Aluminum Patents (Class 423/625)
  • Publication number: 20140322534
    Abstract: The present invention relates to alumina flakes having a defined thickness and particle size distribution and to their use in varnishes, paints, automotive coatings printing inks, masterbatches, plastics and cosmetic formulations and as substrate for effect pigments. and organic dyes.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 30, 2014
    Applicant: Merck Patent GmbH
    Inventors: Ryuta SUZUKI, Gerhard PFAFF, Sabine SCHOEN, Fumiko SASAKI, Satoru KOBAYASHI, Koshiro KUNII, Yuji TAKENAKA, Katsuhisa NITTA
  • Publication number: 20140322536
    Abstract: The present invention relates to alumina flakes having a defined thickness and particle size distribution and to their use in varnishes, paints, automotive coatings, printing inks, masterbatches, plastics and cosmetic formulations and as substrate for effect pigments.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 30, 2014
    Applicant: MERCK PATENT GMBH
    Inventors: Ryuta SUZUKI, Gerhard PFAFF, Sabine SCHOEN, Noriyuki MATSUDA, Katsuhisa NITTA
  • Patent number: 8871820
    Abstract: Alumina particles and compositions containing alumina particles are disclosed. Methods of making alumina particles and methods of using alumina particles are also disclosed.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: October 28, 2014
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Demetrius Michos
  • Publication number: 20140286846
    Abstract: A process for preparing a mesoporous metal oxide, i.e., transition metal oxide, Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.
    Type: Application
    Filed: September 25, 2013
    Publication date: September 25, 2014
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Steven L. Suib, Altug Suleyman Poyraz
  • Patent number: 8834832
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a lactate or thiolactate anion, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) lactic or thiolactic acid, a lactate or thiolactate salt of a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: September 16, 2014
    Assignee: 3M Innovative Properties Company
    Inventor: Timothy D. Dunbar
  • Patent number: 8834833
    Abstract: Process for preparing an aluminum oxide powder which is present in the form of aggregated primary particles and comprises at least 85% by weight of alpha-aluminum oxide, in which an aluminum oxide powder which a) is present in the form of aggregated primary particles, b) is selected from the group consisting of gamma-aluminum oxide, theta-aluminum oxide, delta-aluminum oxide and/or X-ray amorphous aluminum oxide, and c) has a tamped density of at least 250 g/l, is subject to a heat treatment at 13000 C or more and subsequently milled. Aluminum oxide powder which can be obtained by this process. Aluminum oxide powder in the form of aggregated primary particles having a BET surface area of from 3 to 30 m2/g, in which the proportion of alpha-aluminum oxide is at least 85% by weight and the ratio dgo/dio of the weight distribution of the primary particles is at least 2.8. Use as constituent of fluorescent tubes.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: September 16, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Christian Schulze-Isfort, Christoph Batz-Sohn, Herbert Habermann, Ralph Hofmann
  • Patent number: 8834600
    Abstract: The present invention relates to a zero-waste process for extraction of alumina from different types of bauxite ores and red mud residues and of titanium dioxide from ilmenite. Iron oxide is first reduced to metallic iron above the melting point of C-saturated cast iron alloy which yields a high-C iron alloy and an Al and Ti metal oxide rich slag which is then treated with alkali carbonate to form alkali aluminates and titanates. The alkali aluminates are separated by water leaching from which the hydroxide of alumina is precipitated by bubbling C02. The residue from water leaching is treated with sulphuric acid and Ti02 is precipitated via a hydrolysis route. The process recovers most of the metal values and generates only small quantities of silicious residues at pH 4-5 which can be used for soil conditioning.
