to be processed introduced between processing surfaces (1, 2) when causing the precipitation of the oxide, hydroxide, or mixture thereof by mixing an basic fluid containing at least one type of basic substance and a fluid containing at least one type of metal or metallic substance as the fluids to be processed between the processing surfaces (1, 2) that are provided facing each other, are able to approach to and separate from each other, and of which at least one rotates relative to the other.
    Type: Application
    Filed: April 28, 2011
    Publication date: February 6, 2014
    Applicant: M. TECHNIQUE CO., LTD.
    Inventors: Jun Kuraki, Masaki Maekawa, Daisuke Honda, Masakazu Enomura
  • Publication number: 20140008067
    Abstract: Disclosed embodiments relate to well treatment fluids and methods that utilize nano-particles. Exemplary nano-particles are selected from the group consisting of particulate nano-silica, nano-alumina, nano-zinc oxide, nano-boron, nano-iron oxide, and combinations thereof. Embodiments also relate to methods of cementing that include the use of nano-particles. An exemplary method of cementing comprises introducing a cement composition into a subterranean formation, wherein the cement composition comprises cement, water and a particulate nano-silica. Embodiments also relate to use of nano-particles in drilling fluids, completion fluids, simulation fluids, and well clean-up fluids.
    Type: Application
    Filed: September 12, 2013
    Publication date: January 9, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Craig Wayne Roddy, Jiten Chatterji, Roger Stanley Cromwell
  • Publication number: 20130343979
    Abstract: Provided is a more suitable method for producing ceramic microparticles. The present invention uses at least two types of fluids to be processed; at least one of the fluids to be processed is a fluid containing a ceramic starting material liquid that mixes and/or dissolves a ceramic starting material in a basic solvent; of the fluids aside from the ceramic starting material liquid, at least one of the fluids to be processed is a fluid containing a solvent for precipitating ceramic microparticles; and ceramic microparticles are precipitated by mixing the fluid containing the ceramic starting material liquid and the fluid containing the solvent for precipitating ceramic microparticles within a thin film fluid formed between at least two surfaces (1,2) for processing that are provided facing each other, are able to approach and separate each other, and of which one is able to rotate with respect to the other.
    Type: Application
    Filed: March 23, 2011
    Publication date: December 26, 2013
    Applicant: M. TECHNIQUE CO., LTD.
    Inventors: Jun Kuraki, Masaki Maekawa, Daisuke Honda, Masakazu Enomura
  • Patent number: 8609146
    Abstract: The present invention relates to the field of polymer chemistry and more particularly to multiblock copolymers and micelles comprising the same. Compositions herein are useful for drug-delivery applications.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: December 17, 2013
    Assignee: Intezyne Technologies, Inc.
    Inventors: Kevin Sill, Habib Skaff
  • Patent number: 8598046
    Abstract: The present invention relates to a method and apparatus for the synthesis of nanostructures using at least one solution providing at least one chemical element appropriate for the type of nanostructure, the method comprising the steps of: a) adding (admixing) a reducing agent to the at least one solution, b) bringing a suitable substrate into contact with the at least one solution before or after step a), c) forming nucleation growth sites on the substrate and d) maintaining the temperature at a suitable level for the growth of the nanostructures, characterized by the further steps of e) providing at least one space having at least one dimension in the micron range, e.g. in the range from 1 ?m to 500 ?m, adjacent a surface of the substrate, f) growing said nanostructures in said at least one space, g) periodically separating said nanostructures from the substrate and removing them.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: December 3, 2013
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Vivek Pachauri, Ashraf Ahmad, Kannan Balasubramanian, Klaus Kern
  • Patent number: 8597609