    Type: Grant
    Filed: June 11, 2004
    Date of Patent: September 16, 2014
    Assignee: The University of Leeds
    Inventors: Animesh Jha, Pailo Antony Malpan, Vilas Dattatray Tathavadkar
  • Patent number: 8822045
    Abstract: The present invention provides methods of protecting a surface of an aluminum nitride substrate. The substrate with the protected surface can be stored for a period of time and easily activated to be in a condition ready for thin film growth or other processing. In certain embodiments, the method of protecting the substrate surface comprises forming a passivating layer on at least a portion of the substrate surface by performing a wet etch, which can comprise the use of one or more organic compounds and one or more acids. The invention also provides aluminum nitride substrates having passivated surfaces.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 2, 2014
    Assignee: North Carolina State University
    Inventors: Ramon R. Collazo, Zlatko Sitar, Rafael Dalmau
  • Patent number: 8815205
    Abstract: A production method comprising the steps of: spraying an aluminum hydroxide powder having a specific surface area measured by a nitrogen adsorption method of 0.3 m2/g or more and 3 m2/g or less; a ratio of an average particle diameter D50, which is a particle diameter at which 50% by weight of particles from the finest particle side are accumulated in a particle diameter distribution measured by a laser diffraction scattering method, to a sphere conversion particle diameter Dbet calculated from a specific surface area, of 10 or less; and the average particle diameter D50 of 2 ?m or more and 100 ?m or less, into flames, and then collecting it in the form of a powder to give a spherical alumina powder having a small specific surface area and a low uranium content, and capable of providing high thermal conductivity to resin compositions.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: August 26, 2014
    Assignees: Nippon Steel & Sumikin Materials Co., Ltd., Sumitomo Chemical Company, Limited
    Inventors: Kiyoshi Sawano, Atsuhiko Imai, Takayuki Kashihara, Yusuke Kawamura, Hiroshi Takahashi
  • Publication number: 20140208968
    Abstract: One object is to provide a structure including a thin primer film formed by a dry process and tightly bound to a fluorine-containing silane coupling agent. In accordance with one aspect, a structure according to an embodiment of the present disclosure includes: a substrate; and a thin primer film containing at least one substance selected from the group consisting of silicon, titanium, aluminum, aluminum oxide, and zirconium and formed on a surface of the substrate by a dry process.
    Type: Application
    Filed: August 10, 2012
    Publication date: July 31, 2014
    Applicant: Taiyo Chemical Industry Co., Ltd.
    Inventor: Kunihiko Shibusawa
  • Patent number: 8784754
    Abstract: The present invention relates to a method for preparing high-purity aluminum, the method comprising: a mother liquor preparing step for preparing a mother liquor by dissolving and aging ordinary aluminum hydroxide; a refining step for adding pulp to absorb impurities from the prepared mother liquor after the mother liquor preparing step; and an obtaining step for obtaining high-purity alumina by adding a seed into the mother liquor and precipitating a precipitate, and filtering, washing, and recrystallizing the precipitate, and calcining the precipitate. Thus, the present invention enables an environmentally-friendly and low-cost preparation of high-purity alumina.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: July 22, 2014
    Assignee: HMR Co., Ltd.
    Inventor: Jae Hoon Hu
  • Publication number: 20140196412
    Abstract: The invention provides a food decay odor controller which includes a mercaptan remover.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Applicant: Multisorb Technologies, Inc.
    Inventor: George E. McKedy
  • Publication number: 20140179853
    Abstract: Provided are an antiozonant for polymers capable of providing excellent ozone resistance, and an ozone resistant rubber composition and an ozone resistant tire formed using the antiozonant. The present invention relates to an antiozonant for polymers, including alumina.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 26, 2014
    Applicant: SUMITOMO RUBBER INDUSTRIES, LTD.
    Inventor: Masatoshi KOBAYASHI
  • Patent number: 8759241
    Abstract: A method for making a catalyst composition suitable for various purposes, such as the reduction of nitrogen oxides, is provided. The method includes combining dawsonite or a dawsonite derivative with a catalytic active element.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 24, 2014
    Assignee: General Electric Company
    Inventor: Venkat Subramaniam Venkataramani
  • Publication number: 20140155249
    Abstract: Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Inventors: Kamal HADIDI, Makhlouf REDJDAL
  • Publication number: 20140155300
    Abstract: A treatment fluid comprises: a metal oxide, wherein the metal oxide is capable of forming a chelate complex or coordination complex with a ligand, wherein the chelate complex or coordination complex has a setting time of less than 90 minutes at a temperature of 71° F. and a pressure of 1 atmosphere. A method of treating a portion of a subterranean formation comprises: introducing the treatment fluid into the subterranean formation; allowing or causing a chelate complex or coordination complex to form between the metal oxide and a ligand; and allowing or causing the chelate complex or coordination complex to set.
    Type: Application
    Filed: April 4, 2013
    Publication date: June 5, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dale E. JAMISON, Donald L. WHITFILL, Matthew L. MILLER, Kay A. MORRIS
  • Publication number: 20140147405
    Abstract: A composition comprising a polyhydroxyoxoaluminum cation detectable at 76 ppm by 27Al NMR that is present in a relative abundance on a 27Al NMR spectrograph that is greater than any other polyhydroxyoxoaluminum cation detectable by 27Al NMR. Also, disclosed are methods of making the composition.