    Abstract: The present invention relates to a method for the preparation of a functionalized nano size transition metal oxide or sulfide particle comprising the steps of (a) providing a ternary solvent system comprising a polar solvent, a non-polar solvent and an intermediate solvent allowing miscibility of all three components; (b) providing a mixture of a transition metal salt and a ternary solvent; (c) providing a mixture of a suitable source of oxide or sulfide and the ternary solvent; (d) providing a mixture of a non-polar end capping agent and the non-polar solvent; (e) mixing the mixtures; and (f) recovering the resultant functionalized nano size transition metal oxide or sulfide particle. The invention further relates to non-polar end capped nano sized transition metal oxide or sulfide particle so produced and the use of such particles.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: December 3, 2013
    Assignee: Rubber Nano Products (Proprietary) Limited
    Inventors: Christopher Dennis Woolard, Damien Christopher Williams, Jason Leigh van Rooyen, Katherine Garde, Robert Michael Bosch, Stefanus Hendrik Josephus Strydom
  • Patent number: 8568686
    Abstract: A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: October 29, 2013
    Assignee: The Regents of the University of California
    Inventors: Daniel E. Morse, Birgit Schwenzer, John R. Gomm, Kristian M. Roth, Brandon Heiken, Richard Brutchey
  • Publication number: 20130279176
    Abstract: A color insensitive scattering pigment is disclosed. In an embodiment, the scattering pigment is composed of particles of a range of sizes. In at least one subrange of the range of sizes, the particles are present in such relative proportions that the v/v concentration (volumetric concentration) of a particular size of particles is proportional to the size itself. In an embodiment, such a scattering pigment is included in light guides to scatter light from a primary light source.
    Type: Application
    Filed: December 26, 2011
    Publication date: October 24, 2013
    Applicant: I2IC CORPORATION
    Inventors: Udayan Kanade, Sanat Ganu
  • Patent number: 8535633
    Abstract: Process for the production of doped metal oxide particles, wherein the doping component is present on the surface in the form of domains, wherein in a first reaction zone, an oxidizable and/or —hydrolysable metal compound as dopant together with an atomization gas is atomized into a flow of metal oxide particles in a carrier gas, wherein the mass flow of the metal oxide particles und —the mass flow of the dopant are selected such that the doped metal oxide particles contain 10 ppm to 10 wt.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: September 17, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Kai Schumacher, Rainer Golchert, Helmut Roth, Harald Alff, Matthias Rochnia
  • Patent number: 8524177
    Abstract: A process for separating zinc from a feedstock containing a mixture of metals and metal compounds. The process includes leaching a zinc-containing feedstock with a concentrated basic solution, optionally diluting the slurry with an amount of water sufficient to reduce the viscosity of the slurry thereby facilitating separation of a pregnant liquor containing dissolved zinc from insoluble materials, separating the insoluble materials from the pregnant liquor, and precipitating zinc oxide from the pregnant liquor by adding an anti-solvent to the pregnant liquor. The described process also provides for recycling of the basic solution and the anti-solvent.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 3, 2013
    Assignee: Canadus Chemical LLC
    Inventors: Michel Laurin, Stephen C. Paspek
  • Patent number: 8512665
    Abstract: The present invention relates to a process for the production of nanoparticles or nanostructured particles with the help of a 2-emulsion method, particles being produced through targeted coalescence of miniemulsions in a high-pressure homogenized.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: August 20, 2013
    Assignee: BASF SE
    Inventors: Bernd Sachweh, Sonja Judat, Thomas Danner, Robert Engel, Caroline Mages-Sauter, Heike Schuchmann, Marion Gedrat
  • Patent number: 8512672
    Abstract: Provided are a method for preparing zinc oxide (ZnO) nanoparticles and a method for preparing ZnO nanofluid using the same. The method for preparing ZnO nanoparticles includes: a) heating deionized water; b) dissolving zinc (Zn) salt in the deionized water to prepare a precursor solution; c) adding solid alkali salt to the precursor solution to prepare a dispersion of ZnO nanoparticles; and d) separating the ZnO nanoparticles by solid-liquid separation and washing them with deionized water. Highly pure, crystalline ZnO nanoparticles with spherical shape and very narrow particle size distribution of 10 to 50 nm can be prepared quickly and at large scale and low cost using inexpensive materials via a stable low-temperature process, without using a dispersant. The associated low-temperature, normal-pressure process produces few harmful materials and may be easily employed for production of ZnO nanoparticles.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 20, 2013
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Hyo-sook Lee, Yong Jae Suh, Dae Sup Kil, Kuk Cho
  • Publication number: 20130206038
    Abstract: [Problem to be Solved] To provide a ZnO coating having low friction not only in a vacuum but in a liquid such as oil. [Solution] The low-friction ZnO coating, comprising (002) and (103) planes, and further comprising (100), (101), (102), and (104) planes in lower proportions than those of the (002) and (103) planes, has been prepared by sputtering using a zinc target in a sputter gas environment, wherein the sputter gas comprises an inert gas and oxygen gas, and the oxygen gas ratio is controlled. This coating has a specifically good low friction coefficient due to the piezoelectric effect, and this friction reduction mechanism is maintained even in oil such as n-hexadecane. Thus, this coating has been found to have excellent low-friction properties.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventor: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
  • Publication number: 20130200314
    Abstract: Provided is a zinc oxide sintered compact tablet enabling a transparent conductive film having no pinholes defects to be stably obtained during vacuum deposition film formation by suppressing the occurrence of the splashing phenomenon. A zinc oxide sintered compact tablet having hexagonal crystal structure, wherein when the integrated intensity of surface (103) and surface (110) found through X-ray diffraction analysis using CuK? radiation is taken to be I(103) and I(110) respectively, the orientation of the uniaxially pressed surface that is expressed by I(103)/(I(103)+I(110)) is 0.48 or more is obtained by performing pressurized formation of a granulated powder composed of a zinc oxide powder or a powder mixture of zinc oxide and an added element as a dopant and having a percentage of donut shaped secondary particles of 50% or more, sintering at normal pressure and a temperature of 800° C. to 1300° C.
    Type: Application
    Filed: May 18, 2011
    Publication date: August 8, 2013
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Kentaro Sogabe
  • Publication number: 20130201265
    Abstract: The ink composition of the invention is applied to a region to which a color ink composition has been applied. The ink composition contains a weather resistance enhancer, is substantially free from a colorant, and is applied to a recording medium to form a coating film exhibiting an integrated value of light transmittance of not more than 2000 for each nanometer at wavelengths of 320 nm to 360 nm and an integrated value of light transmittance of not less than 36000 for each nanometer at wavelengths of 380 nm to 780 nm.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 8, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Seiko Epson Corporation
  • Publication number: 20130172175
    Abstract: Disclosed herein are photocatalyst powder and a production method thereof, and by having photocatalyst particles corn binded without reduction of a specific surface area, the reduction of the specific surface area is nearly none while the pores are developed, as well as the absorption rate with respect to light is superior, the method of producing photocatalyst powder includes forming initial photocatalyst powder by molding nanoparticles of photocatalyst substance into a certain shape through extrusion, and splitting the initial photocatalyst powder into a plurality of photocatalyst powder by injecting the initial photocatalyst powder into a predetermined splitting solution, the initial photocatalyst powder being split into the plurality of photocatalyst powder by the predetermined spliting solution.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130164357
    Abstract: This disclosure provides sunscreen products that contain metal oxide powders having discrete size distributions. Metal oxide powders include, for example, zinc oxide and titanium dioxide. Sunscreen products made in accordance with the principles of this disclosure contain metal oxide powders having primary particle sizes of about 10-30 ran and about 50-200 nm.