    Type: Application
    Filed: December 20, 2011
    Publication date: May 29, 2014
    Applicant: COLGATE-PALMOLIVE COMPANY
    Inventors: John Vaughn, Iraklis Pappas, Long Pan
  • Patent number: 8722765
    Abstract: An alumina particle composite (1) includes an alumina particle (2) and an organic acid (3) chemically bonded to a surface of the alumina particle (2). Further, the alumina particle (2) has a short axis length of 1 to 10 nm, a long axis length of 20 to 400 nm, and an aspect ratio of 5 to 80, and is represented by Formula I, Al2O3·nH2O??Formula I where n is 0 or more.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: May 13, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takashi Oda, Yasuaki Kai, Tomohiro Ito, Takashi Seino, Hironobu Muramatsu
  • Publication number: 20140128242
    Abstract: An object of the invention is to provide, in porous thermal insulating firebricks formed by molding and drying bubble-containing slurry obtained by foaming slurry containing a fire resistant powder and water, a thermal insulating firebrick superior in thermal insulating property in spite of the same composition and porosity. A porous thermal insulating firebrick formed by molding and drying bubble-containing slurry obtained by foaming slurry containing a fire resistant powder with a heat resistant temperature of 1,000° C. or higher and water has the porosity of 60% or more, and 80% or more volume with respect to a total pore volume of the inside of the thermal insulating firebrick consists of pores having a pore size of 200 ?m or less.
    Type: Application
    Filed: June 4, 2012
    Publication date: May 8, 2014
    Applicant: HINOMARU YOGYO CO., LTD.
    Inventors: Daisuke Taniyama, Yasunari Nagasaki, Akira Terasawa
  • Publication number: 20140120021
    Abstract: The present invention relates to a new synthetise for the preparation of mesoporous structures including mesoporous materials with chiral morphologies and mesoporous materials with local or surface chirality. The method can be used for manufacturing controlled drug delivery devices, for example for delivery of folic acid, and fluorescent particles.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 1, 2014
    Applicant: Nanologica AB
    Inventor: Alfonso Garcia-Bennett
  • Patent number: 8697019
    Abstract: Nanostructured manganese-containing compositions having reduced manganese dissolution and methods of making and using the same are provided. In one embodiment, a composition of matter comprises a nanostructured oxide or hydroxide doped with Mn4+. The composition of matter can be made by forming a nanostructured oxide or hydroxide material doped with Mn3+ and oxidizing the Mn3+ to Mn4+ to reduce dissolution of the manganese in the nanostructured oxide or hydroxide material. In another embodiment, a method of reducing dissolution of manganese present in a nanostructured MnO2 material comprises: doping a nanostructured MnO2 material with Fe3+ to reduce the dissolution of the manganese.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 15, 2014
    Assignee: Inframat Corporation
    Inventors: Huimin Chen, Lei Jin
  • Patent number: 8685161
    Abstract: Various single crystals are disclosed including sapphire. The single crystals have desirable geometric properties, including a width not less than about 15 cm and the thickness is not less than about 0.5 cm. The single crystal may also have other features, such as a maximum thickness variation, and as-formed crystals may have a generally symmetrical neck portion, particularly related to the transition from the neck to the main body of the crystal. Methods and for forming such crystals and an apparatus for carrying out the methods are disclosed as well.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: April 1, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: John W. Locher, Steven A. Zanella, Ralph L. MacLean, Jr., Herbert Ellsworth Bates
  • Patent number: 8685123
    Abstract: An abrasive particulate material is disclosed that includes alumina particles. The alumina particles include a transition alumina and at least 5.0 wt % of an amorphous phase. The transition alumina particles also have a density not greater than about 3.20 g/cm3.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: April 1, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Jun Wang, Andrew G. Haerle
  • Publication number: 20140059971
    Abstract: The present invention relates to thermal insulation materials made of hollow oxide particles. Use of hollow oxide particles having an overall thermal conductivity of less than 0.026 W/(mK) is for example suitable for the building sector or other areas where thermal insulation is required.