    Type: Application
    Filed: February 24, 2013
    Publication date: June 27, 2013
    Inventors: David Schlossman, Yun Shao
  • Publication number: 20130164542
    Abstract: A primer coating composition for a metal substrate is described. The primer has a suitable binder and is characterised in that there is at least one semiconductor photocatalyst dispersed throughout the primer coating composition. A process of coating a metal substrate is also described. The invention extends to the use of a semiconductor photocatalyst as a top-coat to primer adhesion promoter or as a primer to top-coat delamination inhibitor in a primer coating composition.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 27, 2013
    Applicant: PPG B.V.
    Inventors: Gerard GEELS, Michel GILLARD, Albert Dirk BROEK
  • Patent number: 8465718
    Abstract: The invention discloses nano/micron binary structured powders for superhydrophobic, self-cleaning applications. The powders are featured by micron-scale diameter and nano-scale surface roughness. In one embodiment, the average diameter is about 1-25 ?m, and the average roughness Ra is about 3-100 nm. The nano/micron binary structured powders may be made of silica, metal oxide, or combinations thereof.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: June 18, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Chieh Liao, Hsiu-Fen Lin, Jin-Ming Chen
  • Publication number: 20130129594
    Abstract: A method for manufacturing a nanoscale cage of a material suitable for forming a molecular layer, including a step of shaping and packaging an object in the general shape of a revolving cylinder, the shaping and packaging step being adapted according to the position of the value of the diameter of the revolving cylinder relative to a threshold below which a folding of the ends of the cylinder is promoted.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 23, 2013
    Inventors: Luigi Genovese, Pascal Pochet
  • Patent number: 8435480
    Abstract: Disclosed herein are a method for synthesizing one-dimensional helical mesoporous structure, in which a self-assembled structure of a glycine-derived surfactant is used as a template at room temperature to synthesize the one-dimensional helical mesoporous silica structures having a uniform pore size and a method for synthesizing a glycine-derived surfactant for synthesizing the helical nanoporous structures, in which relatively expensive surfactant can be easily recovered using an organic solvent and reused, which provides economical and environment friendly effects and the glycine-derived surfactant is synthesized by homogeneously heating a reaction product of glycine and phthalic anhydride by dielectric heating with irradiation of microwave, whereby it is possible to realize high yield of the glycine-derived surfactant, shortened synthesis time and increase in energy efficiency, leading to improvement in productivity and reduction in production cost.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 7, 2013
    Assignee: Thermolon Korea Co., Ltd.
    Inventors: Sang Cheol Han, Yang Kim, Chung Kwon Park
  • Patent number: 8435485
    Abstract: The present disclosure provides a zinc oxide particle that can be used more suitably than common zinc oxide in the application such as an exoergic filler and the like, and can be used in the other applications. A zinc oxide particle having a median size of 1 to 30 ?m and D90/D10 of 4 or less is provided.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: May 7, 2013
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Mitsuo Hashimoto, Hiroshi Hakozaki
  • Publication number: 20130101500
    Abstract: A droplet generation system includes a first nozzle configuration structured to receive a liquid and a gas under pressure in a controllable feed ratio, and to merge the liquid and gas to form an intermediate stream that is a mixture of the gas and of a dispersed phase of the liquid. A second nozzle configuration is connected to receive the intermediate stream from the first nozzle configuration and has a valve mechanism with one or more controllable operating parameters to emit a stream of droplets of the liquid. The mean size of the droplets is dependent on the controllable feed ratio of the liquid and gas and the flow rate of the stream of droplets is dependent on the controllable operating parameter(s) of the valve mechanism. A corresponding method is disclosed, as is the application of the system and method to the production of nanoparticles in a thermochemical reactor.
    Type: Application
    Filed: June 30, 2011
    Publication date: April 25, 2013
    Applicants: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES, COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventors: Jonian Nikolov, Kok Seng Lim, Han Kwon Chang, Hee Dong Jang
  • Patent number: 8399092
    Abstract: A zinc oxide particle having large particle diameter and being high-density is provided. An exoergic resin composition, an exoergic grease and an exoergic coating composition containing the zinc oxide particle exhibit an excellent exoergic property. The zinc oxide particle being high-density, has a density of 4.0 g/cm3 or more, median size (D50) of 17 to 10000 ?m and tap bulk density of 3.10 g/cm3 or more.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: March 19, 2013
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Satoru Sueda, Atsuki Terabe, Hiroyuki Izumikawa, Mitsuo Hashimoto
  • Publication number: 20130052763
    Abstract: A method of manufacturing a nano-rod and a method of manufacturing a display substrate in which a seed including a metal oxide is formed. A nano-rod is formed by reacting the seed with a metal precursor in an organic solvent. Therefore, the nano-rod may be easily formed, and a manufacturing reliability of the nano-rod and a display substrate using the nano-rod may be improved.
    Type: Application
    Filed: March 19, 2012
    Publication date: February 28, 2013
    Applicants: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-Young CHOI, Bo-Sung KIM, Kwang-Yeol LEE, See-Won KIM
  • Publication number: 20130037448
    Abstract: A process is described for reducing the total acid number of a refinery feedstock. In one embodiment, refinery feedstock containing naphthenic acids is contacted with an effective amount of solid catalyst in the presence of an aqueous caustic base, wherein the caustic base is sodium hydroxide or potassium hydroxide, for a period of time sufficient to neutralize at least a portion of the naphthenic acids in the feedstock. Thereafter, the aqueous phase is separated from the neutralized refinery feedstock. In another embodiment catalyst is pretreated with a caustic base solution and contacted with refinery feedstock to reducing the total acid number.
    Type: Application
    Filed: July 27, 2012
    Publication date: February 14, 2013
    Applicant: Saudi Arabian Oil Company
    Inventors: Adnan AL-HAJJI, Omer Refa Koseoglu, Hendrik Muller, Hanadi Al Jawad
  • Patent number: 8366974
    Abstract: An article of manufacture and methods of making same. In one embodiment, the article of manufacture has a plurality of zinc oxide layers substantially in parallel, wherein each zinc oxide layer has a thickness d1, and a plurality of organic molecule layers substantially in parallel, wherein each organic molecule layer has a thickness d2 and a plurality of molecules with a functional group that is bindable to zinc ions, wherein for every pair of neighboring zinc oxide layers, one of the plurality of organic molecule layers is positioned in between the pair of neighboring zinc oxide layers to allow the functional groups of the plurality of organic molecules to bind to zinc ions in the neighboring zinc oxide layers to form a lamellar hybrid structure with a geometric periodicity d1+d2, and wherein d1 and d2 satisfy the relationship of d1?d2?3d1.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: February 5, 2013
    Assignee: Northwestern University
    Inventors: Samuel I. Stupp, Josh Goldberger, Marina Sofos
  • Patent number: 8357343
    Abstract: A method for producing star-shaped zinc oxide particles, the method including heating a solution containing tetrahydroxozincate(II) ion [Zn(OH)4]2?, and diluting the solution containing tetrahydroxozincate(II) ion [Zn(OH)4]2? with a solvent in the course of reaction so that the concentration of zinc ion (Zn2+) after the dilution is adjusted to 0.008 M or lower.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: January 22, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Tetsuo Kawano
  • Publication number: 20120328509
    Abstract: The present invention provides a process for preparing a solution of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10, comprising at least the steps of (A) contacting ZnO and/or Zn(OH)2 with ammonia in at least one solvent in order to obtain a solution of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z each independently 0.01 to 10 with a concentration c1, (B) removing some solvent from the solution from step (A) in order to obtain a suspension comprising Zn(OH)2, (C) removing solid Zn(OH)2 from the suspension from step (B), and (D) contacting the Zn(OH)2 from step (C) with ammonia in at least one solvent in order to obtain a solution of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10 with the concentration c2, and to highly concentrated solutions of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z are each independently 0.