    Type: Application
    Filed: March 19, 2012
    Publication date: March 6, 2014
    Inventors: Bjørn Petter Jelle, Bente Gilbu Tilset, Susie Jahren, Arild Gustavsen, Tao Gao
  • Patent number: 8664137
    Abstract: A regenerating method for activated alumina used in regenerating working fluid of hydrogen peroxide comprises the following steps: adding deactivated alumina discharged from a regenerating bed for working fluid of hydrogen peroxide into a reactor through the top of the reactor and settling by gravity, oxidizing atmosphere entering into the reactor from the bottom of the reactor and running upwardly, then discharging exit gas and regenerated alumina through the discharge port on the top and discharging device on the bottom of the reactor respectively. The method is economic, environment-protective, safe, low-costly. The regenerated alumina will not poison palladium catalyst.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: March 4, 2014
    Assignee: Shanghai Huaming Hi-Tech (Group) Co., Ltd.
    Inventors: Qiufang Wu, Guojian Chen, Fuqing Li, Xinsheng Ma, Gang Chen, Jinghui Yang, Zhiping Zhang
  • Patent number: 8664138
    Abstract: A regenerating method for activated alumina used in regenerating working fluid of hydrogen peroxide comprises the following steps: adding deactivated alumina discharged from a regenerating bed for working fluid of hydrogen peroxide with fire resistant alumina into a reactor through the top of the reactor and settling by gravity, oxidizing atmosphere entering into the reactor from the bottom of the reactor and running upwardly, discharging regenerated alumina and fire resistant alumina through the discharging device on the bottom of the reactor, discharging exit gas through the discharge port on the top of the reactor, the reaction temperature ranging from 360-800° C., the residence time of solid feed in the reactor ranging from 3-15 h. The method is economic, environment-protective, safe, and low-costly. The regenerated alumina will not poison palladium catalyst.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: March 4, 2014
    Assignee: Shanghai Huaming Hi-Tech (Group) Co., Ltd.
    Inventors: Fuqing Li, Xinsheng Ma, Gang Chen, Qiufang Wu, Guojian Chen, Yubao Gan, Jinghui Yang
  • Patent number: 8652658
    Abstract: A method and apparatus for the production of C-plane single crystal sapphire is disclosed. The method and apparatus may use edge defined film-fed growth techniques for the production of single crystal material exhibiting low polycrystallinity and/or low dislocation density.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: February 18, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vitali Tatartchenko, Christopher D. Jones, Steven Anthony Zanella, John W. Locher, Fery Pranadi
  • Publication number: 20140017419
    Abstract: To provide a gas barrier laminate film containing a substrate film having on at least one surface thereof one layer or plural layers of an inorganic thin film layer, a first layer of the inorganic thin film layer on a side of the substrate film being formed by a facing target sputtering method, and a method for producing a gas barrier laminate film, containing forming one layer or plural layers of an inorganic thin film layer on at least one surface of a substrate film, a first layer of the inorganic thin film layer on a side of the substrate film being formed by a facing target sputtering method, and thus to provide a gas barrier laminate film with high gas barrier property having a dense inorganic thin film layer that inflicts less damage to a substrate film, particularly to a resin film, on which the inorganic thin film layer is formed, and a method for producing the same.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 16, 2014
    Applicant: MITSUBISHI PLASTICS, INC.
    Inventors: Hidetaka Amanai, Makoto Miyazaki
  • Publication number: 20140008067
    Abstract: Disclosed embodiments relate to well treatment fluids and methods that utilize nano-particles. Exemplary nano-particles are selected from the group consisting of particulate nano-silica, nano-alumina, nano-zinc oxide, nano-boron, nano-iron oxide, and combinations thereof. Embodiments also relate to methods of cementing that include the use of nano-particles. An exemplary method of cementing comprises introducing a cement composition into a subterranean formation, wherein the cement composition comprises cement, water and a particulate nano-silica. Embodiments also relate to use of nano-particles in drilling fluids, completion fluids, simulation fluids, and well clean-up fluids.
    Type: Application
    Filed: September 12, 2013
    Publication date: January 9, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Craig Wayne Roddy, Jiten Chatterji, Roger Stanley Cromwell
  • Patent number: 8613897
    Abstract: A method for producing a densified fumed metal oxide having an increased bulk density and substantially the same surface area as an undensified fumed metal oxide with the same molecular composition is provided. The fumed metal oxide is wetted with a solvent to form a wetted fumed metal oxide. The wetted fumed metal oxide is dried to form a dried fumed metal oxide. The dried fumed metal oxide is calcined.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: December 24, 2013
    Assignee: UOP LLC
    Inventor: Christopher P. Nicholas
  • Publication number: 20130334454
    Abstract: The present invention relates to the use of printable inks for the formation of Al2O3 coatings or mixed Al2O3 hybrid layers, and to a corresponding process for the formation thereof.