    Type: Application
    Filed: April 27, 2011
    Publication date: December 27, 2012
    Applicant: BASF SE
    Inventors: Veronika Wloka, Friederike Fleischhaker
  • Patent number: 8318127
    Abstract: Exemplary embodiments provide materials and methods of forming a metal oxide composite and a porous metal oxide, which can be used for applications including catalysis, sensors, energy storage, solar cells, heavy metal removal and separations, etc. In one embodiment, a one-step solvothermal process can be used to form the metal oxide phase with high crystallinity and high surface area.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 27, 2012
    Assignee: STC.UNM
    Inventors: Xingmao Jiang, C. Jeffrey Brinker
  • Patent number: 8318126
    Abstract: The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 27, 2012
    Inventors: Stanislaus S. Wong, Hongjun Zhou
  • Publication number: 20120282645
    Abstract: Nanoparticles, compositions comprising the nanoparticles, and methods for manufacture and uses thereof are provided. In at least one specific embodiment, the nanoparticle can include at least one isotopically enriched metal oxide. The isotopically enriched metal oxide can be copper or zinc.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 8, 2012
    Applicant: NATURAL HISTORY MUSEUM
    Inventors: Superb K. Misra, Agnieszka Dybowska, Deborah Berhanu, Eugenia Valsami-Jones
  • Patent number: 8273413
    Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
  • Patent number: 8268287
    Abstract: The zinc oxide nanorod thin film in accordance with the present invention is highly condensed and has ideal photoelectric properties. The method for making the zinc oxide nanorod thin film has two steps: forming a zinc oxide seed layer comprising multiple crystals each having a grain size of 1-100 nm on a basal plate and preparing a zinc oxide nanorod thin film growing solution in which the zinc oxide seed layer is allowed to grow a zinc oxide crystal columnar layer at a growing temperature ranging from 50 to 100° C. for a growing time ranging from 0.5 to 10 hours to form a zinc oxide nanorod thin film, wherein the zinc oxide nanorod thin film growing solution is a 0.001-0.1 M aqueous zinc ion solution comprising hexamethylenetetramine.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 18, 2012
    Assignee: National Chung Cheng University
    Inventors: Chu-Chi Ting, Chang-Hung Li, Chih-You Kuo, Hsiang-Chen Wang
  • Publication number: 20120230900
    Abstract: An object of the present invention is to provide a metal salt-containing composition which is applicable to many metal source materials, and can be used for forming a compact and uniform metal oxide film comparable to those formed according to a sputtering method, as well as to provide a substrate having a metal complex film on the surface thereof obtained using the metal salt-containing composition, and a substrate having a metal complex film on the surface thereof obtained by further heating the substrate. Moreover, another object of the present invention is to provide a method for manufacturing a substrate having such a metal complex film on the surface thereof. According to the present invention, a metal salt-containing composition containing a metal salt, a polyvalent carboxylic acid having a cis-form structure, and a solvent, in which: the molar ratio of the polyvalent carboxylic acid to the metal salt is not less than 0.5 and not more than 4.
    Type: Application
    Filed: September 28, 2009
    Publication date: September 13, 2012
    Applicant: Dai-Ichi Kogyo Seiyaku Co., Ltd.
    Inventors: Yasuteru Saito, Naoki Ike
  • Publication number: 20120225006
    Abstract: The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and/or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.
    Type: Application
    Filed: April 11, 2012
    Publication date: September 6, 2012
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Stephen O'Brien, Ming Yin
  • Patent number: 8257679
    Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: September 4, 2012
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventor: Tadafumi Ajiri
  • Patent number: 8252256
    Abstract: A simple, room-temperature method of producing zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or EtOHic medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE), while an irregular spherical morphology, mixed with some chunky particles forzinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.02 ZnO nanoparticles wt %. Increasing the loading wt % of ZnOE from 0.01 to 0.07 led to an increase in the photocatalytic degradation efficiency from 67% to 90% after 45 minutes and a doubling of the first-order rate constant (k).