    Type: Application
    Filed: February 9, 2012
    Publication date: December 19, 2013
    Applicant: MERCK PATENT GMBH
    Inventors: Ingo Koehler, Oliver Doll, Werner Stockum, Sebastian Barth
  • Patent number: 8597600
    Abstract: There are provided processes for extracting aluminum ions from aluminous ores and for preparing alumina. Such processes can be used with various types of aluminous ores such as aluminous ores comprising, for example, various types of metals such as Fe, K, Mg, Na, Ca, Mn, Ba, Zn, Li, Sr, V, Ni, Cr, Pb, Cu, Co, Sb, As, B, Sn, Be, Mo, or mixtures thereof.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: December 3, 2013
    Assignee: Orbite Aluminae Inc.
    Inventors: Richard Boudreault, Serge Alex, Fabienne Biasotto
  • Patent number: 8586808
    Abstract: The invention concerns a catalyst comprising nickel on an aluminum oxide support. The aluminum oxide support has, in the calcined state, a diffractogram obtained by X ray diffractometry comprising peaks which correspond to the following interplanar spacings and relative intensities: Interplanar spacings Relative intensities d (10?10 m ) I/I0 (%) 5.03 to 5.22 1-5 4.56 to 4.60 ?1-10 4.06 to 4.10 1-5 2.80 to 2.85 ?5-20 2.73 15-35 2.60 ?5-10 2.43 35-40 2.29 30-40 1.99 60-95 1.95 25-50 1.79 ?1-10 1.53 ?5-10 1.51 ?5-10 1.41 40-60 1.39 100 1.23 to 1.26 1-5 1.14 ?5-10 1.11 1-5 1.04 1-5 1.00 ?5-10 0.97 ?1-5.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: November 19, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Anne Claire Dubreuil, Lars Fischer, Bernadette Rebours, Renaud Revel, Cecile Thomazeau
  • Patent number: 8568684
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: October 29, 2013
    Assignee: NanoGram Corporation
    Inventors: Xiangxin Bi, Nobuyuki Kambe, James T. Gardner, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William E. McGovern
  • Patent number: 8568671
    Abstract: Provided a method for preparing metallurgical-grade alumina by using fluidized-bed fly ash, comprising: a) removing iron by wet magnetic separation after crushing the fly ash; b) reacting the fly ash after magnetic separation with hydrochloric acid to obtain a hydrochloric leachate; c) passing the hydrochloric leachate through macro-porous cationic resin to deeply remove iron to obtain a refined aluminum chloride solution; d) concentrating and crystallizing the refined aluminum chloride solution to obtain an aluminum chloride crystal; and e) calcining the aluminum chloride crystal to obtain the metallurgical-grade alumina. The method is simple, the procedure is easy to be controlled, the extraction efficiency of alumina is high, the production coast is low, and the product quality is steady.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: October 29, 2013
    Assignee: China Shenhua Energy Company Limited
    Inventors: Zhaohua Guo, Cundi Wei, Peiping Zhang, Jianguo Han, Junzhou Chi, Yanbin Sun, Yixin Zhao
  • Patent number: 8568898
    Abstract: The present invention is directed to a method of making metal oxide and mixed metal oxide particles. The method includes treating a mixture formed from a metal source, such as metal alkoxide, a surfactant, and a first alcohol in an aqueous media at a very high metal oxide yield. The mixture is reacted using a catalyst to form metal oxide particles having a desired particle size in said mixture. The method is particularly suitable for forming silica particles. The metal oxide particles can then be heat treated to form synthetic fused metal oxides such as, for example, synthetic fused silica.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: October 29, 2013
    Assignee: Momentive Performance Materials Inc.
    Inventor: Antonio L. DeVera
  • Publication number: 20130279176
    Abstract: A color insensitive scattering pigment is disclosed. In an embodiment, the scattering pigment is composed of particles of a range of sizes. In at least one subrange of the range of sizes, the particles are present in such relative proportions that the v/v concentration (volumetric concentration) of a particular size of particles is proportional to the size itself. In an embodiment, such a scattering pigment is included in light guides to scatter light from a primary light source.