    Type: Grant
    Filed: January 1, 2012
    Date of Patent: August 28, 2012
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulaziz A Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. Al-Othman
  • Patent number: 8252196
    Abstract: A method for preparing nanotubes by providing nanorods of a piezoelectric material having an asymmetric crystal structure and by further providing hydroxide ions to the nanorods to etch inner parts of the nanorods to form the nanotubes.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: August 28, 2012
    Assignees: Samsung Electronics Co., Ltd., Kumoh National Institute of Technology
    Inventors: Jaeyoung Choi, Sangwoo Kim
  • Publication number: 20120208313
    Abstract: Methods for forming aggregates of nanomaterials are provided. The aggregates are formed from a liquid dispersion of the nanomaterials in a liquid. The dispersion is aerosolized and the liquid removed from the aerosolized dispersion to provide the aggregates. The aggregates are useful as a photoelectric layer and/or a light-dispersive layer in dye-sensitized solar cells.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 16, 2012
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Guozhong Cao, Qifeng Zhang, Junting Xi
  • Patent number: 8236277
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a carboxylate anion comprising from one to four alkyleneoxy moieties, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) at least one carboxylic acid comprising from one to four alkyleneoxy moieties, at least one salt of the carboxylic acid and a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 7, 2012
    Assignee: 3M Innovative Properties Company
    Inventor: Timothy D. Dunbar
  • Patent number: 8216544
    Abstract: A ZnO varistor powder can be obtained with high operating voltage and excellent current-voltage nonlinear resistance characteristics. In the ZnO varistor powder, the main ingredient is zinc oxide (ZnO); and at least bismuth (Bi), cobalt (Co), manganese (Mn), antimony (Sb), nickel (Ni), and aluminum (Al), calculated as Bi2O3, CO2O3, MnO, Sb2O3, NiO, and Al3+, are contained as accessory ingredients in amounts of 0.3 to 1.5 mol % Bi2O3, 0.3 to 2.0 mol % Co2O3, 0.3 to 3 mol % MnO, 0.5 to 4 mol % Sb2O3, 0.5 to 4 mol % NiO, and 0.0005 to 0.02 mol % Al3+. ZnO content is greater than or equal to 90 mol %; the bulk density is greater than or equal to 2.5 g/cc; the powder is a spherical powder in which the 50% particle diameter in the particle size distribution is 20 ?m to 120 ?m.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: July 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyasu Ando, Yasunori Kasuga
  • Patent number: 8168157
    Abstract: It is to provide a production method of zinc oxide powder excellent in UV protection ability and transparency and to provide cosmetics containing the same. The fine particle zinc oxide powder is produced by subjecting either an aqueous solution containing both a water-soluble zinc salt and a carboxylic acid or an aqueous solution containing a water-soluble zinc carboxylate to pH adjustment with an alkali carbonate agent and aging the resulting mixture without calcining. The alkali carbonate agent may be 0.1 to 2 mol/L aqueous solution and the carboxylate group is 1 to 5 times in moles with respect to zinc. The pH adjustment can be carried out by dropwise addition of the alkali carbonate aqueous solution at 0.5 to 5 mL/min per 100 mL of either the aqueous solution containing both the water-soluble zinc salt and the carboxylic acid or the aqueous solution containing the water-soluble zinc carboxylate.
    Type: Grant
    Filed: November 22, 2007
    Date of Patent: May 1, 2012
    Assignee: Shiseido Company Ltd.
    Inventors: Shoichiro Shio, Atsushi Nakahira, Hideaki Murase
  • Publication number: 20120097522
    Abstract: A simple, room-temperature method of producing zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or EtOHic medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE), while an irregular spherical morphology, mixed with some chunky particles forzinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.02 ZnO nanoparticles wt %. Increasing the loading wt % of ZnOE from 0.01 to 0.07 led to an increase in the photocatalytic degradation efficiency from 67% to 90% after 45 minutes and a doubling of the first-order rate constant (k).