    Type: Application
    Filed: December 26, 2011
    Publication date: October 24, 2013
    Applicant: I2IC CORPORATION
    Inventors: Udayan Kanade, Sanat Ganu
  • Patent number: 8562940
    Abstract: A process for preparing a mesoporous alumina is described, comprising the following steps: a) mixing, in aqueous solution, at least one source of aluminum constituted by an aluminum alkoxide, at least one cationic surfactant and at least one organic solvent selected from methanol and ethanol; b) hydrothermally treating the mixture formed in said step a); c) drying the solid formed in said step b); d) calcining the solid formed in said step c).
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: October 22, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Loic Rouleau, Sébastien Royer, Christine Lancelot, Franck Dumeignil, Edmond Payen, Pascal Blanchard
  • Publication number: 20130258480
    Abstract: A precursor sol of aluminum oxide includes particles containing a hydrolysate and/or a condensate of an aluminum compound, a solvent, and an organo aluminum compound. When a pulsed-NMR T2 relaxation curve of nuclide 1H of the precursor sol of aluminum oxide includes two components with different T2 relaxation times and the component with the longer T2 relaxation time has an abundance level of CL (%) and the component with the shorter T2 relaxation time has an abundance level of CS (%), the relative proportion RCS (%) defined by [{CS/(CS+CL)}×100] is in the range of 23.5% to 50.0%, both inclusive.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 3, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Kenji Makino, Tomonari Nakayama, Keiko Abe, Katsuaki Kuge, Hijiri Hasegawa
  • Publication number: 20130256957
    Abstract: A translucent alumina has an alumina content of 99.98% by mass or more and a density of 3.97 g/cm3 or more, and in which the volume percentage of crystal textures having an aspect ratio of 1.5 or less and a long axis length of 10 ?m or less is 93% or more.
    Type: Application
    Filed: March 26, 2013
    Publication date: October 3, 2013
    Applicant: Seiko Epson Corporation
    Inventors: Hideki ISHIGAMI, Hidefumi NAKAMURA, Junichi HAYASHI
  • Patent number: 8546298
    Abstract: An odor filtration media having a chemical reagent which removes odor causing fluid contaminants from a fluid stream through the use of granular or shaped media have a chemical composition including permanganate is provided. A method of producing the odor absorbing media having a chemical reagent is also provided and comprises the steps of mixing H2O, KMnO4, and at least one salt adding ions or ionic compounds selected from the group consisting of Na+, Li+, K+, NH4+, Cl?, SO42?, BO32?, CO32?, PO43?, NO3? and combinations thereof, or from the group consisting of Na+, Li+, K+, NH4+, Mg2+, Ca2+, Cl?, BO32?, NO3? and combinations thereof, forming an impregnating solution. The impregnating solution is heated and combined with a support material to form a coherent mass.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: October 1, 2013
    Assignee: AAF-McQuay Inc.
    Inventors: Michael W Osborne, Zhong C. He, Ng Cheah Wei
  • Patent number: 8545776
    Abstract: The invention provides a method of inhibiting the accumulation of DSP scale in the liquor circuit of Bayer process equipment. The method includes adding one or more particular silane based small molecules to the liquor fluid circuit. These scale inhibitors reduce DSP scale formation and thereby increase fluid throughput, increase the amount of time Bayer process equipment can be operational and reduce the need for expensive and dangerous acid washes of Bayer process equipment. As a result, the invention provides a significant reduction in the total cost of operating a Bayer process.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: October 1, 2013
    Assignee: Nalco Company
    Inventors: Timothy La, Ji Cui, John D. Kildea, David H. Slinkman
  • Publication number: 20130251818
    Abstract: Personal lubricants containing royal jelly, a glow powder or xylitol are provided.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 26, 2013
    Applicant: Nature Labs USA LLC
    Inventors: Louis J. Rivers, IV, Kevin Stranen
  • Patent number: 8535633
    Abstract: Process for the production of doped metal oxide particles, wherein the doping component is present on the surface in the form of domains, wherein in a first reaction zone, an oxidizable and/or —hydrolysable metal compound as dopant together with an atomization gas is atomized into a flow of metal oxide particles in a carrier gas, wherein the mass flow of the metal oxide particles und —the mass flow of the dopant are selected such that the doped metal oxide particles contain 10 ppm to 10 wt.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: September 17, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Kai Schumacher, Rainer Golchert, Helmut Roth, Harald Alff, Matthias Rochnia
  • Publication number: 20130237402
    Abstract: The present invention provides a method for manufacturing a corundum substance, comprising steps of providing a corundum crystal having an a-axis and a growth along the a-axis; and obtaining the corundum substance from the corundum crystal in a particular direction.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 12, 2013
    Inventors: Wei-Hsiang Wang, Chen-Hui Wu, Chuan-Lang Lu
  • Publication number: 20130237729
    Abstract: A composition comprising an extruded inorganic support comprising an oxide of a metal or metalloid, and at least one catalytically active metal, wherein the extruded inorganic support has pores, a total pore volume, and a pore size distribution, wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum, wherein a first peak has a first maximum of pore diameters of equal to or greater than about 120 nm and a second peak has a second maximum of pore diameters of less than about 120 nm, and wherein greater than or equal to about 5% of a total pore volume of the extruded inorganic support is contained within the first peak of pore diameters.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Stephen L. Kelly
  • Patent number: 8524191
    Abstract: A process for preparing aluminum oxide with a low calcium content, in which (1) crude alpha- and/or gamma-aluminum oxide with a total calcium content in the range from 50 to 2000 ppm, based on the crude alpha- and/or gamma-aluminum oxide, is mixed with an aqueous solution or suspension comprising the compounds selected from the group of inorganic acid, organic acid and complexing agent, (2) the mixture from step (1) is admixed with a flocculating aid, (3) in the mixture of step (2), the solids are separated from the liquid, (4) the solids separated are mixed with water in the presence or in the absence of a flocculating aid, (5) in the mixture of step (4), the solids are separated from the liquid, (6) optionally, steps (4) and (5) are repeated once or more than once, (7) optionally, the solids separated optionally after addition of further compounds, are dried.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: September 3, 2013
    Assignee: BASF SE
    Inventors: Marcus Georg Schrems, Anna Katharina Dürr, Günther Huber, Jesus Enrique Zerpa Unda, Katrin Freitag, Christian Eichholz, Franky Ruslim
  • Publication number: 20130220178
    Abstract: The current invention relates to a method of making metal oxide nanoparticles comprising the reaction of—at least one metal oxide precursor (P) containing at least one metal (M) with—at least one monofunctional alcohol (A) wherein the hydroxy group is bound to a secondary, tertiary or alpha-unsaturated carbon atom—in the presence of at least one aliphatic compound (F) according to the formula Y1—R1—X—R2—Y2, wherein—R1 and R2 each are the same or different and independently selected from aliphatic groups with from 1 to 20 carbon atoms, —Y1 and Y2 each are the same or different and independently selected from OH, NH2 and SH, and —X is selected from the group consisting of chemical bond, —O—, —S—, —NR3—, and CR4R5, wherein R3, R4 and R5 each are the same or different and represent a hydrogen atom or an aliphatic group with from 1 to 20 carbon atoms which optionally carries functional groups selected from OH, NH2 and SH.
    Type: Application
    Filed: October 7, 2010
    Publication date: August 29, 2013
    Applicant: Justus-Liebig-Universitat Giessen
    Inventors: Roman Zieba, Alexander Traut, Cornelia Röger-Göpfert, Torsten Brezesinski, Bernadette Landschreiber, Claudia Grote, Georg Garnweitner, Alexandra Seeber, Bernd Smarsly, Christoph Wiedmann, Till von Graberg, Jan Haetge
  • Patent number: 8518358
    Abstract: A metal oxide powder includes a powder feed material structured and arranged to form molten droplets when melted in a plasma stream. The molten droplets are structured and arranged to form frozen spherical droplets under free-fall conditions such that said molten droplets have ample time for complete in-flight solidification before reaching a collection chamber.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: August 27, 2013
    Assignee: Sulzer Metco (US), Inc.
    Inventors: Liangde Xie, Mitchell Dorfman, Ashish Patel, Michael Mueller
  • Patent number: 8501150
    Abstract: The present invention relates to a method for producing a metal oxide by heating a porous metal-organic framework material, the framework material comprising at least one at least bidentate organic compound bound to at least one metal ion by coordination, and the metal ion being selected from the metals comprising groups 2 to 4 and 13 of the Periodic Table of the Elements, above the complete decomposition temperature of the framework material, and also to metal oxides obtainable by this method, and to the use thereof.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: August 6, 2013
    Assignees: BASF Aktiengesellschaft, BASF SE
    Inventors: Markus Schubert, Ulrich Müller, Natalia Trukhan