    Type: Application
    Filed: January 1, 2012
    Publication date: April 26, 2012
    Applicant: King Abdulaziz City for Science and Technology(KACST)
    Inventors: Abdulaziz A. Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. AL-Othman
  • Publication number: 20120088845
    Abstract: Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.
    Type: Application
    Filed: April 25, 2011
    Publication date: April 12, 2012
    Inventors: Zehra Serpil Gonen Williams, Yijun Wang, Robert J. Wiacek, Xia Bai, Linfeng Gou, Selina I. Thomas, Wei Xu, Jun Xu, Rakesh Patel
  • Patent number: 8147793
    Abstract: Nano-sized metal-bearing powders and doped-powders are synthesized by means of a process whereby a non-volatile metal-bearing precursor powder or powder mixture is dispersed in a hot gas stream at relatively low temperatures. A first volatile reactant is added, converting the metal in the precursor into a volatile metal compound. Subsequently a second volatile reactant is injected into the gas stream, converting the volatile metal compound into a solid, which condenses as a nano-sized metal-bearing powder upon quenching. Finally, the vapour/metal-bearing powder mixture is separated from the gas stream.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: April 3, 2012
    Assignee: Umicore
    Inventors: Stijn Put, Yves Van Rompaey, Sylvain Van Den Rul
  • Publication number: 20120063992
    Abstract: The present invention relates to a process for the production of nanoparticles or nanostructured particles with the help of a 2-emulsion method, particles being produced through targeted coalescence of miniemulsions in a high-pressure homogenized.
    Type: Application
    Filed: May 10, 2010
    Publication date: March 15, 2012
    Applicant: BASF SE
    Inventors: Bernd Sachweh, Sonja Judat, Thomas Danner, Robert Engel, Caroline Mages-Sauter, Heike Schuchmann, Marion Gedrat
  • Publication number: 20120039782
    Abstract: A method for producing a densified fumed metal oxide having an increased bulk density and substantially the same surface area as an undensified fumed metal oxide with the same molecular composition is provided. The fumed metal oxide is wetted with a solvent to form a wetted fumed metal oxide. The wetted fumed metal oxide is dried to form a dried fumed metal oxide. The dried fumed metal oxide is calcined.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 16, 2012
    Applicant: UOP LLC
    Inventor: Christopher P. Nicholas
  • Patent number: 8110124
    Abstract: To produce fluorescent bodies providing high brightness and high energy efficiency, a method of preparing a fluorescent body precursor is provided to enable an activator having a large ionic radius to be doped arbitrarily. The problems described above are solved by a method of preparing a fluorescent body precursor, which method is characterized by comprising applying a shock pressure of 0.1 GPa or higher to a mixture consisting essentially of a fluorescent body base, an activator and a co-activating particle-growth promoter to dope the activator into the fluorescent body base in the presence of the co-activating particle-growth promoter.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: February 7, 2012
    Assignee: Kuraray Co., Ltd.
    Inventors: Yoshihisa Tsuji, Hideharu Iwasaki
  • Patent number: 8101153
    Abstract: The present invention describes a method for treating residues comprising zinc ferrites and non-ferrous metals selected from among the group made up of lead (Pb), silver (Ag), indium (In), germanium (Ge) and gallium (Ga) or mixtures thereof in the form of oxides and sulfates, comprising the following steps: roasting of the residues in an oxidizing medium at elevated temperature in order to obtain a desulfurized residue, carburizing reduction/smelting of the desulfurized residue in a reducing medium, liquid phase extraction of carburized melt and slag, vapor phase extraction of the non-ferrous metals, followed by oxidation and recovery thereof in solid form.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: January 24, 2012
    Assignee: Paul Wurth S.A.
    Inventors: Jean-Luc Roth, Marie Bontemps